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SUBIDEAL BORDER BASES

MARTIN KREUZER AND HENK POULISSE

Abstract. In modeling physical systems, it is sometimes useful to construct
border bases of 0-dimensional polynomial ideals which are contained in the
ideal generated by a given set of polynomials. We define and construct such
subideal border bases, provide some basic properties and generalize a suit-
able variant of the Buchberger-Möller algorithm as well as the AVI-algorithm
of Heldt, Kreuzer, Pokutta, and Poulisse to the subideal setting. The subideal
version of the AVI-algorithm is then applied to an actual industrial problem.

1. Introduction

In [5] an algorithm was introduced which computes an approximate border basis
consisting of unitary polynomials that vanish approximately at a given set of points.
It has been shown that this AVI-algorithm is useful for modeling physical systems
based on a set of measured data points. More precisely, given a finite point set
X = {p1, . . . , ps} ⊂ [−1, 1]n, the AVI-algorithm computes an order ideal O of terms
in T

n and an O-border prebasis G = {g1, . . . , gν} such that

(1) the unitary polynomials gi/‖gi‖ vanish ε-approximately at X, where ε > 0
is a given threshold number, and

(2) the normal remainders of the S-polynomials S(gi, gj) for gi, gj with neigh-
boring border terms are smaller than ε.

Abstractly speaking, the last condition means that the point in the moduli space
corresponding to G is “close” to the border basis scheme (see [11] and [8]). In
practical applications, the AVI-algorithm turns out to be very stable and useful.
With a judicious choice of the threshold number ε, it is able to discover simple
polynomial relations which exist in the data with high reliability. For instance,
it discovers simple physical laws inherent in measured data without the need of
imposing model equations.

However, in some situations physical information may be available which is not
contained in the data points X or we may have exact physical knowledge which
is only approximately represented by the data points. An example for this phe-
nomenon will be discussed in Section 6. For instance, we may want to impose
certain vanishing conditions on the model equations we are constructing. Using
Hilbert’s Nullstellensatz this translates to saying that what we are looking for is
the intersection of the vanishing ideal of X with a given ideal J ⊆ R[x1, . . . , xn]
whose generators represent the vanishing conditions we want to impose.

Received by the editor May 7, 2009 and, in revised form, March 9, 2010.
2010 Mathematics Subject Classification. Primary 13P10; Secondary 41A10, 65D05, 14Q99.
Key words and phrases. Approximate vanishing ideal, Buchberger-Möller algorithm, border
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1136 MARTIN KREUZER AND HENK POULISSE

In order to be able to deal with this approximate situation, it is first necessary to
generalize the exact version of the computation of vanishing ideals to the subideal
setting. Then this theory will serve as a guide and a motivation for the approxi-
mate case. Therefore this paper begins in Section 2 with the definition and basic
properties of subideal border bases.

Given a 0-dimensional ideal I in a polynomial ring P = K[x1, . . . , xn] over a field
and a set of polynomials F = {f1, . . . , fm} generating an ideal J = 〈F 〉, a subideal
border basis of I corresponds to a set of polynomials OF = O1 · f1 ∪ · · · ∪ Om · fm,
where the Oi are order ideals of terms, such that the residue classes of the elements
of OF form a K-basis of J/(I ∩ J) ∼= (I + J)/I. Clearly, this generalizes the case
F = {1}, i.e. the “usual” border basis theory. We examine the question whether
subideal border bases always exist and explain a method to construct them from
a border basis of I. Moreover, we discuss some uniqueness properties of subideal
border bases.

The foundation of any further development of the theory of subideal border bases
is a generalization of the Border Division Algorithm (see [10], 6.4.11) to the subideal
case. This foundation is laid in Section 3 where we also study higher OF -borders,
the OF -index, and show that a subideal border basis of I generates I ∩ J .

In Section 4, we generalize the Buchberger-Möller algorithm (BM-algorithm) for
computing vanishing ideals of point sets to the subideal setting. More precisely,
we generalize a version of the BM-algorithm which proceeds blockwise degree-by-
degree and produces a border basis of the vanishing ideal. Similarly, the subideal
version of the BM-algorithm (cf. Algorithm 4.2) computes an Oσ(IX)F -subideal
border basis of IX, where Oσ(IX) is the complement of a leading term ideal of the
vanishing ideal IX of X.

Next, in Section 5, we turn to the setting of Approximate Computational Alge-
bra. We work in the polynomial ring R[x1, . . . , xn] over the reals and assume that
X ⊂ [−1, 1]n is a finite set of (measured, imprecise) points. We define approximate
OF -subideal border bases and generalize the AVI-algorithm from [5], Thm. 3.3 to
the subideal case. A discussion of the efficiency and some timings for the imple-
mentations of the subideal versions of the BM-algorithm and the AVI-algorithm
in ApCoCoA (cf. [3]) are provided in Section 6.

Let us point out that the subideal version of the AVI-algorithm contains a sub-
stantial difference to the traditional way of computing approximate vanishing ideals,
e.g., as in [1]. Namely, the AVI-algorithm produces a set of polynomials which van-
ish approximately at the given data points, but we do not demand that there exists
a “nearby” set of points at which these polynomials vanish exactly. The latter
requirement has turned out to be too restrictive for real-world applications, for
instance, the one we explain in the last section. There we provide an example for
the application of these techniques to the problem of production allocation in the
oil industry.

Unless explicitly stated otherwise, we use the notation and definitions of [9]
and [10]. We shall assume that the reader has some familiarity with the theory of
exact and approximate border bases (see for instance [5], [6], [7], [8], Section 6.4
of [10], and [13]).
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SUBIDEAL BORDER BASES 1137

2. Subideal border bases

Here we are interested in a “relative” version of the notion of border bases in
the following sense. Let K be a field, let P = K[x1, . . . , xn] be a polynomial ring,
let T

n be its monoid of terms, let O be an order ideal in T
n, and let I ⊂ P be a

0-dimensional ideal.
Suppose we are given a further polynomial ideal J = 〈f1, . . . , fm〉 of P , where

F = {f1, . . . , fm} ⊂ P \ {0}. Our goal is to describe and compute the intersection
ideal I ∩ J as a subideal of J . By Noether’s isomorphism theorem, we have J/(I ∩
J) ∼= (I+J)/I ⊂ P/I. Therefore, J has a finite K-vector space basis modulo I ∩J .
Now we are looking for the following special kind of vector space basis.

Definition 2.1. Let I, J be ideals of P as above, and let O be an order ideal of
terms in T

n whose residue classes form a K-vector space basis of P/I.

(1) For i = 1, . . . ,m, let Oi ⊆ O be an order ideal. Then the set OF =
O1 ·f1 ∪ · · ·∪Om ·fm is called an F -order ideal. Its elements, i.e., products
of the form tfi with t ∈ Oi will be called F -terms.

(2) If OF = O1 · f1 ∪ · · · ∪ Om · fm is an F -order ideal whose residue classes
form a K-vector space basis of J/(I ∩ J), we say that the ideal I has an
OF -subideal border basis.

Notice that an F -term may be viewed as a generalization of the usual notion of
term by using F = {1}. Similarly, F -order ideals generalize the usual order ideals.
It is natural to ask whether every ideal I supporting an O-border bases has an
OF -subideal border basis for some F -order ideal OF . The next example answers
this question negatively.

Example 2.2. Let P = Q[x, y], and let

I = 〈 (x− y)(y − 1), (x− y)(x+ y − 1), y3 − y 〉

be the vanishing ideal of X = {(0, 0), (1, 1), (−1,−1), (0, 1)}. The ideal I has a
border basis with respect to the order ideal O = {1, x, y, xy}.

