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We discuss computation of Gröbner bases using approximate arithmetic for coefficients. We show how certain considerations of
tolerance, corresponding roughly to absolute and relative error from numeric computation, allow us to obtain good approximate
solutions to problems that are overdetermined. We provide examples of solving overdetermined systems of polynomial equations.
As a secondary feature we show handling of approximate polynomial GCD computations, using benchmarks from the literature.

1. Introduction

Gröbner bases provide a means for solving a myriad of prob-
lems in computational algebra. In its original form, the whole
arithmetic was carried through exactly, on rational numbers.
This was necessary in order to know when combinations of
polynomial coefficients cancel. In 1993 Shirayanagi [1] indi-
cated a means to use approximate arithmetic and still handle
this “zero recognition” problem. Since that time several
approaches have appeared that use approximate arithmetic
[2–10].The advantages of approximate arithmetic are several.
First is that it avoids intermediate coefficient swell one often
observes in exact Gröbner basis computations. A second
reason is that, inmanyproblems, oneworkswith approximate
data and does not have access to exact values. Moreover,
approximation by rationals might lead to intermediate swell
and still not improve on a solution based on the original
approximate input values.

Work on numeric Gröbner bases begins with [1, 8]. The
method therein for controlling error is a bit similar to what
we will describe in Section 2. It uses bookkeeping to measure
loss of precision from arithmetic operations (similar ideas are
discussed in [5]). The handling of coefficients can thus be
viewed as an extension of floating point arithmetic. Traverso
and Zanoni [11] describe use of both a modular image and
a numeric approximation for coefficients. Only when both
forms give zero (approximate, in the latter case) do we regard

an apparent cancellation as truly zero. A drawback is that this
requires either exact input or else an approximate system that
is not overdetermined. Other approaches include extending
the notion of Gröbner bases to allow head terms with small
coefficients to become nonhead terms [9, 12–14]. Of these,
[12] is notable for allowing the use of an almost unaltered
Gröbner basis algorithm, with low rank variables added as
needed during the course of the computation. This family of
methods attempts to stabilize the set of head terms locally,
that is, in a neighborhood of a set of coefficient values that
give a “nongeneric” basis skeleton. They seem to work well
for handling numeric conditioning problems that might arise
from having polynomial leading terms with relatively small
coefficients, but it is not clear whether they can be used
in the case of an overdetermined system. References [2, 11]
contain some discussions of the overdetermined case. Use of
syzygies to determine vanishing of coefficients is described
in [2, 3], with the latter indicating a possible algorithmic
treatment. The local stabilization method is further studied
in [15], in the special case where there is one “small”
parameter. The generalized normal form approach of [16]
uses a similar method to [9, 13, 14] for handling small leading
coefficients, but has access to more possibilities since the
monomial ordering need not be fixed from the start. These
local stabilization methods seem to work best in the case of
zero dimensional ideals with the same degree (number of
solutions). This is of course a very important special case.
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A typical situation inwhich onemight desire toworkwith
approximate coefficients is in solving polynomial systems of
equations. A common method for such solving sets up an
eigendecomposition problem; this is done either with resul-
tants [17], Gröbner bases [18–21], or more general normal
forms [16]. We remark that all but [16, 21] were developed
in the setting of exact coefficient arithmetic (since 1998
the NSolve function of Mathematica has used approximate
coefficient arithmetic in its Gröbner basis computations). As
this usage of approximate arithmetic seems to be relatively
less well known than its exact counterpart, we will begin with
a brief discussion of the issues associated with the Gröbner
basis part of such solvers. We go on to point out problems
that appear when such systems are overdetermined. We then
describe two modes of tolerancing and use them in tandem
to address these problems.

This work provides a description and empirical study of
methods that extend Gröbner bases to handle approximately
consistent polynomial systems. We define these, informally,
as inconsistent systems for which there exists a “small”
perturbation of input coefficients thatmakes them consistent.
This is, in effect, the opposite situation to that of an artificial
structural discontinuity of a Gröbner basis as discussed in
[9, 12–14]. Here we are really trying to create and utilize such
a discontinuity rather than attempting to remove it. Instead
of working with a concept of “nearby” solutions (though
possibly not so near in cases of ill conditioning), we are
now trying to find a nearby system that has any solutions,
in a neighborhood where generically the solution set will be
empty. A very important special case, discussed in several
examples, is that of finding an approximate polynomial
GCD to a given pair (or set) of polynomials. We recast as
an overdetermined system using computational polynomial
algebra [22] and proceed from there.

