
doi:10.1006/jsco.2001.0462
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2002) 33, 13–29

Fast Computation of the Bezout and Dixon Resultant
Matrices

ENG-WEE CHIONH†§, MING ZHANG‡¶ AND RONALD N. GOLDMAN‡‖

†School of Computing, National University of Singapore, Singapore 117543
‡Department of Computer Science, Rice University, Houston, Texas 77005, U.S.A.

Efficient algorithms are derived for computing the entries of the Bezout resultant ma-
trix for two univariate polynomials of degree n and for calculating the entries of the

Dixon–Cayley resultant matrix for three bivariate polynomials of bidegree (m, n). Stan-

dard methods based on explicit formulas require O(n3) additions and multiplications to
compute all the entries of the Bezout resultant matrix. Here we present a new recursive
algorithm for computing these entries that uses only O(n2) additions and multiplica-

tions. The improvement is even more dramatic in the bivariate setting. Established
techniques based on explicit formulas require O(m4n4) additions and multiplications to
calculate all the entries of the Dixon–Cayley resultant matrix. In contrast, our recursive
algorithm for computing these entries uses only O(m2n3) additions and multiplications.

c© 2002 Academic Press

1. Introduction

Resultants are a classical algebraic tool for determining whether or not a system of n
polynomials in n − 1 variables have a common root without explicitly solving for the
roots. By systematically eliminating the variables, one can obtain a single polynomial
expression in the coefficients of the original polynomial equations whose vanishing sig-
nals the existence of a common root. Elimination theory was once a classical branch
of algebraic geometry, but because the computations involved were often unwieldy, by
the middle of this century it had fallen out of fashion in favor of more abstract, less
constructive techniques.

Computers revived elimination theory by enabling complex computations that were
previously beyond the reach of mathematicians. Resultants are now applied systemati-
cally to provide constructive solutions to problems in computer graphics (Kajiya, 1982),
robotics (Manocha, 1992), geometric modeling (Sederberg, 1983; Goldman et al., 1984)
and algorithmic algebraic geometry (Cox et al., 1998). Groebner bases are another more
modern manifestation of this contemporary renewal of elimination theory. Resultants and
Groebner bases are currently standard tools in contemporary computer algebra systems
such as MAPLE and MATHEMATICA.

Resultants are often represented as the determinant of a matrix whose entries are
polynomials in the coefficients of the original polynomial equations. Since these matrices

§E-mail: chionhew@comp.nus.edu.sg
¶E-mail: mzhang@cs.rice.edu
‖E-mail: rng@cs.rice.edu

0747–7171/02/010013 + 17 $35.00/0 c© 2002 Academic Press

14 E.-W. Chionh et al.

may be very large, especially in the multivariate setting, research has focused on efficient
computation of these determinants (Manocha and Canny, 1993). Collins (1967) also
discusses methods for computing resultants. Remarkably, however, except for Krein and
Naimark (1981) and Helmke and Fuhrmann (1989), little attention has been paid to
efficient computation of the entries of these resultant matrices. The purpose of this paper
is to address this oversight.

In elimination theory, there are two standard formulations for the resultant of two
univariate polynomials of degree n: the Sylvester resultant and the Bezout resultant. The
Sylvester resultant is the determinant of a matrix of order 2n; the Bezout resultant is
the determinant of a matrix of order n. Thus the Bezout determinant is generally faster
to compute. But whereas the non-zero entries of the Sylvester resultant are just the
coefficients of the original two polynomials, the entries of the Bezout resultant are much
more complicated expressions in these coefficients. Standard techniques based on explicit
formulas require O(n3) additions and O(n3) multiplications to compute the entries of the
Bezout matrix. Here we shall present a recursive algorithm for computing these entries
that requires only O(n2) additions and O(n2) multiplications.

For three bivariate polynomials of bidegree (m,n), Dixon presents several different for-
mulations for the resultant (Dixon, 1908). We focus here on two of these representations
that are analogous to the univariate resultants of Sylvester and Bezout. We shall call the
first approach the Sylvester resultant because it can be generated by Sylvester’s dialytic
method. The second technique we shall call the Cayley resultant because it can be con-
structed by a stratagem similar to Cayley’s device for generating the Bezout resultant.
In the literature, this Cayley resultant is often called the Dixon resultant.

The non-zero entries of the bivariate Sylvester resultant matrix are again just the coef-
ficients of the original three polynomials, but the Sylvester matrix is of order 6mn which
is huge even for bivariate polynomials of moderate bidegree. The Cayley resultant matrix
is of order 2mn, which is much more manageable, but the entries of the Cayley resultant
are also much harder to compute. Indeed standard methods based on explicit formu-
las require O(m4n4) multiplications and O(m4n4) additions to compute these entries.
Here we shall develop a new recursive algorithm for calculating the entries of the Cayley
resultant matrix that requires only O(m2n3) additions and O(m2n3) multiplications.

To develop these fast algorithms, we have organized the remainder of this paper in
the following fashion. In Section 2 we introduce an innovative technique for dividing by
x − y a bivariate polynomial f(x, y) that vanishes when x = y. We shall have occasion
to apply this method several times throughout this paper, since Cayley’s device for gen-
erating both univariate and bivariate resultants requires exactly this type of division. In
Section 3 we apply this division technique to transform the Sylvester resultant matrix
into the Bezout resultant matrix and we then use this transformation to develop a fast
recursive algorithm for computing the entries of the Bezout resultant. As a bonus, along
the way we shall provide an elementary constructive proof that the polynomials repre-
sented by the columns of the Bezout resultant lie in the ideal generated by the original
two polynomials.