Now we consider the set F = {f} where f = x−y+1. The ideal J = 〈f̄〉 in P/I
is a 3-dimensional Q-vector space. The only 3-element order ideal contained in O
is O′ = {1, x, y}. However, we have (x − y) f̄ = 0 in P/I. Therefore O′ is not a
Q-vector space basis of J/(I ∩J), and the ideal I has no OF -subideal border basis.

Let us explain this result geometrically. The annihilator of the ideal J is the
1-dimensional ideal 〈ḡ〉 of P/I generated by the separator g = y − x of the point
(0, 1) in X. In order to get an OF -subideal border basis of I we should remove x
or y from O, but this destroys the order ideal property. The fact that g does not
contain xy in its support is due to the failure of the Cayley-Bacharach property
for X.

In practice, almost all ideals I have OF -subideal border bases for all possible
sets F . The following definition provides the essential property.

Definition 2.3. Let I ⊂ P be a 0-dimensional ideal which has an O-border basis.
We say that I is O-uniform if every ideal I ′ ⊂ P containing I has an O′-border
basis with respect to an order ideal O′ contained in O.

Our next remark yields a large class of O-uniform ideals.
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1138 MARTIN KREUZER AND HENK POULISSE

Remark 2.4. Let σ be a term ordering, and let O = T
n \ LTσ(I). Then the ideal I

has an O-border basis by [10], 6.4.18. For every ideal I ′ ⊂ P containing I, the
order ideal O′ = T

n \ LTσ(I
′) is contained in O, and I ′ has an O′-border basis.

Thus the ideal I is O-uniform.

Now we show that O-uniform ideals have OF -subideal border bases for all sets F .

Proposition 2.5. Let I ⊂ P be a 0-dimensional ideal, let f1, . . . , fm ∈ P \{0}, and
let J = 〈f1, . . . , fm〉. If I has an O-border basis and I is O-uniform, then there exist
order ideals Oi ⊆ O such that the residue classes of OF = O1f1 ∪ · · · ∪Omfm are a
K-vector space basis of J/(I ∩ J). In other words, the ideal I has an OF -subideal
border basis.

Proof. To show the claim, we proceed by induction on m. The ideal 〈f̄1〉 in P/I
is isomorphic to (P/I)/Ann(f̄1). Since I is O-uniform, there is an order ideal
O1 contained in O whose elements are a K-basis of (P/I)/Ann(f̄1). Under the
isomorphism, this K-basis is mapped to O1 · f̄1.

Now we prove the induction step. By the inductive hypothesis, there exist order
ideals Oi ⊆ O for i = 1, . . . ,m− 1 such that O1 · f1 ∪ · · · ∪ Om−1 · fm−1 represents
a K-basis of the ideal 〈f̄1, . . . , f̄m−1〉 in P/I. This ideal is a K-vector subspace
of (I+J)/I = 〈f̄1, . . . , f̄m〉. Therefore it suffices to find an order ideal Om contained
in O such that the residue classes of its elements are a K-basis of the ideal 〈f̄m〉 in
P ′ = P/(I + 〈f̄1, . . . , f̄m−1〉). Again we use the fact that I is O-uniform to get an
order ideal O′ contained in O whose elements are a K-basis of P ′. Considering the
isomorphism 〈f̄m〉 ∼= P ′/Ann(f̄m), the claim follows as for m = 1. �

In the setting of this proposition, we can construct an F -order ideal such that
a given ideal I has an OF -subideal border basis. The following example illustrates
the method.

Example 2.6. Let P = Q[x, y], let I = 〈x2−x, y2−y〉, let O = {1, x, y, xy}, and
let J = 〈x + y〉. Then I has an O-border basis and therefore also an OF -subideal
border basis w.r.t. F = {f} for f = x+ y.

To construct a suitable F -order ideal, we start with OF = {1 · f}. Then we
put x · f and y · f into OF , since we have x · f ≡ xy + x and y · f ≡ xy + y
modulo I, and since {x+y, xy+x, xy+y} is Q-linearly independent in P/I. Next,
xy · f ≡ 2xy ≡ x · f + y · f − 1 · f implies that we are done. The result is that
OF = {f, xf, yf} is an F -order ideal for which I has an OF -subideal border basis.

At this point it is time to explain the choice of the term “subideal border basis”
in the above definition.

Definition 2.7. Let F = {f1, . . . , fm} ⊂ P \ {0}, let J = 〈f1, . . . , fm〉 be the ideal
generated by F , and let OF = O1f1 ∪ · · · ∪ Omfm be an F -order ideal. We write
OF = {t1fα1

, . . . , tμfαμ
} with αi ∈ {1, . . . ,m} and ti ∈ Oαi

.

(1) The set of all polynomials xitjfαj
such that i ∈ {1, . . . , n}, j ∈ {1, . . . , μ}

and (xitj)fαj
/∈ Oαj

fαj
is called the border of OF and denoted by ∂OF .

(2) Let ∂OF = {b1fβ1
, . . . , bνfβν

}. A tuple of polynomials G = (g1, . . . , gν)
is called an OF -subideal border prebasis if gj = bjfβj

−
∑μ

i=1 cijtifαi
with

c1j , . . . , cμj ∈ K for j = 1, . . . , ν.
(3) An OF -subideal border prebasis G is called an OF -subideal border basis of

an ideal I if the elements of G are contained in I and the residue classes of
the elements of OF form a K-vector space basis of J/(I ∩ J).
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SUBIDEAL BORDER BASES 1139

In this terminology, the preceding proposition can be rephrased as follows.

Corollary 2.8. Let O be an order ideal in T
n, and let I ⊂ P be a 0-dimensional

ideal which has an O-border basis and which is O-uniform. Then I has an OF -
subideal border basis for every ideal J = 〈f1, . . . , fm〉 and F = {f1, . . . , fm} ⊂
P \ {0}.

In the setting of Example 2.6, the OF -subideal border basis of I can be con-
structed as follows.

Example 2.9. The border of the F -order ideal OF = {f, xf, yf} is ∂OF =
{x2f, xyf, y2f}. We compute modulo I and find x2f ≡ xf , xyf ≡ xf + yf − f ,
and y2f ≡ yf . Therefore the tuple G = (x2f − xf, xyf − xf − yf + f, y2f − yf)
is an OF -subideal border basis of I.

If an ideal has anOF -subideal border basis, the elements of this basis are uniquely
determined. This follows exactly as in the case J = 〈1〉, i.e., the case of the usual
border bases (see [10], 6.4.17 and 6.4.18). Notice, however, that a set of polynomials
may be an F -order ideal in several different ways. This is illustrated by the following
example.

Example 2.10. Let P = Q[x, y], let I = 〈x2 − x, y2 − y〉, and let J = 〈x, y〉.
Clearly, the ideal I has an O-border basis for O = {1, x, y, xy}, namely the tuple
G = (x2−x, x2y−xy, xy2−xy, y2−y). Hence the ideal I also has an OF -subideal
border basis for F = {x, y}. Here we can use both OF = {1, y} · x ∪ {1} · y and
OF = {1} · x ∪ {1, x} · y.

This example shows also another phenomenon: a polynomial can simultaneously
be contained in OF and in ∂OF . For instance, if we use OF = {1, y} ·x∪{1} ·y, the
term xy is both contained in {1, y} · x and in the border of {1} · y. The resulting
subideal border basis will contain the polynomial xy − xy = 0.

Finally, we give an example where a term is in ∂OF in two different ways, so
that a subideal border basis polynomial is repeated.

Example 2.11. Let I = 〈x2−x, y2−y, xy〉 ⊆ Q[x, y], and let J = 〈x, y〉 ⊂ Q[x, y].
Then the subideal border basis of I with respect to OF = {1} · x ∪ {1} · y is
G = (x2 − x, xy, xy, y2 − y) where xy appears both in ∂{1} · x and in ∂{1} · y.

