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Abstract

Let R be a commutative ring and R〈X〉 = R〈X1, ...,Xn〉 the free
algebra of n generators over R. It is shown that if G is a monic Gröbner
basis for the ideal I = 〈G〉 in R〈X〉, then, as that done over a field in
the literature, many global structure properties of the R-algebra A =
R〈X〉/〈G〉 may be determined via a constructive PBW theory (PBW
basis plus different types of PBW isomorphism) over R.
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1 Introduction

In the structure theory and the representation theory of associative algebras
over a ground field K, it is well known that numerous popularly studied al-
gebras have defining relations which form a Gröbner basis G in the sense of
([4], [13], [26]), and such algebras can be studied in a computational way
via their Gröbner defining relations (e.g., [1], [8], [11], [13], [18], [19], [29],
[30]); also we know that algebras defined by the relations of the same type
as provided by G over a commutative ring R are equally important, for in-
stance, those R-algebras considered in [31], [3], [7], and [22]. In this paper
we show that the principle and methods of using Gröbner bases in the struc-
ture theory of algebras over a field, which were developed in [23] and [19],
may be generalized to study algebras defined by monic Gröbner bases over
rings. More precisely, let R〈X〉 = R〈X1, . . . , Xn〉 be the free R-algebra of n
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generators over a commutative ring R. In Section 2, with a little modifica-
tion we briefly review from the literature ([4], [13], [26]) several well-known
fundamental results on monic Gröbner bases in R〈X〉, and in consideration
of the fact that Gröbner bases over a field are algorithmically constructible
(checkable or computable), we indicate how Gröbner bases over a field and
monic Gröbner bases over a ring are related to each other (for more details
on the results presented in this section, the reader is referred to the original
version of this paper at http://arxiv.org/abs/0906.4396). In Section 3, after
strengthening and generalizing ([13], Proposition 2.14) and ([18], CH.III, The-
orem 1.5), we demonstrate, by presenting some examples, how PBW R-bases
and monic Gröbner bases of certain type can determine each other. In the
final Section 4, we show that the working strategy via different types of PBW
isomorphism developed in [23] and [19] can be generalized to study quotient
algebras of R〈X〉, so that many global structural properties of R-algebras de-
fined by monic Gröbner bases may be determined in terms of their N-leading
homogeneous algebras and BR-leading homogeneous algebras.

Unless otherwise stated, rings considered in this paper are associative rings
with multiplicative identity 1, ideals are meant two-sided ideals, and modules
are unitary left modules. For a subset U of a ring S, we write 〈U〉 for the
ideal generated by U . Moreover, we use N, respectively Z, to denote the set
of nonnegative integers, respectively the set of integers.

2 Gröbner Bases over K vs Monic Gröbner

Bases over R

Let R be an arbitrary commutative ring, R〈X〉 = R〈X1, ..., Xn〉 the free R-
algebra of n generators, and BR the standard R-basis of R〈X〉 consisting of
monomials (words in alphabet X = {X1, ..., Xn}, including empty word which
is identified with the multiplicative identity element 1 of R〈X〉). Considering
an R-algebra A = R〈X〉/〈S〉 with the set of defining relations S consisting
of monic elements of the form gσ = Wσ − fσ, where Wσ ∈ BR, and with re-
spect to a semigroup partial ordering ≺ on BR, each fσ is a linear combination
of monomials ≺ Wσ, then, it is well-known that Bergman’s diamond lemma
[4] tackles the resolvability of ambiguities (or overlaps) of pairs (gσi

, gσj
) with

gσi
, gσj

∈ S, and consequently answers when the set of normal monomials
(mod S) forms an R-basis for the algebra A. It is equally well-known that
if R = K is a field, then, because of the feasibility of a division algorithm in
K〈X〉 = K〈X1, . . . , Xn〉, the celebrated Buchberger’s termination theorem and
Buchberger Algorithm in the commutative Gröbner basis theory over K ([5],
[6]) had been successfully generalized to develop an algorithmic noncommuta-
tive Gröbner basis theory for K〈X〉 ([26], [13]), in which Bergman’s diamond
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lemma is equivalent to the noncommutative version of Buchberger’s termina-
tion theorem. More precisely, let K〈X〉 = K〈X1, ..., Xn〉 be the free associative
K-algebra of n generators over a field K, and let B be the standard K-basis of
K〈X〉 consisting of monomials (words in alphabet X = {X1, ..., Xn}). Given
a monomial ordering ≺ on B (i.e. a well-ordering ≺ on B satisfying: u ≺ v im-
plies wus ≺ wvs, and w = uv implies u � w and v � w, for all w, u, v, s ∈ B),
and f, g ∈ K〈X〉 − {0}, if there are monomials u, v ∈ B such that

(1) LM(f)u = vLM(g), and

(2) LM(f) � | v and LM(g) � | u,

then the element

o(f, u; v, g) =
1

LC(f)
(f · u)− 1

LC(g)
(v · g)

is referred to as an overlap element of f and g where, with respect to ≺, LM( )
denotes the function taking the leading monomial on elements of K〈X〉, and
LC( ) denotes the function taking the leading coefficient on elements of K〈X〉
respectively. For a subset S ⊂ K〈X〉, write LM(S) = {LM(f) | f ∈ S} for the
set of leading monomials of S with respect to ≺. A subset G ⊂ K〈X〉 is said to
be a Gröbner basis for the ideal I = 〈G〉 generated by G if 〈LM(I)〉 = 〈LM(G)〉,
or equivalently, if 0 �= f ∈ I, then there is some g ∈ G such that LM(g)|LM(f).
With notations and terminology as above, the termination theorem then states
that

• if G is an LM-reduced subset of K〈X〉 (i.e., LM(gi)� | LM(gj) for gi, gj ∈ G
with i �= j), then G is a Gröbner basis for the ideal I = 〈G〉 if and only if for
each pair gi, gj ∈ G, including gi = gj, every overlap element o(gi, u; v, gj)

of gi and gj has the property o(gi, u; v, gj)
G

= 0, that is, by the division by
G, every o(gi, u; v, gj) has the zero remainder;

and it follows that there is a noncommutative analogue of Buchberger Algo-
rithm for constructing a (possibly infinite) Gröbner basis starting with a given
finite subset in K〈X〉.

Note that the algorithmic feasibility of the above criterion lies in the fact
that

(a) for each pair (gi, gj) there are only finitely many associated overlap ele-
ments, and

(b) there is no trouble with taking the inverse of a nonzero coefficient when
the division algorithm is performed, for, K is a field.