Section 4 is devoted to deriving similar results for the Cayley resultant of three bi-
variate polynomials of bidegree (m,n). Again to develop a fast algorithm for computing
the entries of the Cayley resultant, we apply our division technique to transform the
Sylvester resultant matrix into the Cayley resultant matrix. We also take advantage of
the natural block structures that appear in the Sylvester resultant and its accompanying
transformation matrix, and we make use of the fast algorithm we developed in Section 3

Fast Computation of the Bezout and Dixon Resultant Matrices 15

for computing the entries of the Bezout matrix. As in the univariate setting, we also pro-
vide an elementary constructive proof that the polynomials represented by the columns
of the Cayley resultant lie in the ideal generated by the original three bivariate polyno-
mials.

2. Exact Division by Truncated Formal Power Series

We begin with a device for dividing a bivariate polynomial f(x, y) that vanishes when
x = y by the expression x− y. This technique will play a central role in our subsequent
analysis.

Consider the quotient
∑n

i=0 ai(y)xi/(x − y), where ai(y), 0 ≤ i ≤ n, are polynomials
in y. By treating 1/(x− y) as the formal power series

∑∞
u=1 x−uyu−1, we can write the

quotient as the product

n∑
i=0

ai(y)xi
∞∑

u=1

x−uyu−1 =
n∑

i=0

ai(y)xi
i∑

u=1

x−uyu−1 +
n∑

i=0

ai(y)xi
∞∑

u=i+1

x−uyu−1,

where the vacuous sum
∑0

u=1 · · · is taken to be zero. Observe that the first sum on
the right-hand side is a polynomial in x, y, but the second sum involves only negative
powers of x. Thus the quotient is a polynomial if and only if the second sum vanishes.
Consequently, ∑n

i=0 ai(y)xi

x− y
=

n∑
i=1

ai(y)
i−1∑
k=0

yi−1−kxk, (1)

if and only if the quotient is a polynomial—that is, if and only if
∑n

i=0 ai(y)xi ≡ 0 when
x = y.

An alternative to the above expression can be derived from synthetic division. Collect-
ing the coefficients of xi, we have∑n

i=0 ai(y)xi

x− y
=

n−1∑
i=0

(
n∑

k=i+1

ak(y)yk−i−1

)
xi,

if
∑n

i=0 ai(y)xi is divisible by (x − y). Though synthetic division and multiplication by
truncated power series both give the same quotient, the one given by power series is more
suitable for the kind of derivations we want to perform later on because it expands by
collecting on the coefficients ai(y) while synthetic division collects by the powers xi.

For example, the quotient (7x4 − 7y3x + 9yx2 − 9y3)/(x − y) is a polynomial, since
the numerator is zero when x = y. Therefore, by the method of truncated formal power
series,

7x4 − 7y3x + 9yx2 − 9y3

x− y
= (−9y3 − 7y3x + 9yx2 + 7x4)(x−1 + yx−2 + y2x−3 + · · ·)

= 9yx2(x−1 + yx−2)− 7y3x(x−1)
+7x4(x−1 + yx−2 + y2x−3 + y3x−4)

= 7x(x2 + xy + y2) + 9y(x + y).

16 E.-W. Chionh et al.

3. Fast Computation of the Bezout Resultant Matrix

The Sylvester resultant matrix Syl(f, g) and the Bezout resultant matrix Bez(f, g) for
two univariate polynomials

f(t) =
n∑

i=0

ait
i, g(t) =

n∑
i=0

bit
i

are well known in elimination theory (Salmon, 1924; Collins, 1967; Krein and Naimark,
1981; Lancaster and Tismenetsky, 1985; Helmke and Fuhrmann, 1989). In this section,
we briefly review the constructions of Syl(f, g) and Bez(f, g), show that Syl(f, g) can be
transformed to Bez(f, g) by matrix multiplication, and develop an algorithm to compute
Bez(f, g) rapidly by exploiting this transformation. Much of this material can also be
found in Helmke and Fuhrmann (1989), Krein and Naimark (1981) and Lancaster and
Tismenetsky (1985), but we include it here to keep the discussion self-contained. In
addition, our derivations are often more direct and more elementary than the derivations
of the comparable results in the classical literature on resultants.

3.1. the Sylvester and Bezout resultants

The Sylvester resultant for f(t) and g(t) can be constructed using Sylvester’s dialytic
method. Consider the system of 2n polynomials {tτf, tτg | τ = 0, . . . , n − 1}. In matrix
form this system can be written as

[(f g) · · · tn−1(f g)] = [1 · · · t2n−1] Syl(f, g). (2)

The coefficient matrix Syl(f, g) is a square matrix of order 2n, and the Sylvester resultant
for f and g is the determinant |Syl(f, g)|.

To write the entries of Syl(f, g) explicitly, let Li = [ai bi]. Then by construction,

Syl(f, g) =



a0 b0
...

...
. . .

an−1 bn−1
. . . a0 b0

an bn
. . . a1 b1

. . .
...

...
an bn


=



L0
...

. . .

Ln−1
. . . L0

Ln
. . . L1

. . .
...