3. The subideal border division algorithm

A central result in the construction of any Gröbner basis-like theory is a suit-
able version of the division algorithm (for the classical case, see for instance [9],
Thm. 1.6.4 and specifically for border bases, see [10], Prop. 6.4.11). Before we can
present a subideal border basis version, we need a few additional definitions.

Definition 3.1. Let F = {f1, . . . , fm} ⊂ P \ {0}, and let OF be an F -order ideal.

(1) First, we let ∂0OF = ∂0OF = OF .
(2) For every k ≥ 1, we inductively define the kth border of OF by ∂kOF =

∂(∂k−1OF ) and the kth border closure of OF by ∂kOF = ∂k−1OF ∪ ∂kOF .

(3) In particular, the first border closure of OF is ∂OF = ∂1OF = OF ∪ ∂OF .

Using these higher borders, the set Tn f1 ∪ · · · ∪ T
n fm is partitioned as follows.
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1140 MARTIN KREUZER AND HENK POULISSE

Proposition 3.2. Let F = {f1, . . . , fm} ⊂ P \{0}, and let OF be an F -order ideal.

(1) For every k ≥ 0, we have a disjoint union ∂kOF =
⋃k

i=0 ∂
iOF .

(2) For every k ≥ 0, we have ∂kOF = T
n
≤k · OF .

(3) For every k ≥ 1, we have ∂kOF = T
n
k · OF \ Tn

<k · OF .

(4) We have
⋃m

i=0 T
n · fi =

⋃∞
j=0 ∂

jOF , where the right-hand side is a disjoint
union.

(5) Any F -term tfi ∈ T
n · fi \ OF is divisible by an F -term in ∂OF .

Proof. First we show (1) by induction on k. For k = 0, the claim follows from the

definition. For k = 1, we have ∂1OF = ∂0OF ∪∂1OF by Definition 3.1. Inductively,

it follows that ∂k+1OF = ∂kOF ∪ ∂k+1OF =
⋃k+1

i=0 ∂iOF . This is a disjoint union,

since ∂k+1OF ∩ ∂kOF = ∅ in each step.
Next, we prove claim (2). Again we proceed by induction on k, the case k = 0

being obviously true. Inductively, we have ∂k+1OF = ∂kOF ∪ ∂k+1OF = T
n
≤k ·

OF ∪ T
n
1 · (Tn

≤k · OF ) = T
n
≤k+1 · OF .

Claim (3) is a consequence of (2) and the equality ∂kOF = ∂kOF \ ∂k−1OF .
Inclusion “⊆” in claim (4) follows from the observation that, by (2), every F -term

is in ∂kOF for some k ≥ 0. The converse inclusion holds by (3).
Finally, claim (5) holds because (4) implies that tfi ∈ ∂kOF for some k ≥ 1,

and by (3) this is equivalent to the existence of a factorization t = t′t′′ where
deg(t′) = k − 1 and t′′fi ∈ ∂OF . �

In view of this result, the following definition appears natural.

Definition 3.3. Let F = {f1, . . . , fm} ⊂ P \ {0}, and let OF be an F -order ideal.

(1) For an F -term tfi ∈ OF , we define indOF
(tfi) = min{k ≥ 0 | tfi ∈ ∂kOF }

and call it the OF -index of tfi.
(2) Given a non-zero polynomial f ∈ J , we write f = p1f1 + · · ·+ pmfm with

pi ∈ P and we let P = (p1f1, . . . , pmfm). Then the number

indOF
(P) = max{indOF

(tfi) | i ∈ {1, . . . ,m}, t ∈ Supp(pi)}

is called the OF -index of the representation P of f .

In other words, the OF -index of tfi is the unique number k ≥ 0 such that
tfi ∈ ∂kOF . Note that the OF -index of a polynomial f ∈ J depends on the
representation of f in terms of the generators of J . It is not clear how to find a
representation P which yields the smallest indOF

(P). Using the Subideal Border
Division Algorithm, we shall address this point below.

The following proposition collects some basic properties of the OF -index.

Proposition 3.4. Let F = {f1, . . . , fm} ⊂ P \{0}, and let OF be an F -order ideal.

(1) For an F -term tfi ∈ T
n · fi, the number k = indOF

(tfi) is the smallest
natural number such that there exists a factorization t = t′t′′ with a term
t′ ∈ T

n of degree k and with t′′fi ∈ OF .
(2) Given t ∈ T

n and an F -term t′fi ∈ T
n · fi, we have

indOF
(t t′fi) ≤ deg(t) + indOF

(t′fi).
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SUBIDEAL BORDER BASES 1141

(3) For f, g ∈ J \ {0} such that f + g �= 0, we write f = p1f1 + · · ·+ pmfm and
g = q1f1 + · · · + qmfm with pi, qj ∈ P , and we let P = (p1f1, . . . , pmfm)
and Q = (q1f1, . . . , qmfm). Then we have

indOF
(P +Q) ≤ max{indOF

(P), indOF
(Q)}.

(4) Given f ∈ J \ {0}, we write f = p1f1 + · · · + pmfm with pi ∈ P and let
P = (p1f1, . . . , pmfm). For every g ∈ P \ {0}, we then have

indOF
(gP) ≤ deg(g) + indOF

(P).

Proof. The first claim follows from Proposition 3.2. The second claim follows from
the first. The third claim is a consequence of the fact that every F -term appearing
in P +Q appears in P or Q. The last claim follows from (2) and the observation
that gP is a K-linear combination of tuples tP with t ∈ Supp(g). �

Now we have collected enough material to formulate and prove the subideal
version of the Border Division Algorithm.

Algorithm 3.5 (The Subideal Border Division Algorithm). Let F ={f1, . . . , fm}⊂
P \ {0}, let J = 〈f1, . . . , fm〉, let OF = {t1fα1

, . . . , tμfαμ
} be an F -order ideal

where αi ∈ {1, . . . ,m}, ti ∈ Oαi
, let ∂OF = {b1fβ1

, . . . , bνfβν
} be its border, and let

G = (g1, . . . , gν) be an OF -subideal border prebasis, where gj = bjfβj
−
∑μ

i=1 cijtifαi

with c1j , . . . , cμj ∈ K for j = 1, . . . , ν. Given a polynomial f ∈ J , we write f =
p1f1 + · · ·+ pmfm and consider the following instructions.

D1 Let h1 = · · · = hν = 0, c1 = · · · = cμ = 0, and Q = (q1f1, . . . , qmfm) with
qi = pi for i = 1, . . . ,m.

D2 Repeat the following steps until Q = (0, . . . , 0). Then return the tuple
(h1, . . . , hν , c1, . . . , cμ) and stop.

D3 Repeat the following step until indOF
(Q) = 0. Then find c1, . . . , cμ ∈ K

such that q1f1 + · · · + qmfm = c1t1fα1
+ · · · + cμtμfαμ

. Return the tuple
(h1, . . . , hν , c1, . . . , cμ) and stop.

D4 If indOF
(Q) > 0, then determine the smallest index i ∈ {1, . . . ,m} such

that there exists a term t ∈ Supp(qi) with indOF
(tfi) = indOF

(Q). Choose
such a term t. Let a ∈ K be the coefficient of t in qi. Next, determine the
smallest index j ∈ {1, . . . , ν} such that t factors as t = t′ t′′ with a term t′

of degree indOF
(tfi) − 1 and with t′′fi = bjfβj

∈ ∂OF . Subtract the tuple
corresponding to the representation

a t′ gj = a t′ bjfβj
−

μ∑

i=1

cij a t
′ tifαi

from Q, add at′ to hj, and continue.

This is an algorithm which returns a tuple (h1, . . . , hν , c1, . . . , cμ) ∈ P ν ×Kμ such
that

f = h1g1 + · · ·+ hνgν + c1t1fα1
+ · · ·+ cμtμfαμ

and deg(hi) ≤ indOF
(P) − 1 for P = (p1f1, . . . , pmfm) and for all i ∈ {1, . . . , ν}

with hi �= 0. This representation does not depend on the choice of the term t in
step D4.