1430 Huishi Li

But if the field K is replaced by a commutative ring R (or even if R is an
arithmetic ring as considered by [12]), and if G ⊂ R〈X〉 = R〈X1, ..., Xn〉
is taken such that LC(g) is not invertible for some g’s, then a pair (gi, gj)
of elements in G may have infinitely many overlap elements, thereby there
seems no an “algorithmically realizable” termination theorem (as we mentioned
above) for G . Nevertheless, we observe, in the case where R is a subring
of the field K with the same identity element, that the usual division by
monic elements (i.e. elements with leading coefficient 1) can be implemented
in R〈X〉 exactly as in K〈X〉, and this fact implies immediately that if a subset
G ⊂ R〈X〉 consisting of monic elements forms a Gröbner basis for the ideal
〈G〉 in K〈X〉 with respect to some monomial ordering ≺ on B, then, with
respect to the same type of monomial ordering ≺ on the standard R-basis BR

of R〈X〉, G is a Gröbner basis for the ideal 〈G〉 in R〈X〉. More generally, for
our purpose of generalizing the principle and methods in using Gröbner bases
over a field K [19] to using Gröbner bases over a ring in a computational way,
we summarize below several fundamental results concerning monic Gröbner
bases over a commutative ring, which are comprehensively stemming from [4],
[26], and [13], and furthermore indicate how Gröbner bases over a field and
monic Gröbner bases over a ring are related to each other

Let R be an arbitrary commutative ring, R〈X〉 = R〈X1, ..., Xn〉 the free
R-algebra of n generators, and BR the standard R-basis of R〈X〉 consisting
of monomials (words in alphabet X = {X1, ..., Xn}). Unless otherwise stated,
monomials in BR are denoted by lower case letters u, v, w, s, t, · · ·. First note
that all monomial orderings used for free algebras over a field can be well
defined on the standard R-basis BR of R〈X〉. In particular, by an N-graded
monomial ordering on BR, denoted ≺gr, we mean a monomial ordering on BR

which is defined subject to a well-ordering ≺ on BR, that is, for u, v ∈ BR,
u ≺gr v if either degu < degv or degu = degv but u ≺ v, where deg( ) denotes
the degree function on elements of R〈X〉 with respect to a fixed weight N-
gradation of R〈X〉 (i.e. each Xi is assigned a positive degree ni, 1 ≤ i ≤ n).
For instance, the usual N-graded (reverse) lexicographic ordering is a popularly
used N-graded monomial ordering.

Let ≺ be a monomial ordering on BR. We say that a subset G ⊂ R〈X〉 is
monic if the leading coefficient LC(g) = 1 for all g ∈ G. For u, v, w, s ∈ BR, if
u = wvs then we say that v divides u, denoted v|u. The division of monomials
naturally extends to a division algorithm by a monic subset G in R〈X〉, and
this leads to the following definition.

Definition 2.1 Let ≺ be a fixed monomial ordering on BR, and I an ideal of
R〈X〉. A monic Gröbner basis of I is a subset G ⊂ I satisfying:

(1) G is monic; and

(2) f ∈ I and f �= 0 implies LM(g)|LM(f) for some g ∈ G.
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By the division algorithm, it is clear that a monic Gröbner basis of I is
first of all a generating set of the ideal I, i.e., I = 〈G〉, and moreover, a monic
Gröbner basis of I can be characterized as follows.

Proposition 2.2 Let ≺ be a fixed monomial ordering on BR, and I an ideal
of R〈X〉. For a monic subset G ⊂ I, the following statements are equivalent:
(i) G is a monic Gröbner basis of I;
(ii) Each nonzero f ∈ I has a Gröbner representation:

f =
∑

i,j λijuijgjvij , where λij ∈ R, uij, vij ∈ BR, gj ∈ G,

satisfying LM(uijgjvij) � LM(f) whenever λij �= 0,

or equivalently, f
G

= 0, where f
G

denotes the remainder of f on division by
G;
(iii) 〈LM(G)〉 = 〈LM(I)〉.

�

Let ≺ be a monomial ordering on the standard R-basis BR of R〈X〉, and let
G be a monic subset of R〈X〉. We call an element f ∈ R〈X〉 a normal element
(mod G) if f =

∑
j μjvj with μj ∈ R, vj ∈ BR, and f has the property that

LM(g)� | vj for every g ∈ G and every μj �= 0. The set of normal monomials
in BR (mod G) is denoted by N(G), i.e.,

N(G) = {u ∈ BR | LM(g)� | u, g ∈ G}.
Thus, an element f ∈ R〈X〉 is normal (mod G) if and only if f ∈∑

u∈N(G) Ru.

Proposition 2.3 Let G be a monic Gröbner basis of the ideal I = 〈G〉 in
R〈X〉 with respect to some monomial ordering ≺ on BR. Then each nonzero
f ∈ R〈X〉 has a finite presentation

f =
∑
i,j

λijsijgiwij + rf , λij ∈ R, sij, wij ∈ BR, gi ∈ G,

where LM(sijgiwij) � LM(f) whenever λij �= 0, and either rf = 0 or rf is a
unique normal element (mod G). Hence, f ∈ I if and only if rf = 0, solving
the “membership problem” for I.

�

The foregoing results enable us to obtain further characterization of a monic
Gröbner basis G, which, in turn, gives rise to the fundamental decomposition
theorem of the R-module R〈X〉 by the ideal I = 〈G〉, and thereby yields a free
R-basis for the R-algebra R〈X〉/I .
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Theorem 2.4 Let I = 〈G〉 be an ideal of R〈X〉 generated by a monic subset
G. With notation as above, the following statements are equivalent.
(i) G is a monic Gröbner basis of I.
(ii) The R-module R〈X〉 has the decomposition

R〈X〉 = I ⊕
∑

u∈N(G)

Ru = 〈LM(I)〉 ⊕
∑

u∈N(G)

Ru.

(iii) The canonical image N(G) of N(G) in R〈X〉/〈LM(I)〉 and R〈X〉/I forms
a free R-basis for R〈X〉/〈LM(I)〉 and R〈X〉/I respectively.

�

Before stating the termination theorem, which is a version of Bergman’s
diamond lemma but is modified in the algorithmic Gröbner basis language in
the sense of ([26], [13]) for verifying an LM-reduced monic Gröbner basis in
R〈X〉 (see the definition below), we need a little more preparation.

Given a monomial ordering ≺ on BR, we say that a subset G ⊂ R〈X〉 is
LM-reduced if

LM(gi) � | LM(gj) for all gi, gj ∈ G with gi �= gj.

If a subset G ⊂ R〈X〉 is both LM-reduced and monic, then we call G an
LM-reduced monic subset. Thus we have the notion of an LM-reduced monic
Gröbner basis.

Let I be an ideal of R〈X〉. If G is a monic Gröbner basis of I and g1, g2 ∈ G
such that g1 �= g2 but LM(g1)|LM(g2), then clearly g2 can be removed from G
and the remained subset G−{g2} is again a monic Gröbner basis for I. Hence,
in order to have a better criterion for monic Gröbner basis we need only to
consider the subset which is both LM-reduced and monic.

Let ≺ be a monomial ordering on BR. For two monic elements f, g ∈
R〈X〉 − {0}, including f = g, if there are monomials u, v ∈ BR such that

(1) LM(f)u = vLM(g), and
(2) LM(f) � | v and LM(g) � | u,

then the element
o(f, u; v, g) = f · u− v · g

is called an overlap element of f and g.
From the definition it is clear that there are only finitely many overlap

elements for each pair (f, g) of monic elements in R〈X〉. So, for a finite subset
of monic elements G ⊂ R〈X〉, actually as in the classical case ([26], [13]), the
termination theorem below enables us to check, by using the division algorithm,
whether G is a Gröbner basis of I or not.
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Theorem 2.5 (Termination theorem ) Let ≺ be a fixed monomial ordering on
BR. If G is an LM-reduced monic subset of R〈X〉, then G is an LM-reduced
monic Gröbner basis for the ideal I = 〈G〉 if and only if for each pair gi, gj ∈ G,
including gi = gj, every overlap element o(gi, u; v, gj) of gi, gj has the property

o(gi, u; v, gj)
G

= 0, that is, by division by G, every o(gi, u; v, gj) is reduced to
zero.