Ln


. (3)

One way to construct the Bezout resultant is to compute the coefficient matrix of the
polynomials produced by the Cayley expression

∆(t, β) =

∣∣∣∣ f(t) g(t)
f(β) g(β)

∣∣∣∣
β − t

=
∑n

i=0(f(t)bi − g(t)ai)βi

β − t
(4)

for two univariate polynomials. Since the numerator vanishes when β = t, the quotient
∆(t, β) is actually a polynomial

∆(t, β) =
n−1∑
u=0

n−1∑
v=0

Bu,vtuβv

Fast Computation of the Bezout and Dixon Resultant Matrices 17

of degree n− 1 in t and degree n− 1 in β. In matrix notation

∆(t, β) =
[
1 · · · tn−1

]
Bez(f, g)

 1
...

βn−1

 . (5)

The coefficient matrix Bez(f, g) is a square matrix of order n. The Bezout resultant is
the determinant |Bez(f, g)|.

While by (3) the non-zero entries of Syl(f, g) are just the coefficients of f and g,
the entries {Bu,v} of Bez(f, g) are more complicated polynomial expressions in these
coefficients. In the next two sections we shall devise an efficient technique for computing
the entries of Bez(f, g).

3.2. transforming Syl(f, g) into Bez(f, g)

The Cayley expression (4) can be written in polynomial form by the technique of
truncated formal power series:

∆(t, β) =
n∑

i=1

i−1∑
v=0

(f(t)bi − g(t)ai)ti−1−vβv. (6)

Since the coefficient of tuβv is fbu+v+1 − gau+v+1 if u + v ≤ n− 1, and zero otherwise,

∆(t, β) = [(f g) · · · tn−1(f g)]

R1 · · · Rn
... . . .

Rn

 1
...

βn−1


=
[
1 · · · t2n−1

]
· Syl(f, g) ·

R1 · · · Rn
... . . .

Rn

 ·
 1

...
βn−1

 , (7)

where Ri = [bi −ai]T . Rewrite equation (5) as

∆(t, β) = [1 · · · tn−1 tn · · · t2n−1] ·
[

Bez(f, g)
0n×n

]
·

 1
...

βn−1

 . (8)

Then by equations (7) and (8), we conclude that[
Bez(f, g)

0n×n

]
= Syl(f, g) ·

R1 · · · Rn
... . . .

Rn

 . (9)

As an aside, notice that this equation implies that the polynomials represented by the
columns of Bez(f, g) lie in the ideal generated by f, g. Now considering the first n rows
on both sides of equation (9) and denoting the entries of Bez(f, g) by {Bi,j}, we have B0,0 · · · B0,n−1

...
...

...
Bn−1,0 · · · Bn−1,n−1

 =

 L0
...

. . .
Ln−1 · · · L0

R1 · · · Rn
... . . .

Rn

 . (10)

18 E.-W. Chionh et al.

3.3. fast computation of the entries of Bez(f, g)

Equation (10) gives

Bi,j =
min(i,n−1−j)∑

k=0

Li−kRj+1+k, 0 ≤ i, j ≤ n− 1. (11)

Since Li−kRj+1+k + Li−lRj+1+l = 0 if and only if k + l = i− j − 1, the sum from k = 0
to k = i− j − 1 in equation (11) is zero. Thus equation (11) can be improved to

Bi,j =
min(i,n−1−j)∑
k=max(0,i−j)

Li−kRj+1+k, 0 ≤ i, j ≤ n− 1. (12)

Equation (12) also appears in Goldman et al. (1984), Helmke and Fuhrmann (1989),
Krein and Naimark (1981) and Lancaster and Tismenetsky (1985). The symmetry of
Bez(f, g) can easily be established from equation (12).

Along the diagonals i + j = k, i ≤ j, 0 ≤ k ≤ 2n − 2, equation (12) can be written
recursively as

Bi,j = Bi−1,j+1 + LiRj+1. (13)

Exploiting this recurrence, we can construct Bez(f, g) in three stages:

(1) Initialization
Set

Bez(f, g)init =

L0R1 · · · L0Rn

. . .
...

Ln−1Rn

 ,

that is,

(Bi,j)init = LiRj+1 = aibj+1 − biaj+1, 0 ≤ i ≤ j ≤ n− 1.

(2) Recursion
Add along the diagonals i + j = k from top to bottom, left to right:

for i from 1 to n− 2
for j from i to n− 2

Bi,j ← Bi,j + Bi−1,j+1

Bez(f, g)up diagonal =



∗ ∗ ∗ · · · ∗ ∗ ∗
↙ ↙ · · · ↙ ↙ ∗
↙ · · · ↙ ↙ ∗

. . .
...

...
...

↙ ↙ ∗
↙ ∗
∗


n×n

. (14)

(3) Completion
Since Bez(f, g) is symmetric, set

Bi,j = Bj,i, i > j.

Fast Computation of the Bezout and Dixon Resultant Matrices 19

For example, let n = 4 and abbreviate LiRj by i.j. The four matrices after the initial-
ization and the end of each outer loop are

init.
−→


0.1 0.2 0.3 0.4

1.2 1.3 1.4
2.3 2.4

3.4

 recursion
−→


0.1 0.2 0.3 0.4

1.2 + 0.3 1.3 + 0.4 1.4
2.3 2.4

3.4

 recursion
−→


0.1 0.2 0.3 0.4

1.2 + 0.3 1.3 + 0.4 1.4
2.3 + 1.4 2.4

3.4

 symmetry
−→


0.1 0.2 0.3 0.4
0.2 1.2 + 0.3 1.3 + 0.4 1.4
0.3 1.3 + 0.4 2.3 + 1.4 2.4
0.4 1.4 2.4 3.4

 .