Proof. First we show that all of the steps can be executed. In stepD3, the condition
indOF

(Q) = 0 implies that all F -terms tfi with t ∈ Supp(qi) are contained in OF .
In step D4, the definition of indOF

(Q) implies that a term t of the desired kind
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1142 MARTIN KREUZER AND HENK POULISSE

exists. By Proposition 3.4.1, this term t has a factorization t = t′t′′ with the desired
properties.

Next, we prove termination by showing that step D4 is performed only finitely
many times. Let us investigate the subtraction of the representation of at′gj fromQ.
By the choice of t′, the OF -index of t′bjfβj

is deg(t′) more than the OF -index of
bjfβj

. By Proposition 3.4.2, this is the maximal increase, and the OF -index of the
other F -terms in the representation of at′gj is smaller than indOF

(Q). Thus the
number of F -terms in Q of maximal OF -index decreases by the subtraction, and
after finitely many steps the algorithm reaches step D2 or D3 and stops.

Finally, we prove correctness. To do so, we show that the equality

f = q1f1 + · · ·+ qmfm + h1g1 + · · ·+ hνgν + c1t1fα1
+ · · ·+ cμtμfαμ

is an invariant of the algorithm. It is satisfied at the end of step D1. The constants
c1, . . . , cμ are only changed in step D3. In this case the contribution q1f1 + · · · +
qmfm to the above equality is replaced by the equal contribution c1t1fα1

+ · · · +
cμtμfαμ

. The tuple Q is only changed in step D4. There the subtraction of the
representation of at′gj from Q and the corresponding change in q1f1 + · · ·+ qmfm
are compensated by the addition of at′ to hj and the corresponding change in
h1g1 + · · · + hνgν . When the algorithm stops, we have q1 = · · · = qm = 0. This
proves the claimed representation of f . Moreover, only terms t′ of degree deg(t′) ≤
indOF

(Q)− 1 ≤ indOF
(P)− 1 are added to hj .

The additional claim that the result of the algorithm does not depend on the
choice of t in step D4 follows from the observation that tfi is replaced by F -terms of
strictly smaller OF -index. Thus the different executions of step D4 corresponding
to the reduction of several F -terms of maximal OF -index in Q do not interfere with
one another, and the final result, after all of those F -terms have been rewritten, is
independent of the order in which they are taken care of. �

Now we come back to the observation made above that it is not clear how to
find a representation P having the smallest indOF

(P). First of all, notice that
in step D4 the algorithm uses a term t which is not uniquely determined. Also,
there may be several factorizations of t. We choose the indices i and j minimally
to determine this step of the algorithm uniquely, but this particular choice is not
forced upon us. Moreover, it is clear that the result of the division depends on the
numbering of the elements of ∂OF .

As indicated above, the Subideal Border Division Algorithm has important im-
plications. The following corollaries comprise a few of them.

Corollary 3.6 (Subideal Border Bases and Special Generation). In the setting of
the algorithm, let I = 〈G〉. Then the tuple G is an OF -subideal border basis of I if
and only if one of the following equivalent conditions is satisfied.

(A1) For every non-zero polynomial f ∈ I ∩ J with a representation f = p1f1 +
· · ·+pmfm and P = (p1f1, . . . , pmfm), there exist polynomials h1, . . . , hν ∈
P such that f = h1g1 + · · · + hνgν and deg(hi) ≤ indOF

(P) − 1 whenever
higi �= 0.

(A2) For every non-zero polynomial f ∈ I ∩ J with a representation f = p1f1 +
· · · + pmfm and P = (p1f1, . . . , pmfm), there exist h1, . . . , hν ∈ P such
that f = h1g1 + · · · + hνgν and max{deg(hi) | i ∈ {1, . . . , ν}, higi �= 0} =
indOF

(P)− 1.
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Proof. First we show that (A1) holds if G is an OF -border basis. The Subideal
Border Division Algorithm computes a representation f = h1g1 + · · · + hνgν +
c1t1fα1

+ · · ·+ cμtμfαμ
with h1, . . . , hν ∈ P and c1, . . . , cμ ∈ K such that deg(hi) ≤

indOF
(P)− 1 for i = 1, . . . , ν. Then c1t1fα1

+ · · ·+ cμtμfαμ
≡ 0 modulo I ∩ J , and

the hypothesis implies c1 = · · · = cμ = 0.
Next, we prove that (A1) implies (A2). If deg(hi) < indOF

(P)− 1, then Propo-
sition 3.4.2 shows that the OF -index of every representation of higi is at most
deg(hi) + 1 and hence smaller than indOF

(P). By Proposition 3.4.4, there has to
be at least one number i ∈ {1, . . . , ν} such that deg(hi) = indOF

(P)− 1.
Finally, we assume (A2) and show the subideal border basis property. Let

c1, . . . , cμ ∈ K satisfy c1t1fα1
+ · · ·+ cμtμfαμ

∈ I ∩ J . Then either f = c1t1fα1
+

· · · + cμtμfαμ
equals the zero polynomial or not. In the latter case we apply (A2)

and obtain a representation f = h1g1+ · · ·+hνgν with h1, . . . , hν ∈ P . Since f �= 0,
we have max{deg(hi) | i ∈ {1, . . . , ν}, higi �= 0} ≥ 0. But indOF

(P) − 1 = −1 is
in contradiction to the second part of (A2). Hence we must have f = 0. Thus
I ∩ J ∩ 〈OF 〉K = 0, i.e., the tuple G is an OF -subideal border basis of I. �

Definition 3.7. In the setting of the algorithm, the polynomial

NROF ,G(P) = c1t1fα1
+ · · ·+ cμtμfαμ

is called the normal remainder of the representation P = (p1f1, . . . , pmfm) of f
with respect to G.

Clearly, the normal remainder depends on the choice of the representation P. It
has the following application.

Corollary 3.8. In the setting of the algorithm, the residue classes of the elements
of OF generate the image of the ideal J in P/〈G〉 as a K-vector space.

In other words, the residue class of every polynomial f ∈ J can be represented
as a K-linear combination of the residue classes {t̄1f̄α1

, . . . , t̄μf̄αμ
}. Indeed, such

a representation can be found by computing the normal remainder NROF ,G(P) of
the representation P = (p1f1, . . . , pmfm) of f = p1f1 + · · ·+ pmfm.

Proof. By the algorithm, every f ∈ J can be represented in the form f = h1g1 +
· · · + hνgν + c1t1fα1

+ · · · + cμtμfαμ
, where h1, . . . , hν ∈ P and c1, . . . , cμ ∈ K.

Forming residue classes modulo 〈G〉 yields the claim. �

The next corollary provides another motivation for the name “subideal border
basis”.

Corollary 3.9. In the setting of the algorithm, let G be an OF -subideal border
basis of an ideal I ⊂ P . Then G generates the ideal I ∩ J .