Several of the ideas we present have been developed inde-
pendently in the cited literature. Our main contribution is to
show how they can be made to work effectively in practice.
We provide several nontrivial examples from the literature on
numerical polynomial system solving and approximate GCD
computation to illustrate the merit of this work.

2. Overview of Gröbner Bases

Gröbner bases are a tool used universally in computational
commutative algebra. Among several excellent references we
single out [19, 22, 23], because they cover various aspects of
equation solving via Gröbner bases. We give a brief synopsis
from [4].

One first defines a term order on the exponent vectors of
power products of a polynomial (these are simply products of
powers of variables, e.g., 𝑥2𝑦𝑧3). An important class of term
orders is “lexicographic.” In this class we have a predefined
ordering amongst variables; say 𝑥 is largest. Then monomials
involving 𝑥 are regarded as “larger” than terms not involving
𝑥, and higher powers in 𝑥 are larger than lower powers.
In effect monomials are placed in dictionary order, wherein
letters correspond to the ordering between variables. Another
important class of orders are based on total degree (higher

degree corresponding to larger monomials), with ties broken
by another order (such as lexicographic).

One next has a notion of reduction by rewriting a given
polynomial. This can happen if the leading term of one
divides the leading term of another; we can “reduce” that
second one by subtracting an appropriate multiple of the
first so that the resulting polynomial has a smaller leading
monomial. Using any variant of the algorithm developed by
Buchberger (as in the references above) one then rewrites
the given set of polynomials to obtain new set called a
Gröbner basis. A key step in this process, well explained in
the literature, is to methodically generate new polynomials
that cannot be reduced by the old ones.

This new set generates the same polynomial ideal and
hence has the same solution set. If computed with respect to
a lexicographic term ordering, one has in effect triangulated
the system, in a form analogous to a row reduced system of
linear equations. If computed by a degree-based term order
one has in the basis at least one ideal member of smallest total
degree. Each of these can be useful in various situations. We
avail ourselves of both in this paper.

An issue with these bases is that often they are strenuous
to compute. One cause can be a form of size increase wherein
coefficients grow quite large compared to inputs. Use of
approximate numbers of a specified maximal size helps to
combat this. Moreover there are situations in which inputs
are only known approximately to begin with; in such cases
it makes little sense to do exact computations if that can be
avoided. In [21, 24] we describe a mode of arithmetic that
allows us to work in substantially the same way as with exact
arithmetic, but without the burden of size growth. From here
on we will assume that the underlying coefficient arithmetic
is done with approximate numbers and proceed to describe
variants that assist in certain important situations.

3. Approximate Gröbner Bases and
Polynomial Systems

We begin with the observation that there are two variants of
approximate Gröbner basis computations. In one we assume
that coefficients of input are exactly known, and we use
approximate numbers in order to avoid either intermediate
swell of integers or difficult computations with algebraic
numbers.

The first scenario is in some sense quite nice insofar as
theorems can be proven regarding the quality of result based
on input precision. This is covered in some detail in [24];
where it is shown that computation of approximate Gröbner
bases fromexact input can be regarded as a solved problem (at
least to the extent that any computation of such bases might
be thus regarded).The reasons for this, in brief, are as follows.
First suppose such a system is at a structural singularity in the
sense of [9, 12–15]; that is, a system for which perturbations
of the coefficients will change the structure of the basis.
Then use of sufficiently high but finite precision arithmetic,
with precision tracking, will uncover this fact; in practice the
needed precision is typically modest [24]. If it is away from
such a singularity then again a precision tracking coefficient
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arithmetic suffices (and generally at less precision thanmight
be needed at a singularity).This leaves the casewhere it is near
a singularity, or possibly at a singularity to the precision of
the input (i.e., the implied error in input coefficients includes
a structurally singular system). This tends to be the hardest
case in practice. By artificially raising input precision if it was
finite, or using fairly high finite precision values for exact
coefficients, we again can use precision tracking arithmetic.
In principle the result could show either the generic form of
basis or the structurally singular form, but with sufficiently
high precision in the computation the former will happen in
practice, since we are (almost never) actually at a structural
singularity once we raise the input precision. In either case,
though, it can be used to extract useful information, for
example, roots to the system.