3.4. computational complexity

Since Bez(f, g) is symmetric, we need to compute only the entries Bi,j where i ≤ j.
Using the algorithm developed in Section 3.3, we initialize and march southwest updating
these (n2 + n)/2 entries as we go:

 L0R1 · · · L0Rn

. . .
...

Ln−1Rn



∗ ∗ · · · ∗ ∗
↙ · · · ↙ ∗

. . .
...

...
↙ ∗
∗

 .

Initialization Marching

During initialization, each of these entries requires two multiplications and one addition.
Thus there are (n2 + n) multiplications and (n2 + n)/2 additions in this initialization.
As we march southwest, each entry above the diagonal i = j—except for the entries in
the first row or the last column—needs one addition. Thus there are (n2 − n)/2 more
additions. Therefore, to compute Bez(f, g) by the new algorithm, we need to perform
(n2 + n) multiplications and n2 additions.

On the other hand, to compute Bez(f, g) in the standard way, i.e. computing each
entry separately by the entry formula (free of cancellation)

Bi,j =
min(i,n−1−j)∑
k=max(0,i−j)

(ai−kbj+1+k − bi−kaj+1+k),

we must compute the entries {Bi,j} for all i ≤ j:

Bi,j =
{∑i

k=0(ai−kbj+1+k − bi−kaj+1+k), i + j ≤ n− 1;∑n−1−j
k=0 (ai−kbj+1+k − bi−kaj+1+k), i + j > n− 1.

Each summand requires two multiplications and one addition. When n is odd, the total
number of multiplications to compute all the Bi,j , i ≤ j, is

2 ·
(n−1)/2∑

i=0

(n− 2i) · (i + 1) + 2 ·
n−1∑

j=(n+1)/2

(n− j) · (2j − n + 1)

=
2n3 + 9n2 + 10n + 3

12
,

20 E.-W. Chionh et al.

and the total number of additions is
(n−1)/2∑

i=0

(n− 2i) · (2i + 1) +
n−1∑

j=(n+1)/2

(2n− 2j − 1) · (2j − n + 1)

=
2n3 + 3n2 + 4n + 3

12
.

Similar results hold when n is even. Therefore, the standard method needs O(n3) mul-
tiplications and additions to compute all the entries of Bez(f, g), while this technique
requires only O(n2) additions and multiplications: see Table 1.

Table 1. Computing the Bezout resultant matrix.

Standard method New algorithm

of mul. O(n3) n2 + n
of add. O(n3) n2

4. Fast Computation of the Dixon Resultant Matrix

Consider three bivariate polynomials of bidegree (m,n):

f(s, t) =
m∑

i=0

n∑
j=0

ai,js
itj , g(s, t) =

m∑
i=0

n∑
j=0

bi,js
itj , h(s, t) =

m∑
i=0

n∑
j=0

ci,js
itj .

Dixon (1908) outlines several methods for constructing a resultant for f, g, h, and Zhang
et al. (1998) discusses various additional representations for such a resultant. The two
most commonly used representations are the Sylvester resultant and the Cayley resultant.
The Sylvester resultant matrix Syl(f, g, h) can be constructed by the dialytic method,
and the Cayley resultant matrix Cay(f, g, h) can be generated from an extension of the
Cayley expression for the Bezout resultant. The Cay(f, g, h) is often called the Dixon
resultant.

The two resultant matrices Syl(f, g, h) and Cay(f, g, h) are generalizations of the
Sylvester resultant matrix and the Bezout resultant matrix for two univariate poly-
nomials. The non-zero entries of Syl(f, g, h) are very simple. In fact, as in the uni-
variate setting, these entries are just the coefficients of f(s, t), g(s, t), h(s, t). However,
Syl(f, g, h) is huge—6mn × 6mn. To compute the resultant of f, g, h, people generally
use Cay(f, g, h), which is 2mn × 2mn, one ninth the size of Syl(f, g, h). Nonetheless,
the entries of Cay(f, g, h) are very complicated expressions in the coefficients of f, g, h
(Sederberg, 1983; Chionh, 1997).

In this section, we first review the construction of Syl(f, g, h) and Cay(f, g, h). Then
we introduce natural block structures on these two resultant matrices. We shall use these
block structures together with the method of truncated formal power series to derive
a transformation matrix from Syl(f, g, h) to Cay(f, g, h). Finally combining the block
structures and the transformation matrix, we present an efficient algorithm to compute
the entries of Cay(f, g, h).

4.1. the Sylvester and Cayley resultants

The Sylvester resultant for f(s, t), g(s, t), h(s, t) is constructed using Sylvester’s dia-
lytic method. Consider the 6mn polynomials {sσtτf, sσtτg, sσtτh | σ = 0, . . . , 2m − 1;

Fast Computation of the Bezout and Dixon Resultant Matrices 21

τ = 0, . . . , n− 1}. This system of polynomials can be written in matrix notation as

[f g h · · · tn−1(f g h) · · · s2m−1(f g h) · · · s2m−1tn−1(f g h)]
= [1 · · · t2n−1 · · · s3m−1 · · · s3m−1t2n−1] · Syl(f, g, h), (15)

where the rows of Syl(f, g, h) are indexed lexicographically with s > t. That is, the
monomials are ordered as 1, . . . , t2n−1, . . . , sσ, . . . , sσt2n−1, . . . , s3m−1, . . . , s3m−1t2n−1.
The coefficient matrix Syl(f, g, h) is a square matrix of order 6mn, and the Sylvester
resultant for f, g, h is simply |Syl(f, g, h)|.