Proof. By definition, we have 〈g1, . . . , gν〉 ⊆ I ∩J . To prove the converse inclusion,
let f ∈ I ∩J . Using the Subideal Border Division Algorithm, the polynomial f can
be expanded as f = h1g1+· · ·+hνgν+c1t1fα1

+· · ·+cμtμfαμ
, where h1, . . . , hν ∈ P

and c1, . . . , cμ ∈ K. This implies the equality of residue classes 0 = f̄ = c1t̄1f̄α1
+

· · · + cμt̄μf̄αμ
in P/I. By assumption, the residue classes t̄1f̄α1

, . . . , t̄μf̄αμ
form a

K-vector space basis of (I + J)/I. Hence, c1 = · · · = cμ = 0, and the expansion
of f yields f = h1g1 + · · ·+ hνgν ∈ 〈G〉. �

Licensed to Johannes Kepler University. Prepared on Mon Sep 28 09:46:30 EDT 2015 for download from IP 193.170.37.5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1144 MARTIN KREUZER AND HENK POULISSE

4. The subideal version of the BM-algorithm

Let K be a field, let P = K[x1, . . . , xn] be the polynomial ring in n indetermi-
nates over K, equipped with the standard grading, and let T

n be the monoid
of terms in P . Given a finite set of points X = {p1, . . . , ps} ⊆ Kn, we let
eval : P −→ Ks be the evaluation map eval(f) = (f(p1), . . . , f(ps)) associated
to X. It is easy to adjust the Buchberger-Möller Algorithm (BM-algorithm) so that
it computes a border basis of the vanishing ideal

IX = 〈f ∈ P | f(p1) = · · · = f(ps) = 0〉 = ker(eval) ⊆ P

of X. Since we use a version which differs slightly from the standard formulation
(see for instance [4] or [10], Thm. 6.3.10), let us briefly recall its main steps.

Algorithm 4.1 (BM-Algorithm for Border Bases). Let X = {p1, . . . , ps} ⊆ Kn

be a set of points given by their coordinates, and let σ be a degree compatible term
ordering on T

n. The following instructions define an algorithm which computes the
order ideal Oσ(I) = T

n \ LTσ(IX) and the Oσ(IX)-border basis G of IX.

B1 Let d = 1, O = {1}, G = ∅, and M = (1, . . . , 1)tr ∈ Mats,1(K), and let
L = (t1, . . . , t�) be the tuple of all terms of degree 1, ordered decreasingly
w.r.t. σ.

B2 Repeat the following steps until L = ∅. Then return (O, G) and stop.
B3 Form the matrix A = (eval(t1) | · · · | eval(t�) | M) of size s×(�+m′) where

m′ is the number of columns of M. Compute a matrix B whose rows are a
basis of the kernel of A. Let k be the number of rows of B.

B4 Reduce B to a matrix C = (cij) ∈ Matk,�+m′(K) in reduced row echelon
form.

B5 For all j ∈ {1, . . . , �} such that there exists an i ∈ {1, . . . , k} with pivot
index ν(i) = j, append the polynomial

tj +
�∑

j′=j+1

cij′tj′ +
�+m′
∑

j′=�+1

cij′uj′

to the tuple G, where uj′ is the (j′ − �)th element of O.
B6 For all j = �, � − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the term tj as a new first element to O, append the col-
umn eval(tj) as a new first column to M, increase d by one, and let L =
(t1, . . . , t�) be the tuple of all terms of degree d in ∂O, ordered decreasingly
w.r.t. σ.

The proof of this modified version is simply obtained by combining all the it-
erations of the usual BM-algorithm corresponding to terms of degree d into one
“block”. The fact that we put the terms of degree d in ∂O into L in step B6 effects
the computation of the entire border basis, rather than just the reduced σ-Gröbner
basis of IX (see [5], Thm. 3.3). A further elaboration is beyond the scope of the
present paper and is left to the interested reader.

Given X and the polynomial ideal J = 〈F 〉 with F = {f1, . . . , fm} ⊂ P \ {0},
we know that the vanishing ideal IX has an Oσ(I)F -subideal border basis. The
following generalization of the BM-algorithm computes this subideal border basis.
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Algorithm 4.2 (Subideal Version of the BM-Algorithm). Let X = {p1, . . . , ps} ⊆
Kn be a set of points given by their coordinates, let σ be a degree compatible term
ordering, and let F = {f1, . . . , fm} ⊂ P \{0} be a set of polynomials which generate
an ideal J = 〈F 〉. The following instructions define an algorithm which computes
an F -order ideal Oσ(I)F and the Oσ(I)F -subideal border basis G of IX.

S1 Let d = min{deg(f1), . . . , deg(fm)}, OF = ∅, G = ∅, and M ∈ Mats,0(K).
Let L = (t1fα1

, . . . , t�fα�
) be the tuple of all F -terms of degree d in F∪∂OF ,

with their leading terms ordered decreasingly w.r.t. σ.
S2 Repeat the following steps until L = ∅ and d ≥ max{deg(f1), . . . , deg(fm)}.

Then return (OF , G) and stop.
S3 Form the matrix A = (eval(t1fα1

) | · · · | eval(t�fα�
) | M) of size s×(�+m′)

where m′ is the number of columns of M. Compute a matrix B whose rows
are a basis of the kernel of A. Let k be the number of rows of B.

S4 Reduce B to a matrix C = (cij) ∈ Matk,�+m′(K) in reduced row echelon
form.

S5 For all j ∈ {1, . . . , �} such that there exists an i ∈ {1, . . . , k} with pivot
index ν(i) = j, append the polynomial

tjfαj
+

�∑

j′=j+1

cij′tj′fαj′ +
�+m′
∑

j′=�+1

cij′uj′

to the tuple G, where uj′ is the (j′ − �)th element of OF .
S6 For all j = �, � − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the F -term tjfαj
as a new first element to OF , and append

the column eval(tjfαj
) as a new first column to M. Increase d by one, let

L = (t1fα1
, . . . , t�fα�

) be the tuple of all F -terms of degree d in F ∪ ∂OF ,
with their leading terms ordered decreasingly w.r.t. σ, and continue.

Proof. First we show finiteness. When a new degree is started in step S1 or S6,
the matrix M has m = #OF columns where OF is the current list of F -terms. In
step S6 we enlarge M by new first columns which are linearly independent of the
other columns. This can happen only finitely many times. Eventually we arrive at
a situation where all new columns eval(tifαi

) of A in step S3 are linearly dependent
on the previous columns, and therefore the corresponding column of C contains a
pivot element. Consequently, no elements are appended to OF in that degree and
we get L = ∅ in the next degree. Hence the algorithm stops.

Now we show correctness. The columns of A are the evaluation vectors of F -
terms whose leading terms are ordered decreasingly w.r.t. σ. A row (ci1, . . . , ci �+m′)
of C corresponds to a linear combination of these F -terms whose evaluation vector
is zero. Let g1, . . . , gk be the polynomials given by these linear combinations of
F -terms. Clearly, we have gi ∈ IX ∩ J .

The evaluation vectors of the F -terms which are put into OF in step S6 are
linearly independent of the evaluation vectors of the F -terms in the previous set OF

since there is no linear relation leading to a pivot element in the corresponding
column of C. Inductively, it follows that the evaluation vectors of the F -terms
in OF are always linearly independent. Henceforth, the pivot elements of C are
always in the “new” columns and the polynomials gi have degree d. By the way
the algorithm proceeds, every F -term in the border of the final set OF appears in
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1146 MARTIN KREUZER AND HENK POULISSE

exactly one on the elements of G. All the other summands of a polynomial gi are
in OF . Hence the final tuple G is an OF -subideal border prebasis.

Furthermore, every F -term is either in OF or it is a multiple of an F -term in
∂OF (cf. Proposition 3.4.5). In the latter case, its evaluation vector can be written
as a linear combination of the evaluation vectors of the elements of OF . Thus
the evaluation vectors of the elements of OF generate the space of all evaluation
vectors of F -terms. Since they are linearly independent, they form a K-basis of
that space. Now we use the facts that evaluation yields an isomorphism of K-vector
spaces eval : P/I −→ Ks and that the residue classes of the F -terms generate the
K-vector subspace (I + J)/I of P/I to conclude that the residue classes of the
F -terms in the final set OF form a K-basis of (I + J)/I. �

Let us illustrate this algorithm by an example.

Example 4.3. In the polynomial ring P = Q[x, y, z], we consider the ideal J = 〈F 〉
with F = {f1, f2} given by f1 = x2 − 1 and f2 = y − z. Let σ = DegRevLex.