In Section 5 we will see a nontrivial pair of examples
involving the Caprasse system and a perturbation thereof.
Theoretical underpinning and practical considerations for
this are discussed in [24, Section 2]. We observe that all
three cases indicated above allow for the possibility that
input is of finite and possibly of low precision. In such
cases we can artificially raise the precision to perform the
basis computation. Conceptually this means we are solving
a nearby problem, indeed, one that is a representative from
the set of all systems implied by the error in the coefficients.
The only assumption is that zero really means zero; that is,
we do not allow for implied interval inputs that contain zero.
Moreover we make no claim that all sets in the family of
systems will have close solution sets. That depends on the
intrinsic conditioning of the problem and is outside the scope
of this work.

While the case of exact input is certainly of interest, here
we are primarily interested in a different setting. Coefficients
are known only approximately, and moreover we may have
an overdetermined system. The rest of this section pertains
to both settings. The sequel is then devoted to the case of
interest.

Gröbner bases computation using approximate arith-
metic can be subject to several problems. First, as noted
above, is the issue of recognizing when a cancellation has
occurred. The model of approximate arithmetic we use,
significance arithmetic, turns out to be quite good at handling
this. Indeed, over a decade of experience suggests this poses
no issue, provided we do not work with an overdetermined
system [21].The essential idea [7, 25, 26] is that numbers carry
with them an estimate of error. Standard arithmetic such
as addition and multiplication of such numbers propagates
error via first order approximations. We regard a sum as
zero when there is full cancellation of all digits; that is, the
result is less than the approximated error interval. (Use of
“approximated” to describe the error is intentional; this is
effectively a first order approximation to interval arithmetic.)
The upshot is that, in contrast to the implementations
described in [1, 5–8], we require no careful bookkeeping; the
arithmetic does this automatically.

A secondary issue is that, with this choice of arithmetic,
precision gradually erodes over the course of a computation
(as the arithmetic first order error estimates grow). What
this means in practice is that often one must start with high

precision input (say, a few hundred digits). Clearly this is well
beyond the precision one can expect from input that arises
as measurements of data. Again, when the problem at hand
is not overdetermined, this is not a serious issue. One simply
adds digits, arbitrarily, to the input coefficients. If the problem
is not ill conditioned then when finished we know we have
solved a nearby system. In practice one observes that residuals
from such a solution, used in the original input, are typically
small. If so desired, they can be further improved via local
refinement methods.

Yet another problem, one particularly associated to use of
significance arithmetic, is that in rare cases a decision might
be made that a full cancellation took place, when in an exact
computation perhaps a small but nonzero value would be
obtained.This is discussed in [21]. It turns out to be a relatively
unimportant issue in that it is uncommon, it is usually
correctable by moving to higher precision, and generally
only causes loss of numerically huge and generally nonuseful
solutions (consider the difference between solutions of𝑥2 = 1
and (1/1040) 𝑥5 + 𝑥2 = 1).

We end this section with a historical note. As men-
tioned earlier, the first reported implementation of numerical
Gröbner bases (of which this author is aware) is due to
Shirayanagi [1] from 1993. This article discusses a book-
keeping approach to precision control that involves what
are called “bracket coefficients.” This approach is similar in
spirit, if not details, to significance arithmetic. It was this
article (both methodology and results) that motivated the
author to implement numerical Gröbner bases in late 1993,
in what would eventually become version 3 of Mathematica.
This implementation is discussed briefly in [4]. We point out
that, if input is overdetermined, it in effect requires either
exact or at least “nice” (e.g., high precision) input. It will not
handle input that is both known only to a few digits and also
overdetermined. This case is taken up in the next sections.

4. Overdetermined Systems

We have just given a brief overview of how we can manage
approximate coefficient arithmetic reliably when handling
nonoverdetermined (and reasonably well conditioned) sys-
tems. Indeed this suffices for many practical sorts of com-
putations. But there is a growing body of literature involving
overdetermined systems. It thus becomes important to con-
siderways inwhichGröbner bases can be extended to address
them. To motivate this we begin by describing a few sources
of such systems.

One place where overdetermined problems are encoun-
tered is in best fitting of data. While local methods are
typically used, there are cases where one might not have
adequate information to give a starting point such that
convergence will be attained. For these situations one can
utilize an approximate solution to an overdetermined system,
obtained with help of a Gröbner basis computation.