The Cayley resultant for f, g, h can be derived from the Cayley expression

∆(s, t, α, β) =

∣∣∣∣∣∣
f(s, t) g(s, t) h(s, t)
f(α, t) g(α, t) h(α, t)
f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣
(α− s)(β − t)

. (16)

Since the numerator vanishes when α = s or β = t, the numerator is divisible by (α −
s)(β − t). Hence ∆(s, t, α, β) is a polynomial in s, t, α, β, so

∆(s, t, α, β) =
2m−1∑
u=0

n−1∑
v=0

m−1∑
σ=0

2n−1∑
τ=0

dσ,τ,u,vsσtταuβv,

for some constant coefficients dσ,τ,u,v. In matrix form,

∆(s, t, α, β) =



1
...

t2n−1

...
sm−1

...
sm−1t2n−1



T

· Cay(f, g, h) ·



1
...

βn−1

...
α2m−1

...
α2m−1βn−1


. (17)

The rows and columns of Cay(f, g, h) are indexed lexicographically by sσtτ , αuβv with
s > t, α > β respectively. The coefficient matrix Cay(f, g, h) is again a square matrix
but of order 2mn, and the Cayley resultant for f, g, h is |Cay(f, g, h)|.

4.2. the block structures of Syl(f, g, h) and Cay(f, g, h)

We can impose a natural block structure on the entries of Syl(f, g, h). Let

fi(t) =
n∑

j=0

ai,jt
j , gi(t) =

n∑
j=0

bi,jt
j , hi(t) =

n∑
j=0

ci,jt
j ,

and let Si be the 2n × 3n coefficient matrix for the polynomials (tvfi, tvgi, tvhi),
v = 0, . . . , n− 1:

22 E.-W. Chionh et al.

Si =



ai,0 bi,o ci,0

...
...

...
. . .

ai,n−1 bi,n−1 ci,n−1
. . . ai,0 bi,0 ci,0

ai,n bi,n ci,n
. . . ai,1 bi,1 ci,1

. . .
...

...
...

ai,n bi,n ci,n


. (18)

Here the rows are indexed by the monomials 1, . . . , t2n−1, and the columns are indexed
by the polynomials t0(fi gi hi), . . ., tn−1(fi gi hi).

Note that the matrix Si is Sylvester-like in the sense that if we drop the fi-columns
from Si, then we get the univariate Sylvester matrix of gi and hi; dropping the gi-columns
yields the univariate Sylvester matrix of hi and fi; dropping the hi-columns yields the
univariate Sylvester matrix of fi and gi. It follows from equations (15) and (18) that

Syl(f, g, h) =



S0
...

. . .

Sm−1
. . . S0

Sm
. . . S1 S0

. . .
...

...
. . .

Sm Sm−1
. . . S0

Sm
. . . S1

. . .
...

Sm



. (19)

As for the block structure of Cay(f, g, h), we simply write

Cay(f, g, h) =

 C0,0 · · · C0,2m−1

...
...

...
Cm−1,0 · · · Cm−1,2m−1

 , (20)

where each block Ci,j is of size 2n× n. The reason why we impose this particular block
structure on the entries of Cay(f, g, h) will become clear shortly.

4.3. transforming Syl(f, g, h) into Cay(f, g, h)

Since ∆(s, t, α, β) is a polynomial in s, α, by the technique of truncated formal power
series, equation (16) can be written as

∆(s, t, α, β)

=

[
f(s, t)

(
m∑

i=0

gi(t)αi ·
m∑

j=0

hj(β)αj −
m∑

i=0

gi(β)αi ·
m∑

j=0

hj(t)αj

)
· 1
β − t

+ g(s, t)

(
m∑

i=0

hi(t)αi ·
m∑

j=0

fj(β)αj −
m∑

i=0

hi(β)αi ·
m∑

j=0

fj(t)αj

)
· 1
β − t

Fast Computation of the Bezout and Dixon Resultant Matrices 23

+h(s, t)

(
m∑

i=0

fi(t)αi ·
m∑

j=0

gj(β)αj −
m∑

i=0

fi(β)αi ·
m∑

j=0

gj(t)αj

)
· 1
β − t

]
· 1
α− s

=
m∑

i=0

m∑
j=0

(
i+j−1∑
u=0

si+j−1−uαu · f(s, t) · gi(t)hj(β)− gi(β)hj(t)
β − t

.