We want to compute an OF -subideal border basis of the vanishing ideal of the
point set X = {(1, 1, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1)}. Notice that the first point of X
lies on Z(f1, f2), so that we should expect an F -order ideal consisting of three F -
terms. Let us follow the steps of the algorithm. (We only list those steps in which
something happens.)

S1 Let d = 1 and L = (y − z).
S3 Form A = (0, 0, 1,−1)tr and compute B = (0). (Thus C = B.)
S6 Let OF = {y − z} and M = (0, 0, 1,−1)tr. Let d = 2 and L = (x2 − 1,

x(y − z), y(y − z), z(y − z)).

S3 Compute A =

⎛

⎜
⎜
⎝

0 0 0 0 0
−1 0 0 0 0
0 1 1 0 1
0 −1 0 −1 −1

⎞

⎟
⎟
⎠ and B =

(
0 1 0 0 −1
0 0 1 1 −1

)

.

(Thus C = B.)
S5 The pivot indices ν(1) = 2 and ν(2) = 3 yield the tuple G = (g1, g2) with

g1 = x(y − z)− (y − z) and g2 = y(y − z) + z(y − z)− (y − z).

S6 We obtain OF = {x2 − 1, z(y − z), y − z} and M =

⎛

⎜
⎜
⎝

0 0 0
−1 0 0
0 0 1
0 −1 −1

⎞

⎟
⎟
⎠.

Let d = 3. We have L = (x(x2−1), y(x2−1), z(x2−1), xz(y−z), yz(y−z),
z2(y − z)).

S3 Find A =

⎛

⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 0 −1 0 −1 −1

⎞

⎟
⎟
⎠

and B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (Thus C = B.)

Licensed to Johannes Kepler University. Prepared on Mon Sep 28 09:46:30 EDT 2015 for download from IP 193.170.37.5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SUBIDEAL BORDER BASES 1147

S5 Here we obtain G = (g1, . . . , g8) where g3 = x(x2 − 1), g4 = y(x2 − 1),
g5 = z(x2 − 1), g6 = xz(y − z) − z(y − z), g7 = yz(y − z), and finally
g8 = z2(y − z)− z(y − z).

S6 There are no new non-pivot indices. Hence O and M are not changed.
S2 We get L = ∅ and the algorithm stops.

The result is the F -order ideal OF = {x2−1, z(y−z), y−z} and the OF -subideal
border basis G = (g1, . . . , g8) of IX.

5. The subideal version of the AVI-algorithm

From here on we work in the polynomial ring P = R[x1, . . . , xn] over the field of
real numbers. We let X = {p1, . . . , ps} ⊂ [−1, 1]n ⊂ R

n be a finite set of points and
ε > τ > 0 two threshold numbers. (The number ε can be thought of as a measure
for error tolerance of the input data points X and τ is used as a “minimum size”
for acceptable leading coefficients of unitary polynomials.)

Let us point out the following notational convention we are using: the “usual”
norm of a polynomial f ∈ P is the Euclidean norm of its coefficient vector and is
denoted by ‖f‖. By “unitary” we mean ‖f‖ = 1. In contrast, by ‖f‖1 we mean
the sum of the absolute values of the coefficients of f , and the term “‖ ‖1-unitary”
is to be interpreted accordingly.

Recall that we say that a polynomial f ∈ P vanishes ε-approximately at a point
p ∈ R

n if |f(p)| < ε. Furthermore, by eval : P −→ R
s we denote the evaluation

map eval(f) = (f(p1), . . . , f(ps)) associated to X. For the convenience of the reader,
we briefly recall the basic structure of the Approximate Vanishing Ideal Algorithm
(AVI-algorithm) from [5]. Notice that we skip several technical details and explicit
error estimates. The goal of the AVI-algorithm is to compute an approximate
border basis, a notion that is defined as follows.

Definition 5.1. Let O = {t1, . . . , tμ} ⊆ T
n be an order ideal of terms, let ∂O =

{b1, . . . , bν} be its border, and let G = {g1, . . . , gν} be an O-border prebasis of
the ideal I = 〈g1, . . . , gν〉 in P . Recall that this means that gj is of the form
gj = bj −

∑μ
i=1 cijti with cij ∈ R.

For every pair (i, j) such that bi, bj are neighbors in ∂O, we compute the normal
remainder S′

ij = NRO,G(Sij) of the S-polynomial of gi and gj with respect to G.
We say that G is an ε-approximate border basis of the ideal I = 〈G〉 if we have
‖Sij‖ < ε for all such pairs (i, j).

Moreover, the AVI-algorithm uses the concepts of approximate kernel and sta-
bilized reduced row echelon form which were introduced in [5], Sect. 2 and 3. For
the convenience of the reader, we recall these concepts.

Let A ∈ Matm,n(R), and let A = U ·
(
D 0
0 0

)

· Vtr be the SVD of A, where

D = diag(s1, . . . , sr) is a diagonal matrix containing the singular values s1 ≥ s2 ≥
· · · ≥ sr > 0. For ε > 0, let k ∈ {1, . . . , r} be chosen such that sk > ε ≥ sk+1.

Form the matrix Ã = U S̃ Vtr by setting sk+1 = · · · = sr = 0 in S. It is called the

ε-singular value truncation of A. Then the vector subspace apker(A, ε) = ker(Ã)
is called the ε-approximate kernel of A.

The computation of the stabilized reduced row echelon form of a matrix A ∈
Matm,n(R) with respect to a given τ > 0 is a stabilized version of Gaussian reduc-
tion in the spirit of Shirayanagi and Sweedler (cf. [12]). For the precise formulation
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1148 MARTIN KREUZER AND HENK POULISSE

of its steps we refer to [5], Lemma 3.2. For us it is useful to recall the output of this
algorithm: it computes a matrix R in reduced row echelon form. The row space
of R is contained in the row space of the matrix A which is obtained from A by
setting the columns whose norm is less than τ to zero. Here the pivot elements
of R are not 1, but its rows are unitary vectors. Furthermore, if the rows of A are
unitary and mutually orthogonal, the row vectors of R differ by less than τ m

√
n

from unitary vectors in the row space of A.
Now we are ready to recall the formulation of the AVI-algorithm.

Algorithm 5.2 (AVI-Algorithm). Let X = {p1, . . . , ps} ⊂ [−1, 1]n ⊂ R
n be a set

of points as above, and let σ be a degree compatible term ordering. Consider the
following sequence of instructions.

A1 Start with lists G = ∅, O = (1), a matrix M = (1, . . . , 1)tr ∈ Mats,1(R), d =
1, and the list L = (t1, . . . , t�) of all terms of degree 1, ordered decreasingly
w.r.t. σ.

A2 Repeat the following steps A3–A8 until L = ∅. Then return the pair (O, G)
and stop.

A3 Form the matrix A = (eval(t1), . . . , eval(t�),M) of size s× (�+m′) where
m′ is the number of columns of M. Calculate a matrix B whose rows are
an ONB of the approximate kernel apker(A, ε) of A. Let k be the number of
rows of B. Repeat the following steps A4–A7 until B = ∅. Then continue
with step A8.

A4 Compute the stabilized reduced row echelon form of B with respect to the
given τ . The result is a matrix C = (cij) ∈ Matk,�+m′(R) such that cij = 0
for j < ν(i). Here ν(i) denotes the column index of the pivot element in
the ith row of C.

A5 For all j ∈ {1, . . . , �} such that there exists an i ∈ {1, . . . , k} with ν(i) = j,
append the polynomial

cijtj +

�∑

j′=j+1

cij′tj′ +

�+m′
∑

j′=�+1

cij′uj′

to the list G, where uj′ is the (j′ − �)th element of O.
A6 For all j = �, � − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the term tj as a new first element to O and append the
column eval(tj) as a new first column to M.