A related common scenario is when one uses an overde-
termined system in order to rule out undesired solutions.
An example is in camera pose estimation [27], where one
or more extra reference points are used in order to remove
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from consideration undesired solutions to a possibly ill
conditioned problem. The problem encountered is that, due
to the approximate nature of coefficients, use of arithmetic as
described in Section 2 would often lead to an empty solution
set. What we require, and will describe, are tools to enable a
decision that coefficients are “small enough” to discard.

Another source of overdetermined problems arises in
trying to find “approximate” polynomial greatest common
divisors [28–33]. In this setting one typically wants a result
that is of highest possible degree, subject to constraints
on coefficient sizes in remainders (after normalizing, say,
by making all leading coefficients unity). Most approaches
in the literature use matrix methods (i.e., singular value
decompositions) or remainder sequences for this sort of
computation. We will instead adapt exact Gröbner basis
methods to handle this approximate numeric setting.

5. Arithmetic Considerations in Solving
Overdetermined Systems

Once we go from an exactly determined to an overde-
termined systems, high precision approximate arithmetic
in computing a Gröbner basis no longer suffices to catch
cancellation of coefficients. The problem is that we need to
expand the size of what we might regard to be zero, as it is
now on a scale with the precision of our input.

We are thus faced with a situation where we need to
coarsen our classification of what will be regarded as full can-
cellation. We note that one must be a bit careful in terminol-
ogy at this point; “zeros” can refer to approximate solutions
to a system of equations or to coefficient combinations that
cancelled (see [34] for discussion of approximate zeros, also
referred to as “pseudozeros”). Typically our interest is in the
former, and the latter appear as a byproduct to a successful
navigation of the computation.

We discuss in brief notions of tolerance as applied to
both absolute and relative accuracy. This is entirely informal;
the purpose is simply to motivate our approach to zero
recognition. By tolerance we typically have in mind a small
threshold, below which we regard values as zero.

Recall that the key operations in Gröbner basis compu-
tations are forming of S-polynomials and reduction thereof
[22, 23, 35, 36]. Our main concerns are twofold. We do
not want to retain leading coefficients that, in an exact
computation, would have vanished. Also we do not want
to retain polynomials that should have vanished in their
entirety. In practice, each of these can happen if we do
not employ some tactics for recognizing cancellation. We
emphasize that the second situation is not a special case of
the first; this indeed gets to the heart of the double tolerance
approach we will describe. Loss of a leading coefficient is in
essence a relative error issue; one coefficient is notably smaller
than most or all others. For this situation we will require a
relative error tolerancing. In contrast, an entire polynomial
might be regarded as a full cancellation in a situation where
all coefficients are small, in an absolute sense, when compared
with those of the normalized inputs that gave rise to them.
This situationwill be dealt with via absolute error tolerancing.

As noted above, we will utilize both relative and absolute
tolerance values. Recall that in Gröbner basis computations
all manipulations involving coefficient arithmetic arise from
addition of pairs of polynomials. Prior to performing such
an operation we compute the average magnitude of the
coefficients in these polynomials; we will refer to this value
as IPCA, for “input polynomial coefficient average”. If, after
addition, a resulting coefficient is less than the relative error
tolerance times this IPCA, we regard it as zero and remove
it. If in fact all coefficients are smaller than the absolute
tolerance times the IPCA; then we regard the entire resulting
polynomial as zero. In short, we employ the relative error
mode to remove coefficients that are small relative to other
coefficients, and we use the absolute error to justify removing
an entire polynomial when all coefficients are small in abso-
lute magnitude. We again note that this latter assumes some
sort of normalization is in place for the polynomials that gave
rise to the removed polynomial sum, since now comparison is
not with other coefficients of the same polynomial, but rather
with a pair of different polynomials whose sum generated the
one under scrutiny.

As a practical matter working with these tolerances can
pose difficulties. For example, there are many problems
where, even after scaling of variables, coefficient sizes will
be orders of magnitude apart. Thus a relative tolerance can
remove coefficients that are actually needed. Cases where no
such tolerance can discern between those coefficients to keep
and the ones to discard are, for purposes of this method, ill
conditioned.

The absolute tolerance is typically less prone to misuse
(at least in the types of examples we will present). While
some of the examples did in fact require trial-and-error
selection of tolerances,many do not, and experience indicates
one can often base a sensible setting on the precision of
the input. Typical values for the sort of problems in the
proceeding examples, with machine numbers for input, tend
to be around 10−8 and 10−3 for the relative and absolute
tolerances, respectively.