+
i+j−1∑
u=0

si+j−1−uαu · g(s, t) · hi(t)fj(β)− hi(β)fj(t)
β − t

+
i+j−1∑
u=0

si+j−1−uαu · h(s, t) · fi(t)gj(β)− fi(β)gj(t)
β − t

)
. (21)

The coefficients of αu, . . . , αuβn−1 in ∆(s, t, α, β) are polynomials in s and t. Denote
these polynomials by pu,0, . . . , pu,n−1, u = 0, . . . , 2m− 1. Then

∆(s, t, α, β) =
2m−1∑
u=0

n−1∑
j=0

pu,jα
uβj . (22)

It follows from equation (21) that the polynomials pu,0, . . . , pu,n−1 can be written as
linear combinations of sitjf, sitjg, sitjh, 0 ≤ i ≤ 2m− 1, 0 ≤ j ≤ n− 1. Therefore, there
exists a 6mn× 2mn matrix F such that

[(f g h) · · · s2m−1tn−1(f g h)]1×6mn · F
= [p0,0 · · · p0,n−1 · · · p2m−1,0 · · · p2m−1,n−1]1×2mn (23)

That is,

[1 · · · t2n−1 · · · s3m−1 · · · s3m−1t2n−1] · Syl(f, g, h) · F
= [1 · · · t2n−1 · · · sm−1 · · · sm−1t2n−1] · Cay(f, g, h). (24)

Appending 4mn rows of zeros to the bottom of the right hand side of equation (24), we
have

[1 · · · t2n−1 · · · s3m−1 · · · s3m−1t2n−1] · Syl(f, g, h) · F

= [1 · · · t2n−1 · · · s3m−1 · · · s3m−1t2n−1] ·
[

Cay(f, g, h)
04mn×2mn

]
.

Therefore,

Syl(f, g, h) · F =
[

Cay(f, g, h)
04mn×2mn

]
. (25)

Notice that equation (25) implies that the bivariate polynomials {pu,j} represented by
the columns of Cay(f, g, h) lie in the ideal generated by f, g, h.

Next we introduce a block structure on the entries of F compatible with the block
structures on Syl(f, g, h) and Cay(f, g, h). The matrix F is of size 6mn× 2mn. We write
F as

F =

 F0,0 · · · F0,2m−1

...
...

...
F2m−1,0 · · · F2m−1,2m−1

 ,

24 E.-W. Chionh et al.

where each block Fi,j is of size 3n× n. By equation (23), we have, in particular, that

[f g h · · · s2m−1tn−1(f g h)]1×6mn ·

 F0,u

...
F2m−1,u


6mn×n

= [pu,0 · · · pu,n−1]1×n.

Therefore, by equations (21) and (22), the entries of Fσ,u, 0 ≤ σ ≤ 2m−1, are generated
from the coefficients of ∑

i+j=σ+u+1

gi(t)hj(β)− gi(β)hj(t)
β − t

,

∑
i+j=σ+u+1

hi(t)fj(β)− hi(β)fj(t)
β − t

, (26)

∑
i+j=σ+u+1

fi(t)gj(β)− fi(β)gj(t)
β − t

.

Each term in these three sums is a Cayley expression for two univariate polynomials:
{gi, hj}, {hi, fj}, and {fi, gj}; hence each term generates a Bezout matrix when written
in matrix form (Goldman et al., 1984; Montaudouin and Tiller, 1984). Therefore, each
block Fσ,u contains three summations of Bezout matrices, where the three summations
interleave row by row. That is,

Fσ,u = interleave row by row the three matrices∑
i+j=σ+u+1

Bez(gi, hj),
∑

i+j=σ+u+1

Bez(hi, fj),
∑

i+j=σ+u+1

Bez(fi, gj). (27)

In particular, if σ + u = 2m − 1, then i = j = m in expression (26), so Fσ,u is the
matrix obtained by interleaving the rows of the three Bezout matrices: Bez(gm, hm),
Bez(hm, fm), Bez(fm, gm).

By expression (26), the blocks Fσ,u have the two following properties:

• Fσ,u = Fσ′,u′ , if σ + u = σ′ + u′;
• Fσ,u = 03n×n, if σ + u > 2m− 1.

Therefore,

Fσ,u =
{

F0,σ+u, σ + u ≤ 2m− 1;
0, otherwise.

Thus

F =

 F0,0 · · · F0,2m−1

...
...

...
F2m−1,0 · · · F2m−1,2m−1

 =


F0,0 F0,1 · · · F0,2m−1

F0,1

... . . .

F0,2m−1

 . (28)

For simplicity, we can drop the first index from the subscripts of F0,j and instead denote
F0,j by Fj . Then F can be written as

F =

 F0 · · · F2m−1

... . . .

F2m−1

 . (29)

Fast Computation of the Bezout and Dixon Resultant Matrices 25

4.4. fast computation of the entries of Cay(f, g, h)

Below we will derive an efficient algorithm based on the block structures of Syl(f, g, h),
Cay(f, g, h), and the transformation matrix F from Syl(f, g, h) to Cay(f, g, h) to compute
the entries of the Cayley resultant matrix Cay(f, g, h).

From equations (19), (20), (25), (28) and (29), we have

S0
...

. . .

Sm−1
. . . S0

Sm
. . . S1 S0

. . .
...

...
. . .

Sm Sm−1
. . . S0

Sm
. . . S1

. . .
...

Sm



·


F0 F1 · · · F2m−1

F1

... . . .

F2m−1

 =
[

Cay(f, g, h)
04mn×2mn

]
.

(30)
Recall that each block Si is of size 2n×3n, each block Fj is of size 3n×n, and each block
Ci,j is of size 2n×n. Considering just the first 2mn rows on both sides of equation (30),
we have  C0,0 · · · C0,2m−1

...
...

...
Cm−1,0 · · · Cm−1,2m−1


=

 S0
...

. . .
Sm−1 · · · S0

 ·
 F0 · · · Fm−1 Fm · · · F2m−1

...