�

Remark (i) Obviously, if G ⊂ R〈X〉 is an LM-reduced subset with the prop-
erty that each g ∈ G has the leading coefficient LC(g) which is invertible in
R, then Theorem 2.5 is also valid for G.
(ii) It is obvious as well that Theorem 2.5 does not necessarily induce an
analogue of Buchberger Algorithm as in the classical case.
(iii) It is not difficult to see that all results we presented so far are valid for
getting monic Gröbner bases in a commutative polynomial ring R[x1, ..., xn]
over an arbitrary commutative ring R where overlap elements are replaced by
S-polynomials.

By virtue of Theorem 2.5, the following two propositions are obtained.

Proposition 2.6 Let K〈X〉 = K〈X1, ..., Xn〉 be the free algebra of n gener-
ators over a field K, and let R〈X〉 = R〈X1, ..., Xn〉 be the free algebra of n
generators over an arbitrary commutative ring R. With notation as before,
fixing the same monomial ordering ≺ on both K〈X〉 and R〈X〉, the following
statements hold.
(i) If a monic subset G ⊂ K〈X〉 is a Gröbner basis for the ideal 〈G〉 in K〈X〉,
then, taking a counterpart of G in R〈X〉 (if it exists), again denoted by G, G
is a monic Gröbner basis for the ideal 〈G〉 in R〈X〉.
(ii) If a monic subset G ⊂ R〈X〉 is a Gröbner basis for the ideal 〈G〉 in R〈X〉,
then, taking a counterpart of G in K〈X〉 (if it exists), again denoted by G, G
is a Gröbner basis for the ideal 〈G〉 in K〈X〉.

�

Proposition 2.7 Let R be a commutative ring and R′ a subring of R with the
same identity element 1. Considering the free R-algebra R〈X〉 = R〈X1, ..., Xn〉
and the free R′-algebra R′〈X〉 = R′〈X1, ..., Xn〉, the following two statements
are equivalent for a subset G ⊂ R′〈X〉 :
(i) G is an LM-reduced monic Gröbner basis for the ideal I = 〈G〉 in R′〈X〉 with
respect to some monomial ordering ≺ on the standard R′-basis BR′ of R′〈X〉;
(ii) G is an LM-reduced monic Gröbner basis for the ideal J = 〈G〉 in R〈X〉
with respect to the monomial ordering ≺ on the standard R-basis BR of R〈X〉,
where ≺ is the same monomial ordering used in (i).
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�

Let K be a field. From the literature we know that numerous well-known
K-algebras, such as Weyl algebras over K, enveloping algebras of K-Lie alge-
bras, exterior K-algebras, Clifford K-algebras, down-up K-algebras, quantum
binomial K-algebras, most popularly studied quantum groups over K, etc.,
all have defining relations that form an LM-reduced monic Gröbner basis in
free K-algebras (cf. [18], [16], [10]). Hence, by Proposition 2.6, if the field
K is replaced by a commutative ring R, then all of these R-algebras (if they
exist) have defining relations that form an LM-reduced monic Gröbner basis
in a free R-algebra. We end this section by giving another example illustrating
Theorem 2.5 and Proposition 2.6 (more examples are given in the next section
in connection with PBW R-bases).

Example 1. Let R be a commutative ring. Consider in R〈X〉 = R〈X1, ..., Xn〉
the subset G = Ω ∪R consisting of

Ω ⊆ {gi = Xp
i | 1 ≤ i ≤ n} with p ≥ 2 a fixed integer,

R = {gji = XjXi − λjiXiXj | 1 ≤ i < j ≤ n} with λji ∈ R,
that is, λji may be zero.

In the case that R = K is a field, it was verified in ([20], Example 4) that, under
the N-graded lexicographic ordering ≺gr such that X1 ≺gr X2 ≺gr · · · ≺gr Xn,
G forms an LM-reduced monic Gröbner basis for the ideal I = 〈G〉 in K〈X〉.
Hence, by Proposition 2.6, G is an LM-reduced monic Gröbner basis for the
ideal I = 〈G〉 in R〈X〉. Furthermore, the division by LM(G) yields

N(G) =
{
Xα1

1 Xα2
2 · · ·Xαn

n

∣∣∣ αi ∈ N and 0 ≤ αs ≤ p− 1 if Xp
s ∈ Ω

}
.

It follows from Theorem 2.4 that both the algebras R〈X〉/I and R〈X〉/〈LM(I)〉
have the free R-basis

N(G) =
{
X

α1

1 X
α2

2 · · ·Xαn

n

∣∣∣ αi ∈ N and 0 ≤ αs ≤ p− 1 if Xp
s ∈ Ω

}
,

where each X i is the canonical image of Xi in R〈X〉/I and R〈X〉/〈LM(I)〉
respectively.

Let us point out here that this example covers two families of special R-
algebras, that is, in the case where Ω = ∅, the R-algebra R〈X〉/I is similar to
the coordinate ring of a quantum affine n-space over a field (such a quantum
coordinate ring over a field is defined with all the λji �= 0); and in the case
where Ω = {gi = X2

i | 1 ≤ i ≤ n}, the algebra R〈X〉/I is similar to the
quantum grassmannian (or quantum exterior) algebra over a field in the sense
of [24] (such a quantum grassmannian algebra over a field is defined with all
the λji �= 0).
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3 PBW R-bases vs Specific Monic Gröbner

Bases

Let R be a commutative ring and A = R[a1, ..., an] a finitely generated R-
algebra with generators a1, ..., an. If the set B = {aα1

1 aα2
2 · · ·aαn

n | αj ∈ N}
forms a free R-basis of A, that is, A is, as an R-module, free with the basis
B, then, in honor of the classical PBW (Poincaré-Birkhoff-Witt) theorem for
enveloping algebras of Lie algebras over a ground field K, the set B is usually
referred to as a PBW R-basis of A. Presenting A as a quotient algebra of the
free R-algebra R〈X〉 = R〈X1, ..., Xn〉, i.e., A = R〈X〉/I with I an ideal of
R〈X〉, the aim of this section is to show, under a mild condition, that A has a
PBW R-basis is equivalent to that I has a specific monic Gröbner basis. This
result enables us to obtain PBW R-bases by means of monic Gröbner bases on
one hand; and on the other hand, since it is well known that in practice there
are different ways to find a PBW basis of a given algebra provided it exists
(e.g., [28], [31], [27], [3]), this result also enables us to obtain monic Gröbner
bases via already known PBW R-bases.

Throughout this section, we let R〈X〉 = R〈X1, ..., Xn〉 be the free algebra
of n generators over a commutative ring R, and BR the standard R-basis of
R〈X〉. All notations and notions concerning monic Gröbner bases in R〈X〉 are
maintained as before.