We mention that Kondratyev and coauthors [9, 13, 14]
have a different way of handling the problem of small
leading coefficients. Their “stabilized Gröbner bases” retain
such terms but bypass them for purposes of forming S-
polynomials ([12] also accomplishes this, though in a slightly
different way). Also Traverso and Zanoni [11] describe a
hybrid arithmetic in terms of what they call 𝑡

1
and 𝑡

2

tolerances. The second appears to serve the same purpose
as the relative tolerance discussed above, and the first is
similar to the absolute tolerance. Moreover, Sasaki and Kako
[5, 6] used ideas similar to our absolute tolerancing for the
detection of zero polynomials.

6. Exactly Determined Systems

The next few sections are organized around examples. All
computations were with version 8.0.4 of Mathematica [37]
on a 3GHz desktop machine under the Ubuntu 11.04 Linux
operating system. Auxiliary code is provided in an appendix,
as are explicit inputs for most examples. When we use
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tolerancing in specific examples of later sections, pairs of
values denote relative and absolute tolerances, respectively.
When one appears alone it is used as a relative tolerance.

We begin with some classical numeric systems that are
not overdetermined, in order to indicate that no special
handling is needed (at least for the Gröbner basis phase of
the computations). These provide a baseline in contrast with
later computations. As they are exactly determined rather
than overdetermined, in these initial examples we use no
tolerancing.

Example 1. First we will show the Cassou-Noguès system
[38]. We use high precision for the eigensystem phase of the
solver, hence the nondefault WorkingPrecision specification
(even using machine doubles for the eigensystem step we
still get solutions with 8 or so correct digits, but this is not
sufficient to obtain small residuals).

Timing[Length[solnsCassou = NSolve[polys
Cassou == 0,WorkingPrecision → 200]]]
{0.2, 16}

We check that the residuals are indeed small.

Max[Abs[polysCassou/.solnsCassou]]
0. × 10

−145

Observe that the resulting residuals, while small, are
many times larger than the precision. This simply indicates
that precision loss occurred in parts of the computation.
As the computation is relatively fast, and the actual basis
computation takes but a small fraction of the total time
spent, it does not appear that precision loss is from the
overall number of arithmetic operations. We suspect rather
that this loss is due to the appearance of approximate clone
polynomials (as defined in [5, 6]) at intermediate steps of the
computation. In [7] the authors also refer to this phenomenon
as accidental cancellation. In their simplest form clones arise
when the same polynomial is used to reduce two others,
and its tail becomes a large part, in the sense of coefficient
norms, of the two reducta. The idea is that we now have two
polynomials that are comparable to monomial multiples of
the tail of one polynomial; hence they are close to one another.

Example 2. We next have an example that is considerably
slower: the Caprasse system. It is troublesome because several
roots have multiplicity, and moreover the multiplication
(endomorphism) matrices utilized in the solver are deroga-
tory (this circumstance is known to make trouble for the
eigendecomposition method).

Timing[Length[solnsCaprasse = NSolve[polys
Caprasse,WorkingPrecision → 200]]]
{9.13, 56}

Max[Abs[polysCaprasse/.solnsCaprasse]]
8. × 10

−185

Example 3. Now we show a small perturbation of this
troublesome system. This moves the system to one that is

nearly but not exactly derogatory.The numerical solver again
obtains good results in reasonable time.

Timing[Length[solnsCaprasseModified = NSolve
[polysCaprasseModified,WorkingPrecision→ 200]]]
{4.29, 56}

Max[Abs[polysCaprasseModified/.solnsCaprasse
Modified]]
2.59914108496 × 10

−138

While we do not show the Gröbner bases computed, we
again remark that they have different structure. From either
one we have recovered solutions that give small residuals
and thus can be validated a posteriori (moreover they can be
further refined using local root-finding methods).

Example 4. Here we tackle another common benchmark in
the literature, the substantially larger Katsura-8 system.

Timing[solnsKatsura8 = NSolve[polysKatsura8]; ]
{222.58, Null}
Length[solnsKatsura8]
256

Max[Abs[polysKatsura8/.solnsKatsura8]]
2.59914108496 × 10

−138

7. Overdetermined and Ill
Conditioned Systems

The previous section shows several standard examples that
use numeric Gröbner basis computations. Those cases were
exactly determined and, in some sense, well conditioned.
They required no special tolerancing. Indeed, while the
Caprasse system and the perturbed variant have exact or
near multiplicity in roots, this can be handled directly by the
numerical arithmetic as described in [24].