Fm−1 · · · F2m−2 F2m−1

 . (31)

Therefore,

Ci,j =
min(i,2m−1−j)∑

k=0

Si−k · Fj+k, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ 2m− 1. (32)

Notice the similarity of equation (32) for Ci,j to equation (12) for Bi,j . Again, we observe
that

Ci,j = Ci−1,j+1 + Si · Fj , 1 ≤ i ≤ m− 1, 0 ≤ j ≤ 2m− 2,

which leads to the following fast algorithm for computing the entries of Cay(f, g, h):

(1) Initialization:

Cay(f, g, h)init =

 S0 · F0 · · · S0 · F2m−1

...
...

...
Sm−1 · F0 · · · Sm−1 · F2m−1

 .

That is,

(Ci,j)init = Si · Fj , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ 2m− 1.

26 E.-W. Chionh et al.

(2) Recursion:
for i from 1 to m− 1

for j from 0 to 2m− 2
Ci,j ← Ci,j + Ci−1,j+1

Cay(f, g, h) =


S0 · F0 · · · S0 · Fm−1 S0 · Fm · · · S0 · F2m−1

↙ . . . ↙ ↙ . . . S1 · F2m−1

.
...

↙ . . . ↙ ↙ . . . Sm−2 · F2m−1

↙ . . . ↙ ↙ . . . Sm−1 · F2m−1

 .

Notice that this method for computing the entries of Cay(f, g, h) eliminates lots of re-
dundant calculations: after the initialization, we need only update the blocks along the
southwest diagonals by one (block) addition per block. This approach is much faster than
the standard method of calculating each entry independently (Sederberg, 1983; Chionh,
1997), especially when we compute the Bezoutiants Fk efficiently (see Section 3.4). In the
next section, we will present a more detailed analysis of the computational complexity
of this algorithm.

4.5. computational complexity

To compute the entries of Cay(f, g, h) by the method developed in Section 4.4, we need
the following three steps:

(1) Preprocessing: compute Fu, 0 ≤ u ≤ 2m− 1.
(2) Initialization: calculate (Ci,u)init = Si · Fu, 0 ≤ i ≤ m− 1, 0 ≤ u ≤ 2m− 1.
(3) Recursion: march along the southwest diagonals, and update the entries of Ci,u.

Step 1. Each Fu contains the following three summations of Bezout matrices:∑
i+j=u+1

Bez(gi, hj),
∑

i+j=u+1

Bez(hi, fj),
∑

i+j=u+1

Bez(fi, gj).

We can use the technique developed in Section 3 to efficiently compute the sum∑
i+j=u+1

Bez(gi, hj).

First we initialize each Bezout matrix Bez(gi, hj)init; then we add these initializations
together; and last we march along the southwest diagonals updating the entries as we
go. Altogether, we need

(n2 + n) ·min(u + 2,m + 1)︸ ︷︷ ︸
initialization

multiplications,

and

n2 + n

2
·min(u + 2,m + 1)︸ ︷︷ ︸
initialization

+
n2 + n

2
·min(u + 1,m)︸ ︷︷ ︸

summation

+
n2 − n

2︸ ︷︷ ︸
marching

additions.

Fast Computation of the Bezout and Dixon Resultant Matrices 27

Similarly, we can compute
∑

i+j=u+1 Bez(hi, fj) and
∑

i+j=u+1 Bez(fi, gj) efficiently.
Therefore, in step 1,

of multiplications =
2m−1∑
u=0

3 · (n2 + n) ·min(u + 2,m + 1)

= 3(n2 + n)

[
m−1∑
u=0

(u + 2) +
2m−1∑
u=m

(m + 1)

]

= 3(n2 + n)
3m2 + 5m

2
=

3
2
(n2 + n)(3m2 + 5m),

and

of additions =
2m−1∑
u=0

3 ·
[
n2 + n

2
min(u + 2,m + 1) +

n2 + n

2
min(u + 1,m) +

n2 − n

2

]
= 3 · n

2 + n

2
· 3m2 + 5m

2
+ 3 · n

2 + n

2
· 3m2 + m

2
+ 3m(n2 − n)

=
9
2
(n2 + n)(m2 + m) + 3m(n2 − n).

Step 2. By equations (18) and (27),

Si · Fu =



ai,0

...
. . .

ai,n−1
. . . ai,0

ai,n
. . . ai,1

. . .
...

ai,n


·
∑

i+j=u+1

Bez(gi, hj)

+



bi,0

...
. . .

bi,n−1
. . . bi,0

bi,n
. . . bi,1

. . .
...

bi,n


·
∑

i+j=u+1

Bez(hi, fj)

+



ci,0

...
. . .

ci,n−1
. . . ci,0

ci,n
. . . ci,1

. . .
...

ci,n


·
∑

i+j=u+1

Bez(fi, gj).

Each one of these three matrix multiplications requires

2(n + 2n + · · ·+ n2) = n3 + n2 multiplications,

28 E.-W. Chionh et al.

and
2[n · 0 + n · 1 + · · ·+ n(n− 1)] = n3 − n2 additions.

Adding these three 2n × n matrices together requires 4n2 more additions. Therefore,
since there are 2m2 products Si · Fu, step 2 requires 6m2 · n2(n + 1) multiplications and
2m2 · (3n3 + n2) additions.

Step 3. Since each Cayley block Ci,j is of size 2n × n, marching along the southwest
diagonals requires only (m − 1)(2m − 1) · 2n2 = 2n2(2m2 − 3m + 1) additions and no
multiplication.