Let I be an ideal of R〈X〉 such that the R-algebra A = R〈X〉/I has the
PBW R-basis B =

{
X

α1

1 X
α2

2 · · ·X
αn

n | αi ∈ N
}
, where each X i is the canonical

image of Xi in A. Then I contains necessarily a subset G consisting of n(n−1)
2

elements of the form:

gji = XjXi−
∑

α

λαwα, where 1 ≤ i < j ≤ n, λα ∈ R, wα = Xα1
1 Xα2

2 · · ·Xαn
n .

In light of Theorem 1.4 and the observation made above, below we give the
main result of this section which, indeed, strengthens and generalizes ([13],
Proposition 2.14) and ([18], CH.III, Theorem 1.5).

Theorem 3.1 Let I be an ideal of R〈X〉, A = R〈X〉/I. Suppose that I

contains a monic subset of n(n−1)
2

elements G = {gji | 1 ≤ i < j ≤ n} such
that, with respect to some monomial ordering ≺ on the standard R-basis BR

of R〈X〉, LM(gji) = XjXi for 1 ≤ i < j ≤ n. The following two statements
are equivalent.
(i) The R-algebra A has the PBW R-basis B = {Xα1

1 X
α2

2 · · ·X
αn

n | αj ∈ N}
where each Xi is the canonical image of Xi in A.
(ii) Any monic subset G of I containing G is a monic Gröbner basis for I with
respect to ≺.
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Proof (i) ⇒ (ii) Let G be a monic subset of I containing G, and let

N(G) = {u ∈ BR | LM(g) � | u, g ∈ G}
be the set of normal monomials in BR (mod G). If f ∈ I and f �= 0, then,
after implementing the division of f by G (with respect to the given monomial
ordering ≺) we have

f =
∑

i,j λijuijgivij + rf , where λij ∈ R, uij, vij ∈ BR, gi ∈ G,
satisfying LM(wijgivij) � LM(f) whenever λij �= 0,
and rf =

∑
p λpwp with λp ∈ R and wp ∈ N(G).

Note that gji ∈ G ⊆ G and LM(gji) = XjXi by the assumption. It follows that
N(G) ⊆ {Xα1

1 Xα2
2 · · ·Xαn

n | αj ∈ N}. Thus, since B is a free R-basis of A, rf =∑
p λpwp = f −∑

i,j uijgivij ∈ I implies λp = 0 for all p. Consequently rf = 0.
This shows that every nonzero element of I has a Gröbner representation by
the elements of G. Hence G is a monic Gröbner basis for I by Proposition 1.2.
(ii) ⇒ (i) By (ii), the subset G itself is a monic Gröbner basis of I with
respect to ≺. Let N(G) be the set of normal monomials in BR (mod G).
Noticing that LM(gji) = XjXi for every gji ∈ G, it follows that N(G) =
{Xα1

1 Xα2
2 · · ·Xαn

n | αj ∈ N}, and thereby the algebra A has the desired PBW
R-basis B by Theorem 1.4. �

We illustrate Theorem 3.1 by several examples. The first four examples
given below serve to obtain monic Gröbner bases by means of already known
PBW R-bases which are obtained in the literature without using the theory
of Gröbner basis.

Example 1. (This is a special case of Example 3 given later.) Let g = R[V ]
be the R-Lie algebra defined by the free R-module V = ⊕n

i=1Rxi and the
bracket product [xj , xi] =

∑n
�=1 λ�

jix�, 1 ≤ i < j ≤ n, λ�
ji ∈ R. By the

classical PBW theorem, the universal enveloping algebra U(g) of g has the
PBW R-basis B = {xα1

1 xα2
2 · · ·xαn

n | αj ∈ N}. If, with respect to the natural
N-gradation of R〈X〉 = R〈X1, ..., Xn〉, we use an N-graded monomial ordering
≺gr on the standard R-basis BR of R〈X〉 such that X1 ≺gr X2 ≺gr · · · ≺gr Xn

(i.e., degXi = 1, 1 ≤ i ≤ n), then the set of defining relations

G =

{
gji = XjXi −XiXj −

n∑
�=1

λ�
jiX�

∣∣∣∣∣ 1 ≤ i < j ≤ n

}

of U(g) satisfies LM(gji) = XjXi for 1 ≤ i < j ≤ n. Hence, by Theorem 3.1,
G is a monic Gröbner basis for the ideal I = 〈G〉 in R〈X〉.

Example 2. Let U+
q (AN) be the (+)-part of the Drinfeld-Jimbo quantum

group of type AN over a commutative ring R, where q ∈ R is invertible and
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q8 �= 1. This example shows that the defining relations (Jimbo relations) of
U+

q (AN) over R form a monic Gröbner basis in a free R-algebra. By Proposition
2.6, we reach this property over a field K.

In [28] and [31], without using the Gröbner basis technique, it was proved
that over a field K the algebra U+

q (AN) has a PBW K-basis. Now, by using
Theorem 3.1 we will easily see that the Jimbo relations form a Gröbner basis
for the defining ideal of U+

q (AN).
Recall that the Jimbo relations (as described in [31]) are given by

xmnxij − q−2xijxmn, ((i, j), (m, n)) ∈ C1 ∪ C3,
xmnxij − xijxmn, ((i, j), (m, n)) ∈ C2 ∪ C6,
xmnxij − xijxmn + (q2 − q−2)xinxmj , ((i, j), (m, n)) ∈ C4,
xmnxij − q2xijxmn + qxin, ((i, j), (m, n)) ∈ C1 ∪ C3,

where with ΛN = {(i, j) ∈ N× N | 1 ≤ i < j ≤ N + 1},
C1 = {((i, j), (m, n))|i = m < j < n}, C2 = {((i, j), (m, n))|i < m < n < j},
C3 = {((i, j), (m, n))|i < m < j = n}, C4 = {((i, j), (m, n))|i < m < j < n},
C5 = {((i, j), (m, n))|i < j = m < n}, C6 = {((i, j), (m, n))|i < j < m < n}.

By [31], for q8 �= 1, U+
q (AN ) has the PBW basis consisting of elements

xi1j1xi2j2 · · ·xikjk
with (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (ik, jk), k ≥ 0,

where (i�, j�) ∈ ΛN and < is the lexicographic ordering on ΛN . If we use the N-
graded monomial ordering≺gr (on the standard K-basis B of the corresponding
free algebra) subject to

xij ≺gr xmn ⇐⇒ (i, j) < (m, n),

then it is clear that for each pair ((i, j), (m, n)) ∈ Ci with (i, j) < (m, n),
the leading monomial of the corresponding relation is of the form xmnxij as
required by Theorem 3.1.

Example 3. With R〈X〉 = R〈X1, ..., Xn〉, where R is an arbitrary commuta-
tive ring, recall from [3] that a q-algebra A = R〈X〉/〈G〉 over R is defined by
the set G of quadric relations

gji = XjXi − qjiXiXj − {Xj, Xi}, 1 ≤ i < j ≤ n, where qji ∈ R− {0},
and {Xj, Xi} =

∑
αk�

ji XkX� +
∑

αhXh + cji, αk�
ji , αh, cji ∈ R,

satisfying if αkl
ji �= 0, then i < k ≤ � < j, and k − i = j − �.