A7 Calculate a matrix B whose rows are an ONB of apker(M, ε).
A8 Increase d by one, let L = (t1, . . . , t�) be the list of all terms of degree d

in ∂O, ordered decreasingly w.r.t. σ, and continue.

This is an algorithm which computes a pair (O, G) such that the following properties
hold for the bounds δ and η given in [5], Thm. 3.3.

(a) The set G consists of unitary polynomials which vanish δ-approximately at
the points of X.

(b) The set O = {t1, . . . , tμ} contains an order ideal of terms such that there is
no unitary polynomial in 〈O〉K which vanishes ε-approximately on X.

(c) The set G̃ = {(1/LCσ(g)) g | g ∈ G} is an O-border prebasis.

(d) The set G̃ is an η-approximate border basis.
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Our main algorithm combines the techniques of this AVI-algorithm with the
subideal version of the BM-algorithm presented above (see Algorithm 4.2). The
result is an algorithm which computes an approximate subideal border basis. This
notion is defined as follows.

Definition 5.3. Let OF = {t1fα1
, . . . , tμfαμ

} be an F -order ideal, let ∂OF =
{b1fβ1

, . . . , bνfβν
} be its border, and let G = (g1, . . . , gν) be an OF -subideal border

prebasis. Recall that this means that gj is of the form gj = bjfβj
−

∑μ
i=1 cijtifαi

with cij ∈ R.
For every pair (i, j) such that bi, bj are neighbors in ∂OF , i.e., such that βi = βj

and bi, bj are neighbors in the usual sense, we compute the normal remainder S′
ij =

NROF ,G(Sij) of the S-polynomial of gi and gj with respect to G. We say that G is
an ε-approximate OF -subideal border basis if we have ‖Sij‖ < ε for all such pairs
(i, j).

Now we are ready to formulate and prove the main result of this section.

Algorithm 5.4 (Subideal Version of the AVI-Algorithm). Let X = {p1, . . . , ps} ⊂
[−1, 1]n ⊂ R

n be a set of points as above, let σ be a degree compatible term ordering,
and let F = {f1, . . . , fm} ⊂ P \ {0} be a set of ‖ ‖1-unitary polynomials which
generate an ideal J = 〈F 〉. Consider the following sequence of instructions.

SA1 Let d = min{deg(f1), . . . , deg(fm)}, OF = ∅, G = ∅, and M ∈ Mats,0(K).
Let L = (t1fα1

, . . . , t�fα�
) be the tuple of all F -terms of degree d in F∪∂OF ,

with their leading terms ordered decreasingly w.r.t. σ.
SA2 Repeat the following steps SA3–SA8 until we have L = ∅ and the inequality

d ≥ max{deg(f1), . . . , deg(fm)}. Then return (OF , G) and stop.
SA3 Form the matrix A = (eval(t1fα1

) | · · · | eval(t�fα�
) | M) of size s×(�+m′)

where m′ is the number of columns of M. Compute a matrix B whose rows
are an ONB of the approximate kernel of A. Let k be the number of rows
of B. Repeat the following steps SA4–SA7 until B = ∅. Then continue
with step SA8.

SA4 Compute the stabilized reduced row echelon form of B with respect to the
given τ . The result is a matrix C = (cij) ∈ Matk,�+m′(R) such that cij = 0
for j < ν(i). Here ν(i) denotes the column index of the pivot element in
the ith row of C.

SA5 For all j ∈ {1, . . . , �} such that there exists an i ∈ {1, . . . , k} with ν(i) = j,
append the polynomial

tjfαj
+

�∑

j′=j+1

cij′tj′fαj′ +

�+m′
∑

j′=�+1

cij′uj′

to the tuple G, where uj′ is the (j′ − �)th element of OF .
SA6 For all j = �, � − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the F -term tjfαj
as a new first element to OF , append the

column eval(tjfαj
) as a new first column to M.

SA7 Calculate a matrix B whose rows are an ONB of apker(M, ε).
SA8 Increase d by one. Let L = (t1fα1

, . . . , t�fα�
) be the tuple of all F -terms of

degree d in F ∪∂OF , with their leading terms ordered decreasingly w.r.t. σ,
and continue.

This is an algorithm which computes a pair (OF , G) with the following properties:
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1150 MARTIN KREUZER AND HENK POULISSE

(a) The tuple G consists of unitary polynomials which vanish δ-approximately
at the points of X. Here we can use δ = ε

√
ν+ τν(μ+ ν)

√
s with μ = #OF

and ν = #G.
(b) The set OF contains an F -order ideal such that there is no unitary polyno-

mial in 〈OF 〉K which vanishes ε-approximately on X.

(c) The tuple G̃ = ((1/LCσ(g)) g | g ∈ G) is an OF -subideal border prebasis.

(d) The tuple G̃ is an η-approximate subideal border basis for η = 2δ+2νδ2/γε+
2νδ

√
s/ε. Here γ denotes the smallest absolute value of the border F -term

coefficient of one the polynomials gi.

Proof. Large parts of this proof correspond exactly to the proof of the usual AVI-
algorithm (see Thm. 3.2 in [5]). Therefore, we will mainly point out the additional
arguments necessary to show the subideal version. The finiteness proof is identical
to the finiteness proof in the subideal version of the BM-Algorithm 4.2.

For the proof of (a), we can proceed exactly as in the case of the usual AVI-
algorithm. There is only one point where we have to provide a further argument: the
norm of the evaluation vector of an F -term is ≤ √

s. To see this, we let tifj be an F -
term and we write tifj =

∑
k ck t̃k with ck ∈ R and t̃k ∈ T

n. Since fj is ‖ ‖1-unitary
and X ∈ [−1, 1]n, we have ‖ eval(tifj)‖ ≤

∑
k |ck| ‖ eval(t̃k)‖ ≤ ‖fj‖1

√
s =

√
s.

Next we show (b). The columns of the final matrix M are precisely the evalu-
ation vectors of the F -terms in OF . After the loop in steps SA4–SA7, we have
apker(M) = {0}. Hence no unitary polynomial in 〈OF 〉K has an evaluation vector
which is smaller than ε. It remains to show that OF is an F -order ideal. Suppose
that tifj ∈ OF and that xktifj is put into OF . We have to prove that every F -term
t̃ fj such that x�t̃fj = xktifj is also contained in OF . In this case we have ti = x�t

′

and we want to show xkt
′fj ∈ OF . For a contradiction, suppose that xkt

′fj is the
border F -term of some g ∈ G. Since the evaluation vector of x�xkt

′fj = xktifj is
not larger than eval(xkt

′fj), also this F -term would be detected by the loop of steps
SA4–SA7 as the border F -term of an element of G. This contradicts xktifj ∈ OF .

To prove (c), it suffices to note that the definition of L and step SA5 make sure
that the entries of G have the necessary form. Finally, claim (d) follows in exactly
the same way as part (d) of [5], Thm. 3.3. �

Let us follow the steps of this algorithm in a concrete case which is a slightly
perturbed version of Example 4.3.

Example 5.5. In the ring P = R[x, y, z] we consider the ideal J = 〈f1, f2〉 gener-
ated by the ‖ ‖1-unitary polynomials f1 = 0.5 y − 0.5 z and f2 = 0.5x2 − 0.5.
Let σ = DegRevLex, let ε = 0.03, and let τ = 0.001. We want to compute
an approximate subideal border basis vanishing approximately at the points of
X = {(1, 1, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0.98), (0.98, 0, 1)}.

Notice that the first point of X is contained in Z(f1, f2) and that the last two
points of X differ by ≤ ε from one point (1, 0, 1). Hence the approximate subideal
border basis should correspond to three points outside Z(J), and therefore we
should expect to get an F -order ideal consisting of three F -terms. We follow the
steps of the subideal version of the AVI-Algorithm 5.4.