Altogether, we perform
3
2
(3m2 + 5m)(n2 + n) + 6m2(n3 + n2) multiplications,

and
9
2
(m2 + m)(n2 + n) + 3m(n2 − n) + 2m2(3n3 + n2) + 2n2(2m2 − 3m + 1) additions.

Notice that the main bottleneck is step 2, which requires O(m2n3) multiplications and
additions.

On the other hand, the standard way (Sederberg, 1983; Chionh, 1997) to compute the
entries of Cay(f, g, h) needs to compute

1
36

m(m + 1)2(m + 2) · n(n + 1)2(n + 2)

3 × 3 determinants, each of which has six terms and hence requires 12 multiplications
and five additions. So if we compute all these 3× 3 intermediate determinants just once
and store them, we need to perform at least

1
3
(m + 1)2(m + 2) · n(n + 1)2(n + 2) multiplications

and
5
36

m(m + 1)2(m + 2) · n(n + 1)2(n + 2) additions.

A summary of the complexity of computing the entries of the Cayley resultant matrices
using the standard method vs. the new fast algorithm is given in Table 2.

Table 2. Computing the Cayley resultant matrix.

Standard method New algorithm

of mul. O(m4n4) O(m2n3)
of add. O(m4n4) O(m2n3)

Parallel computation can be used to speed up the new algorithm even further. For
example, we can compute each of the blocks Fu, 0 ≤ u ≤ 2m − 1, and perform the
initialization of the blocks (Ci,u)init = Si · Fu in parallel. Moreover, the recursions along
different diagonals are independent, so these steps can also be done in parallel.

Finally notice that the time complexity O(m2n3) for computing the entries of the ma-
trix Cay(f, g, h) is not symmetric in m and n. The reason is that the Sylvester resultant

Fast Computation of the Bezout and Dixon Resultant Matrices 29

matrix Syl(f, g, h) and the Cayley resultant matrix Cay(f, g, h) are not symmetric in
s, t—hence not symmetric in m,n. If we reverse the roles of s, t during the construction
of Syl(f, g, h) and Cay(f, g, h), and impose appropriate block structures on these ma-
trices, the time complexity for computing the entries of Cay(f, g, h) is O(m3n2). (The
difference between the two Cayley resultant matrices Cay(f, g, h) is that one is the trans-
pose of the other.) Therefore, we can actually compute the entries of Cay(f, g, h) in time
min(O(m2n3),O(m3n2)).

Acknowledgements

Eng-Wee Chionh is supported by the National University of Singapore for research at
Rice University. He greatly appreciates the hospitality and facilities generously provided
by Rice. Ming Zhang and Ron Goldman are partially supported by NSF grant CCR-
9712345.

References

Chionh, E. W. (1997). Concise parallel Dixon determinant. Comput. Aided Geom. Des., 14, 561–570.
Collins, G. E. (1967). Subresultants and reduced polynomial remainder sequences. J. Assoc. Comput.

Mach., 14, 128–142.
Cox, D., Little, J., O’Shea, D. (1998). Using Algebraic Geometry. New York, Springer-Verlag.
Dixon, A. L. (1908). The eliminant of three quantics in two independent variables. Proc. London Math.

Soc., 6, 49–69, 473–492.
Goldman, R. N., Sederberg, T., Anderson, D. (1984). Vector elimination: a technique for the implicit-

ization, inversion, and intersection of planar parametric rational polynomial curves. Comput. Aided
Geom. Des., 1, 327–356.

Helmke, U., Fuhrmann, P. A. (1989). Bezoutians. Linear Algebr. Appl., 122–124, 1039–1097.
Kajiya, J. T. (1982). Ray tracing parametric patches. In Proceedings of SIGGRAPH, pp. 245–254.
Krein, M. G., Naimark, M. A. (1981). The method of symmetric and hermitian forms in the theory of the

separation of the roots of algebraic equations. Linear Multilinear Algebr., 10, 265–308. The original
Russian version was published in 1936.

Lancaster, P., Tismenetsky, M. (1985). The Theory of Matrices, Computer Science and Applied Math-
ematics. Academic Press.

Manocha, D. (1992). Algebraic and numeric techniques for modeling and robotics. Ph.D. Thesis, Com-
puter Science Division, University of California, Berkeley.

Manocha, D., Canny, J. F. (1993). Multipolynomial resultant algorithms. J. Symbolic Computation, 15,
99–122.

De Montaudouin, Y., Tiller, W. (1984). The Cayley method in computer aided geometric design. Comput.
Aided Geom. Des., 1, 309–326.

Salmon, G. (1924). Lessons Introductory to the Modern Higher Algebra. New York, G. E. Stechert &
Co.

Sederberg, T. (1983). Implicit and parametric curves and surfaces. Ph.D. Thesis, Purdue University.
Zhang, M., Chionh, E. W., Goldman, R. N. (1998). Hybrid Dixon resultants. In Cripps, R. ed., The

Mathematics of Surfaces, volume 8, pp. 193–212. Winchester, UK, Information Geometers Ltd.

Originally Received 23 August 2000
Accepted 28 March 2001

	Introduction
	Exact Division by Truncated Formal Power Series
	Fast Computation of the Bezout Resultant Matrix
	Table 1

	Fast Computation of the Dixon Resultant Matrix
	Table 2

	References