Define two R-submodules of the free R-module R〈X〉:
E1 = R-Span

{
gji

∣∣∣ 1 ≤ i < j ≤ n
}

,

E2 = R-Span
{

Xigji, gjiXi, Xjgji, gjiXj

∣∣∣ 1 ≤ i < j ≤ n
}

.
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If, for 1 ≤ i < j < k ≤ n, every Jacobi sum

J(Xk, Xj, Xi) = {Xk, Xj}Xi − λkiλjiXi{Xk, Xj}−
−λji{Xk, Xi}Xj + λkjXj{Xk, Xi}+
+λkjλki{Xj , Xi}Xk −Xk{Xj , Xi}

is contained in E1+E2, then A is called a q-enveloping algebra. Clearly, envelop-
ing algebras of R-Lie algebras are special q-enveloping algebras with q = 1. In
[3], a q-PBW theorem for q-enveloping algebras over a commutative ring was
obtained along the line similar to the classical argument on enveloping algebras
of Lie algebras as given in [14], that is, if A is a q-enveloping R-algebra then
A has the PBW R-basis B = {Xα1

1 X
α2

2 · · ·Xαn

n | αj ∈ N}.
Now, if we use the N-graded monomial ordering X1 ≺gr X2 ≺gr · · · ≺gr Xn

on BR with respect to the natural N-gradation of R〈X〉 (i.e., degXi = 1,
1 ≤ i ≤ n), then G satisfies LM(gji) = XjXi for all 1 ≤ i < j ≤ n. Hence, by
Theorem 3.1, the set G of the defining relations of a q-enveloping R-algebra
is a monic Gröbner basis for the ideal I = 〈G〉 in R〈X〉. In particular, all
quantum algebras over R = C[[h]] which are q-enveloping algebras appeared
in [3] are defined by monic Gröbner bases.

Remark It is necessary to point out that if R = K is a field, then the fact that
the set of defining relations G of a q-enveloping K-algebra A forms a Gröbner
basis of the ideal I = 〈G〉 was proved in ([18], CH.III) directly by using the
termination theorem through the division algorithm. Here our last example
provides the general result for all q-enveloping algebras over an arbitrary com-
mutative ring.

Example 4. This example generalizes the previous three examples but uses
an ad hoc monomial ordering. As an application we show that, over a commu-
tative ring R, the PBW generators of the quantum algebra U+

q (AN) derived
in [27] provides another set of Gröbner defining relations for U+

q (AN).
With R〈X〉 = R〈X1, ..., Xn〉, consider the R-algebra A = R〈X〉/〈G〉 de-

fined by the subset G consisting of n(n−1)
2

elements

gji = XjXi − qjiXiXj −
∑

α λαXα1
i1

Xα2
i2
· · ·Xαs

is
+ λji, 1 ≤ i < j ≤ n,

where qji, λα, λji ∈ R, αk ∈ N, i < i1 ≤ i2 ≤ · · · ≤ is < j.

It is well-known that numerous iterated skew polynomial algebras over R are
defined subject to such relations, and consequently they have the PBW R-
basis B = {Xα1

1 X
α2

2 · · ·X
αn

n | αj ∈ N}. Under the assumption that A has
the PBW R-basis as described we aim to show that G is a monic Gröbner
basis of 〈G〉. In view of Theorem 3.1, it is sufficient to introduce a monomial
ordering on BR so that LM(gji) = XjXi for all 1 ≤ i < j ≤ n. To this end, let
R[t] = R[t1, ..., tn] be the commutative polynomial R-algebra of n variables.
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Consider the canonical algebra epimorphism π: R〈X〉 → R[t] with π(Xi) = ti.
If we fix the lexicographic ordering X1 <lex X2 <lex · · · <lex Xn on BR of R〈X〉
(note that <lex is not a monomial ordering on BR) and fix an arbitrarily chosen
monomial ordering ≺ on the standard R-basis BR = {tα1

1 tα2
2 · · · tαn

n | αj ∈ N}
of R[t], respectively, then, as in [9], a monomial ordering ≺et on BR, which
is called the lexicographic extension of the given monomial ordering ≺ on BR,
may be obtained as follows: for u, v ∈ BR,

u ≺et v if

⎧⎨
⎩

π(u) ≺ π(v),
or
π(u) = π(v) and u <lex v in BR.

In particular, with respect to the monomial ordering ≺et obtained by using
the lexicographic ordering tn ≺lex tn−1 ≺lex · · · ≺lex t1 on BR, we see that
LM(gji) = XjXi for all 1 ≤ i < j ≤ n, as required by Theorem 3.1.

In [27] it was proved that U+
q (AN) has m = N(N+1)

2
generators x1, ..., xm

satisfying the relations:

xjxi = qvjixixj − rji, 1 ≤ i < j ≤ m,

where vji = (wt(xi), wt(xj)), and rji is a linear combination of monomials of
the form x

αi+1

i+1 x
αi+2

i+2 · · ·xαj−1

j−1 , and that U+
q (AN) is an iterated skew polynomial

algebra generated by x1, ..., xm subject to the above relations. Thus U+
q (AN)

has the PBW basis {xα1
1 xα2

2 · · ·xαm
m | αj ∈ N}, and consequently G = {gji =

xjxi − qvijxixj + rji | 1 ≤ i < j ≤ m} forms a monic Gröbner defining set of
U+

q (AN) with respect to the monomial ordering ≺et as described before.

Remark If, in the defining relations given in the last example, the condition
i < i1 ≤ i2 ≤ · · · ≤ is < j is replaced by 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ i− 1, then a
similar result holds.

The next three examples provide monic Gröbner bases which are not nec-
essarily the type as described in previous Examples 3 – 4, but they all give
rise to PBW R-bases.

Example 5. Let R be a commutative ring, and let I be the ideal of the free
R-algebra R〈X〉 = R〈X1, X2〉 generated by the single element

g21 = X2X1 − qX1X2 − αX2 − f(X1),

where q, α ∈ R, and f(X1) is a polynomial in the variable X1. Assigning to
X1 the degree 1, then in either of the following two cases:
(a) degf(X1) ≤ 2, and X2 is assigned the degree 1;
(b) degf(X1) = n ≥ 3, and X2 is assigned the degree n,
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G = {g21} forms an LM-reduced monic Gröbner basis for I. For, in both cases
we may use the N-graded lexicographic ordering X1 ≺gr X2 with respect to
the natural N-gradation of K〈X〉, respectively the weight N-gradation of R〈X〉
with weight {1, n}, such that LM(g21) = X2X1, and then we see that the only
overlap element of G is o(g21, 1; 1, g21) = 0. Thus, by Theorem 3.1 in both

cases the algebra A = R〈X〉/I has the PBW R-basis B = {Xα

1X
β

2 | α, β ∈ N}.