SA1 Let d = 1 and L = (0.5 y − 0.5 z).
SA3 We compute A = (0, 0, 0.5,−0.49,−0.51)tr and B = (0). (Thus C = B.)
SA6 Let O = {f1} and M = (0, 0, 0.5,−0.49,−0.5)tr.
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SA8 Let d = 2 and L = (f2, xf1, yf1, zf1).

SA3 We compute A =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
−0.5 0 0 0 0
0 0.5 0.5 0 0.5
0 −0.49 0 −0.4802 −0.49

−0.0198 −0.49 0 −0.5 −0.5

⎞

⎟
⎟
⎟
⎟
⎠

and

B = apker(A, ε) =

(
0.0004 0.6755 −0.5089 −0.5068 −0.1667

0 −0.3812 −0.3735 −0.3812 0.7548

)

.

SA4 The stabilized reduced row echelon form of B is

C =

(
0 0.7070 0 0.0074 −0.7071
0 0 0.5754 0.5811 −0.5754

)

.

SA5 We get G = (g1, g2) with g1 = 0.707xf1 + 0.0074 zf1 − 0.7071f1 and g2 =
0.5754 yf1 + 0.5811 zf1 − 0.5754f1.

SA6 We find O = {f2, zf1, f1} and M =

⎛

⎝
0 −0.5 0 0 0
0 0 0 −0.4802 −0.5
0 0 0.5 −0.49 −0.5

⎞

⎠

tr

.

SA8 Now let d = 3 and L = (xf2, yf2, zf2, xzf1, yzf1, z
2f1).

SA3 A =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0 −0.5 −0.5 0 0 0 −0.5 0 0
0 0 0 0 0 0 0 0 0.5
0 0 0 −0.48 0 −0.47 0 −0.48 −0.49

−0.02 0 −0.02 −0.49 0 −0.5 −0.02 −0.5 −0.5

⎞

⎟
⎟
⎟
⎟
⎠

and B, C are matrices of rank 6 which yield six further approximate subideal
border basis elements.

SA5 We obtain G = (g1, . . . , g8) with g3 = xf2 − 0.02 zf1, g4 = 0.71 yf2 −
0.71 f2+0.01 zf1, g5 = 0.71 zf2−0.71 f2, g6 = 0.71xzf1−0.7 zf1, g7 = yzf1,
and g8 = 0.71 z2f1 − 0.7 zf1.

SA6 Since there is no new non-pivot row index, OF and M are not changed.
SA8 In degree d = 4 we find L = ∅ and the algorithm stops.

Hence the result is the F -order ideal O = {x2 − 1, z(y − z), y − z} and the
approximate OF -subideal border basis G = (g1, . . . , g8). This confirms that there
are three approximate zeros of G outside the two lines Z(f1, f2).

6. Efficiency and timings

Let us briefly discuss the efficiency of the subideal versions of the BM-algorithm
and the AVI-algorithm. Let K be a field, let P = K[x1, . . . , xn], let I ⊂ P be a
0-dimensional ideal, and let J ⊂ P be an arbitrary ideal generated by {f1, . . . , fm}.
Since no theory of border bases for ideals (J + I)/I in residue class rings of the
form P/I is available, the standard approach to compute a subideal border basis
seems to be to perform the following steps:

(1) Compute an order ideal O and an O-border basis of the ideal I.
(2) Compute the kernel U of the map Pm −→ P/I given by ei �→ f̄i.
(3) Determine order ideals Oi ⊆ O for i = 1, . . . ,m such that O1e1∪· · ·∪Omem

is a K-basis of Pm/U .

For the third step, it appears to be necessary to calculate a Gröbner basis of U .
Except for the simplest case below, this operation exceeded the capacity of the
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1152 MARTIN KREUZER AND HENK POULISSE

available computer. In these cases we give (in parentheses) the timings for the first
two steps only.

In the following table we compare the running times of the implementations
in ApCoCoA of this standard approach to the subideal version of the BM-Algo-
rithm 4.2, as well as to the subideal version of the AVI-Algorithm 5.4. In the
approximate setting no alternative approach is known to us.

point set std. approach subideal BM subideal AVI

10 random points in R
3 0.7 0.09 0.015

30 random points in R
3 (22) 15.6 0.14

30 random points in R
5 (99) 18.7 0.6

2445 points in R
9 – – 1.6

7400 points in R
8 – – 6.4

These timings are measured in seconds. They were obtained using ApCoCoA
1.3 on a small laptop running at 2 Ghz and having 2 GB of memory. Dashes
indicate that the computation was not finished after two hours and had to be
terminated unsuccessfully. All points have coordinates in [−1, 1]. The coordinates
of random points are rational numbers with 3-digit numerators and denominators.
The last two examples are based on real world measured data from the oil industry.
All timings depend on the complexity of the ideal J . In view of the application
explained below, the ideal J we used was generated by the first two indeterminates.
For the subideal AVI computation we chose the threshold number ε = 0.1.

The table shows that the subideal version of the BM-algorithm is much more
efficient than the standard approach, even if we skip step (3) of the standard ap-
proach. Moreover, the subideal AVI-algorithm is even faster since it can rely on
floating point arithmetic and numerical linear algebra methods. Thus it enables us
to handle industrial size data sets.

7. An industrial application

In this section we apply the subideal version of the AVI-algorithm to an actual
industrial problem which has been studied in the Algebraic Oil Research Project
(see [2]). Viewed from a more general perspective, this application shows how one
can carry out the suggestion made in the introduction, namely to use the subideal
version of the AVI-algorithm to introduce knowledge about the nature of a physical
system into the modeling process.

Suppose that a multi-zone well consists of two zones A and B. During so-called
commingled production, the two zones are interacting and influence each other. We
have at our disposal time series of measured data such as pressures, temperatures,
total production and valve positions. Moreover, during so-called test phases we
can obtain time series of these data when only one of the two zones is producing.
The following figure gives a schematic representation of the physical system and
the measured variables.

The measured total production does not equal the sum of the individual pro-
ductions calculated from the test data. The production allocation problem is to
determine the contributions of the two zones to the total production when they are
producing together. Here the contributions cA, cB of the zones are defined to be
the part of the total production pAB passing through the corresponding down-hole
valves. Therefore, we have pAB = cA + cB , but there is no way of measuring cA
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Figure 1. Schematic representation of a two-zone well

and cB directly. In this sense the production allocation problem is to determine
the contributions cA, cB from the measured data.

Let the indeterminate xA represent the valve position of zone A and xB the valve
position of zone B. Here xi = 0 means that the valve is closed and xi = 1 represents
a fully opened valve position. Clearly, if valve A is closed, i.e., for points in the zero
set Z(〈xA〉), there is no contribution from zone A, and likewise for B. By Hilbert’s
Nullstellensatz, this means that the polynomial pA modeling the production of
zone A should be computed by using the subideal version of the AVI-algorithm
with J = 〈xA〉. Similarly, we want to force pB ∈ 〈xB〉.

Now we model the total production pAB in the following way. We write pAB =
pA + pB + qAB where qAB is a polynomial which measures the interaction of the
two zones. To compute qAB, we write it in the form

qAB = fA · (xB · pA) + fB · (xA · pB).
Notice that such a decomposition can be computed via the subideal version of the
AVI-algorithm by applying it to the ideal J = 〈xBpA, xApB〉. The result will be a
representation pAB = pA + pB + fAxBpA + fBxApB. Here we observe that xA = 0
implies pAB = pB because pA ∈ 〈xA〉. Analogously, we see that xB = 0 implies
pAB = pA, in accordance with the physical situation.

The end result of these computations is that the contributions of the two zones
during comingled production can be computed from the equalities cA = (1 +
fAxB)pA and cB = (1 + fBxA)pB. At the same time we gain a detailed insight
into the nature of the interactions by examining the structure of the polynomials
fA, fB.
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