Example 6. Let R be a commutative ring, and let R〈X〉 = R〈X1, X2, X3〉
be the free R-algebra generated by X = {X1, X2, X3}. This example provides
a family of algebras similar to the enveloping algebra U(sl(2, R)) of the R-
Lie algebra sl(2, R), that is, we consider the algebra A = K〈X〉/〈G〉 with G
consisting of

g31 = X3X1 − λX1X3 + γX3,
g12 = X1X2 − λX2X1 + γX2,
g32 = X3X2 − ωX2X3 + f(X1),

where λ, γ, ω ∈ R, and f(X1) is a polynomial in the variable X1. It is clear
that A = U(sl(2, R)) in case λ = ω = 1, γ = 2 and f(X1) = −X1.

Suppose f(X1) has degree n ≥ 1. Then we can always equip R〈X〉 with
a weight N-gradation by assigning to X1, X2 and X3 the positive degree n1,
n2, n3 respectively (for instance, (1, 1, 1) if degf(X1) = n ≤ 2; (1, n, n) if
degf(X1) = n > 2), such that LM(G) = {X3X1, X1X2, X3X2} with respect
to the N-graded monomial ordering X2 ≺gr X1 ≺gr X3 on BR. In the case
that R = K is a field, it was verified in ([20], Example 7) that G is a Gröbner
basis for the ideal 〈G〉 in K〈X〉 with respect to the same ≺gr. Hence, by
Proposition 2.6, G is a Gröbner basis for the ideal 〈G〉 in R〈X〉. It follows
from Theorem 3.1 that the algebra A = R〈X〉/〈G〉 has the PBW R-basis
B = {X2

α2
X1

α1
X3

α3 | αj ∈ N}.
Let us point out that in the case that f(X1) has degree ≤ 2, i.e., f(X1) is

of the form

f(X1) = aX2
1 + bX1 + c with a, b, c ∈ R,

if degX1 = degX2 = degX3 = 1 is used, the algebra A provides R-versions of
some popularly studied algebras over a field K, for instance,

(a) let ζ ∈ R be invertible, and put λ = ζ4, ω = ζ2, γ = −(1 + ζ2), a = 0 = c,
and b = −ζ, then A is just the R-version of the Woronowicz’s deformation of
U(sl(2, K)) introduced in the noncommutative differential calculus;

(b) if λγwb �= 0 and c = 0, then A is just the R-version of Le Bruyn’s conformal
sl(2, K) enveloping algebra [15] which provides a special family of Witten’s
deformation of U(sl(2, K)) in quantum group theory.

Example 7. Let G be the subset of the free R-algebra R〈X〉 = K〈X1, X2, X3〉
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consisting of

g21 = X2X1 −X1X2,
g31 = X3X1 − λX1X3 − μX2X3 − γX2,
g32 = X3X2 −X2X3.

λ, μ, γ ∈ R,

Then, under the N-graded lexicographic ordering X1 ≺gr X2 ≺gr X3 with
respect to the natural N-gradation of R〈X〉, LM(gji) = XjXi, 1 ≤ i < j ≤ 3,
and the only nontrivial overlap element of G is S321 = o(g32, X1; X3, g21) =

−X2X3X1 +X3X1X2. One checks easily that S321
G

= 0. By Theorem 3.1, G is
an LM-reduced monic Gröbner basis for the ideal 〈G〉. Hence, by Theorem 3.1
the algebra A = R〈X〉/〈G〉 has the PBW R-basis B = {X1

α1
X2

α2
X3

α3 | αj ∈
N}.

4 PBW Isomorphisms and Applications

In this section we show that the working principle via different types of PBW
isomorphism developed in [23] and [19] over a field K can be generalized to
study algebras defined by monic Gröbner bases over a commutative ring R.
All notions and notations used in previous sections are maintained.

Let R be an arbitrary commutative ring, R〈X〉 = R〈X1, ..., Xn〉 the free R-
algebra of n generators, and BR the standard free R-basis of R〈X〉. Consider
a weight N-gradation of R〈X〉 subject to deg(Xi) = ni > 0, 1 ≤ i ≤ n, that
is, R〈X〉 = ⊕p∈�R〈X〉p with R〈X〉p = R-span{w ∈ B | deg(w) = p}. For
an element f ∈ R〈X〉, say f = F0 + F1 + · · · + Fp with Fi ∈ R〈X〉i and
Fp �= 0, let LH�(F ) denote the N-leading homogeneous element of f , i.e.,
LH�(f) = Fp. Then every ideal I of R〈X〉 is associated to an N-graded ideal
〈LH�(I)〉 generated by the set of N-leading homogeneous elements LH�(I) =
{LH�(f) | f ∈ I}. Adopting the notion and notation as in [19], we call the N-
graded algebra A�

LH = R〈X〉/〈LH�(I)〉 the N-leading homogeneous algebra of
the algebra A = R〈X〉/I . On the other hand, noticing that R〈X〉 is also a BR-
graded algebra by the multiplicative monoid BR, i.e., R〈X〉 = ⊕w∈BR

R〈X〉w
with R〈X〉w = Rw, if ≺ is a monomial ordering on BR and if f =

∑n
i=1 λiwi ∈

R〈X〉 with w1 ≺ w2 ≺ · · · ≺ wn, then the term λnwn is called the BR-leading
homogeneous element of f and is denoted by LHBR

(f). Thus each ideal I
of R〈X〉 is associated to a BR-graded ideal 〈LHBR

(I)〉 generated by the set
of BR-leading homogeneous elements LHBR

(I) = {LHBR
(f) | f ∈ I}, and

similarly, the BR-graded algebra ABR
LH = R〈X〉/〈LHBR

(I)〉 is referred to as the
BR-leading homogeneous algebra of the algebra A = R〈X〉/I . Furthermore,
consider the N-grading filtration F �R〈X〉 of R〈X〉 defined by

F �

p R〈X〉 = ⊕i≤pR〈X〉i, p, i ∈ N,
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and the BR-grading filtration FBRR〈X〉 of R〈X〉 defined by

FBR
w R〈X〉 = ⊕u�wR〈X〉u, w, u ∈ BR.

If I is an ideal of R〈X〉, then the algebra A = R〈X〉/I has the N-filtration
F �A induced by F �R〈X〉, i.e.,

F �

p A = (F �

p R〈X〉+ I)/I, p ∈ N,

respectively the BR-filtration FBRA induced by FBRR〈X〉, i.e.,

FBR
w A = (F BR

w R〈X〉+ I)/I, w ∈ BR.

Note that if each Xi has degree 1, 1 ≤ i ≤ n, then the filtration F �A is
just the commonly used natural N-filtration. Let G�(A) = ⊕p∈�G�(A)p with
G�(A)p = F �

p A/F �

p−1A be the associated N-graded algebra of A determined by

F �A, respectively GBR(A) = ⊕w∈BR
GBR(A)w with GBR(A)w = FBR

w A/F BR≺wA
the associated BR-graded algebra of A determined by FBRA, where FBR≺wA =
∪u≺wFBR

u A. We have the following analogue of ([19], Theorem 1.1). Since the
proof of this result is similar to that given in loc. cit., we omit it here.

Theorem 4.1 With notation as above, there are graded R-algebra isomor-
phisms:
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A�

LH = R〈X〉/〈LH�(I)〉 ∼= G�(A), ABR
LH = R〈X〉/〈LHBR

(I)〉 ∼= GBR(A).

�

Since we are using an arbitrary commutative ring R (instead of a field) as
the coefficient ring, the next lemma provides the key bridge that enables us to
generalize the working principle of [23] and [19] to study quotient algebras of
R〈X〉 defined by monic Gröbner bases.

Lemma 4.2 Let R〈X〉 be equipped with the fixed weight N-gradation as before,
and I an ideal of R〈X〉. Put J = 〈LH�(I)〉. The following two statements
hold.
(i) If h is a nonzero homogeneous element of R〈X〉, then h ∈ J if and only if
h ∈ LH�(I). Hence LH�(J) = LH�(I).
(ii) Let ≺gr be an N-graded monomial ordering on BR with respect to the
fixed weight N-gradation of R〈X〉. Then LHBR

(J) = LHBR
(I) and LM(J) =

LM(I).
(iii) Let ≺gr be an N-graded monomial ordering on BR with respect to the fixed
weight N-gradation of R〈X〉. If G is a monic Gröbner basis of I, then

〈LHBR
(J)〉 = 〈LHBR

(I)〉 = 〈LM(G)〉 = 〈LM(I)〉 = 〈LM(J)〉.

Proof (i) Let h be a nonzero homogeneous element in R〈X〉. If h ∈ J , then

h =
∑
i,j

HijLH�(fi)Tij, where Hij, Tij are homogeneous elements and fi ∈ I.

If we write fi = LH�(fi)+f ′
i , where deg(f ′

i) < deg(fi), then f =
∑

i,j HijfiTij ∈
I and

f =
∑
ij

HijLH�(fi)Tij +
∑
i,j

Hijf
′
iTij = h +

∑
i,j

Hijf
′
iTij .

It follows immediately that h = LH�(f) ∈ LH(I). This shows that LH�(J) ⊆
LH�(I) and hence the equality holds.
(ii) Note that ≺gr is an N-graded monomial ordering on BR, every element of
BR is an N-homogeneous element, and thus for f ∈ R〈X〉 we have

(∗) LHBR
(f) = LHBR

(LH�(f)) and LM(f) = LM(LH�(f))

It follows from (i) and the above formula (∗) that

LHBR
(J) = LHBR

(LH�(J)) = LHBR
(LH�(I)) = LHBR

(I),
LM(J) = LM(LHBR

(J)) = LM(LHBR
(I)) = LM(I).



1444 Huishi Li

(iii) Let f ∈ R〈X〉 be a monic element with respect to the fixed monomial
ordering ≺gr, say f = w +

∑
λiwi with w, wi ∈ BR, λi ∈ R and LM(f) = w.

Then it is clear that

(∗∗) LM(f) = w = LHBR
(f).

So, if G is a monic Gröbner basis of I with respect to ≺gr, then the above
formula (∗∗) implies LM(G) = LHBR

(G) ⊂ LHBR
(I). Hence, by (ii) and

Proposition 2.2 we obtain the desired equalities:

〈LHBR
(J)〉 = 〈LHBR

(I)〉 = 〈LM(G)〉 = 〈LM(I)〉 = 〈LM(J)〉.

�

Next, we show that an analogue of ([23], Theorem 2.3.2 (i) ⇔ (iii)) holds
true for monic Gröbner bases in R〈X〉.

Theorem 4.3 Let I be an ideal of R〈X〉. With notation as above, if ≺gr is an
N-graded monomial ordering on BR with respect to a fixed weight N-gradation
of R〈X〉, the following two statements are equivalent for a subset G ⊂ I :
(i) G is a monic Gröbner basis of I;
(ii) LH�(G) = {LH�(g) | g ∈ G} is a monic Gröbner basis for the N-graded
ideal 〈LH�(I)〉.

Proof Since we are using the N-graded monomial ordering ≺gr on BR, by
Lemma 4.2 or its proof, a subset G of R〈X〉 is monic if and only if LH�(G) is
monic, and we have

〈LM(I)〉 = 〈LM(G)〉 if and only if 〈LM(〈LH�(I)〉)〉 = 〈LM(LH�(G))〉.

It follows from Proposition 2.2 that G is a monic Gröbner basis for the ideal I if
and only if LH�(G) is a monic Gröbner basis for the N-graded ideal 〈LH�(I)〉,
proving the equivalence of (i) and (ii). �

Remark We also point out that an analogue of ([23], Theorem 2.3.2 (i)⇔ (ii))
works well for monic Gröbner bases when the homogenization of I in R〈X〉[t]
is considered.

Combining the previous 4.1 – 4.3, we get immediately the result presenting
the associated N-graded algebra, respectively the associated BR-graded algebra
via a monic Gröbner basis.

Theorem 4.4 Let R〈X〉 be equipped with a fixed weight N-gradation as before,
and I an ideal of R〈X〉. If G is a monic Gröbner basis of I with respect to
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an N-graded monomial ordering ≺gr on BR, then we have the graded algebra
isomorphisms

A�

LH = R〈X〉/〈LH�(I)〉 = R〈X〉/〈LH�(G)〉 ∼= G�(A),

ABR
LH = R〈X〉/〈LHBR

(I)〉 = R〈X〉/〈LM(G)〉 ∼= GBR(A),

(A�

LH)BR
LH = R〈X〉/〈LHBR

〈LH�(I)〉)〉 = R〈X〉/〈LM(G)〉 ∼= GBR(A�

LH).

�

As in [19], we call the graded algebra isomorphisms presented in the last
theorem respectively the N-PBW isomorphism (for the first one) and the BR-
PBW isomorphism (for the last two), determined by the given monic Gröbner
basis G.

Focusing on the first isomorphism of Theorem 4.4, typical examples can be
given by using the Gröbner defining relations of Weyl algebras and enveloping
algebras of Lie algebras, or more generally, the Gröbner defining relations
of q-enveloping algebras determined in Example 3 of the last section, over a
commutative ring. We specify several other examples below. In all examples
given below, R is an arbitrary commutative ring.

Example 1. Let X = {Xi}i∈J and C = R〈X〉/〈G〉 the Clifford algebra over
R, where G consists of

gi = X2
i − qi, i ∈ J, qi ∈ R,

gk� = XkX� + X�Xk − qk�, k, � ∈ J, k > �, qk� ∈ R.

Note that if all the qi = 0, qk,� = 0, we get the defining relations of an R-
exterior algebra. It is well known that if R = K is a field, then, under the
N-graded lexicographic ordering ≺gr such that degXi = 1, i ∈ J , and

X� ≺gr Xk, �, k ∈ J, � < k,

G forms a Gröbner basis for the ideal 〈G〉 in K〈X〉 (e.g., see CH.II of [18]).
It follows from Proposition 2.6 that G is a Gröbner basis for the ideal 〈G〉 in
R〈X〉. By Theorem 4.4, with respect to the natural N-filtration F �C of C, the
associated N-graded algebra G�(C) ∼= R〈X〉/〈LH�(G)〉 of C is nothing but an
exterior algebra E over R.

Example 2. Let A = R〈X1, X2〉/〈G〉 be a down-up R-algebra in the sense of
[2], where G consists of

g1 = X2
1X2 − αX1X2X1 − βX2X

2
1 − γX1,

g2 = X1X
2
2 − αX2X1X2 − βX2

2X1 − γX2,
α, β ∈ R.
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It is well known that if R = K is a field, then, under the N-graded lexi-
cographic ordering ≺gr such that degX1 = degX2 = 1 and X2 ≺gr X1, G
forms a Gröbner basis for the ideal 〈G〉 in K〈X〉 (e.g., see CH.II of [18]). It
follows from Proposition 2.6 that G is a Gröbner basis for the ideal 〈G〉 in
R〈X〉. By Theorem 4.4, with respect to the natural N-filtration F �A of A, the
associated N-graded algebra G�(A) ∼= R〈X1, X2〉/〈LH�(G)〉 of A is a down-
up algebra over R with the set of defining relations LH�(G) = {LH�(g1) =
X2

1X2 − αX1X2X1 − βX2X
2
1 , LH�(g2) = X1X

2
2 − αX2X1X2 − βX2

2X1}; in
particular, one sees that if α = 2 and β = −1, then G�(A) is nothing but the
universal enveloping algebra of the (−)-part (or (+)-part) of the Kac-Moody

R-Lie algebra associated to the Cartan matrix

(
2 −1
−1 2

)
.

Example 3. Let A = R〈X1, X2〉/〈g21〉 be the R-algebra as given in (Section
2, Example 5). Then by Theorem 4.4, with respect to both the natural N-
filtration and the weight N-filtration induced by the weight N-grading filtration
of R〈X1, X2〉, G�(A) ∼= R〈X1, X2〉/〈X2X1 − qX1X2〉 as N-graded algebras,
which, in the case that q is invertible, is the coordinate ring of the quantum
plane over R.

Example 4. Let A = R〈X1, X2, X3〉/〈G〉 be the R-algebra as given in (Section
2, Example 6). In the case that f(X1) has degree ≤ 2, i.e., f(X1) is of the
form

f(X1) = aX2
1 + bX1 + c with a, b, c ∈ R,

then by Theorem 4.4, with respect to the natural N-filtration F �A, A has the
associated N-graded algebra G�(A) ∼= R〈X1, X2, X3〉/〈LH�(G)〉 with

LH�(G) = {X3X1 − λX1X3, X1X2 − λX2X1, X3X2 − ωX2X3 + aX2
1};

while in the case that f(X1) has degree n ≥ 3, if the weight (1, n, n) is used,
then by Theorem 4.4, with respect to the weight N-filtration F �A induced by
the weight N-grading filtration of R〈X1, X2〉, A has the associated N-graded
algebra G�(A) ∼= R〈X1, X2, X3〉/〈LH�(G)〉 with

LH�(G) = {X3X1 − λX1X3, X1X2 − λX2X1, X3X2 − ωX2X3}

By referring to the well-known filtered-graded comparison principle for al-
gebras with an N-filtration ([25], [17], [21], [19]), we now summarize, without
proof, several applications of Theorem 4.3 and Theorem 4.4. Let R be an
arbitrary commutative ring. For convenience, in what follows we let the free
R-algebra R〈X〉 = R〈X1, ..., Xn〉 be equipped with a fixed weight N-gradation,
I = 〈G〉 an ideal of R〈X〉 generated by a monic Gröbner basis G with respect
to an N-graded monomial ordering ≺gr on the standard R-basis BR of R〈X〉,
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and A = R〈X〉/I . Then the following diagram may indicate how all results to
be given will work:

A = R〈X〉/〈G〉

�
�

�
lifting �

�
�� ��

�
� lifitng

�
�

�
GBR(A) G�(A)

∼=←−
�−PBW

R〈X〉
〈LH�(G)〉 = A�

LH

∧ ∧∼= BR−PBW lifting

ABR
LH =

R〈X〉
〈LM(G)〉

∼=
BR−PBW

> GBR(A�

LH)

Theorem 4.5 Under the respective canonical algebra epimorphism, the set
N(G) of normal monomials in BR (mod G), projects to a free R-basis for the al-
gebras A = R〈X〉/I, A�

LH = R〈X〉/〈LH�(I)〉 , and ABR
LH = R〈X〉/〈LM(I)〉 re-

spectively, and thereby to a free R-basis for G�(A), GBR(A), and GBR(A�

LH(A)),
respectively.

�

Theorem 4.6 Bearing ABR
LH = R〈X〉/〈LM(G)〉 in mind, the following state-

ments hold.
(i) If ABR

LH is a (semi-)prime ring, then A�

LH is a (semi-)prime ring (hence
G�(A) is a (semi-)prime ring), and A is a (semi-)prime ring.
(ii) If ABR

LH is BR-graded left Noetherian, that is, every BR-graded left ideal of
G(A) is finitely generated, then A�

LH is left Noetherian (hence G�(A) is left
Noetherian), and A is left Noetherian.
(iii) If ABR

LH is BR-graded left Artinian, that is, ABR
LH satisfies the descending

chain condition for BR-graded left ideals, then A�

LH is left Artinian (hence
G�(A) is left Artinian), and A is left Artinian.
(iv) If ABR

LH is a BR-graded simple R-algebra, that is, ABR
LH does not have nontriv-

ial BR-graded ideal, then A�

LH is a simple R-algebra (hence G�(A) is a simple
R-algebra), and A is a simple R-algebra.
(v) If the Krull dimension (K.dim in the sense of Gabriel and Rentschler, e.g.
see [25] for the definition) of ABR

LH is well defined, then the Krull dimension of
A�

LH (hence of G�(A)) and A is well defined and K.dimA ≤ K.dim G�(A) =
K.dimA�

LH ≤ K.dimABR
LH.

(vi) If ABR
LH is semisimple (simple) Artinian, then A�

LH is semisimple (simple)
Artinian (hence G�(A) is semisimple (simple) Artinian), and A is semisimple
(simple) Artinian.
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(vii) Let gl.dim abbreviate the phrase “global homological dimension”. We have
gl.dimA ≤ gl.dimG�(A) = gl.dimA�

LH ≤ gl.dimABR
LH.

(viii) If ABR
LH is left hereditary, then A�

LH is left hereditary (hence G�(A) is left
hereditary), and A is left hereditary.
(ix) Let gl.wdim abbreviate the phrase “global week homological dimension”.
We have gl.wdimA ≤ gl.wdimG�(A) = gl.wdimA�

LH ≤ gl.wdimABR
LH.

(x) If ABR
LH is a Von Neuman regular ring, then A�

LH is Von Neuman regular
ring (hence G�(A) is a Von Neuman regular ring), and A is a Von Neuman
regular ring.

�

Theorem 4.7 Bearing A�

LH = R〈X〉/〈LH�(G)〉 in mind, if the role of ABR
LH

is replaced by A�

LH, then the analogues of Theorem 4.6 (i) – (x) hold true.
Moreover, we have:
(i) If A�

LH is a domain, then A is a domain.
(ii) If A�

LH is a Noetherian domain and maximal order in its quotient ring (see
e.g. [25] for the definition), then A is a Noetherian domain and maximal order
in its quotient ring.
(iii) If A�

LH is an Auslander regular ring (see e.g. [17], [21] for the definition),
then A is an Auslander regular ring.

�
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