We will now show several examples that require tol-
erancing. There are two reasons this might be necessary.
One is when the system is both overdetermined and only
known to low approximation. In such cases a nontolerancing
approach will result in (1), that is, a determination that
the polynomials generate the entire ring. Another situation
where tolerancing is important is when coefficients for our
system lie approximately on a discriminant variety in the
parameter space of all possible coefficients [39]. In such cases
we may have spurious “solutions” that are approximations
of infinities; where the coefficients and arithmetic exact
they would not be present at all. Such examples arise in
practical settings that have configurations of physical systems
(robotics, molecules, etc.); hence it is of some use to remove
the undesired solutions during the computation.

Example 5. We first work with a system that is in fact exactly
determined, but nonetheless shows quite interesting behavior
if not handled with tolerancing. It is a kinematics problem for
a certain type of Stewart platform. The polynomial system
comes from [38] where it is taken from earlier work by
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Husty and Karger (Verschelde, private communication). As
the input is long we will not show it, but simply describe
the problem. It has nine polynomials in nine variables. The
coefficients are machine double precision complex numbers.

With default settings, NSolve will find 80 solutions. This
is twice the number given at [38], and moreover half of
the solutions give large residuals and are themselves large.
This makes one suspect they are erroneous. But raising the
precision of the input and solving anew still give 80 solutions,
now all with modest residuals; this tells us there is indeed a
“nearby” system for which all 80 solutions are valid.

The crux is that the input describes a numerically unstable
situation, wherein coefficients need to satisfy certain alge-
braic constraints in order to correctly specify the type of
platform in question. In making the coefficients machine
doubles, they become perturbed slightly and now we have a
system with more solutions. Those that give large residuals
at machine precision are in fact not wanted; they are the
artifacts of having approximated the polynomial coefficients
and thereby moved from a singular manifold to the generic
case. We emphasize that this is not a situation where
numeric difficulties arise from an artificially discontinuity in
a Gröbner basis. To the contrary, we seek a Gröbner basis
that is different in structure, rather than one coming from the
generic case arising for nearby systems.

The tolerancing that repairs this is quite straightforward.
We use 10−10 and 10−3 for relative and absolute tolerances,
respectively. The overall result is that we get the desired 40
solutions, and a factor-of-6 speed improvement because extra
work is needed internally to get the “large” solutions to have
acceptable residuals.

Around the time this paper was first submitted a similar
but smaller example appeared on the internet StackExchange
forum http://mathematica .stackexchange.com/questions/
13947/nsolve-gives-additional-solutions-that-dont-satisfy-
the-equations/. As it is fairly concise we show this example
below and provide explicit input in the code appendix. The
first line below shows how one tells the solver to pass on the
tolerance specifications to the Gröbner basis code.

SetSystemOptions[“NSolveOptions” →
{“Tolerance” → 10∧(−10)}];
sol = NSolve[trigparamexprs,Variables
[trigparamexprs]]

We check explicitly that all residuals are zero (to close
approximation).

trigparamexprs/.sol//Chop
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}

When this is solved without tolerancing there are eight
rather than two solutions. Six give residuals that indicate they
are not of high quality. If one instead does the untoleranced
computation after first raising precision of the inputs, then
residuals become small. Nevertheless they remain notably
larger than both solution precision and residuals from the
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Figure 1

“good” results, by a power-of-two factor roughly comparable
to the number of bits of machine floats. This helps to explain
how these artifact solutions arise. They come about from a
system with coefficients that originate on the discriminant
variety. They then become slightly removed due to round-
off error in representing them as machine numbers. The
distance they lie from the discriminant variety is manifested
in the sizes of these solutions and in the discrepancy between
solution precision and residual size.

Example 6. Here is an example from [28]. We seek approx-
imate singular points on a curve given implicitly as the zero
set of a certain polynomial. This is simply a matter of finding
points for which the polynomial and its two first derivatives
all (approximately) vanish.

poly = 4.0𝑦4 + 17.0𝑥2𝑦2 + 13.07𝑥𝑦2 − 19.572938𝑦2 +
4.0𝑥
4
+ 5.228𝑥

3
− 18.29175𝑥

2
− 5.228𝑥 + 15.29175;

polys = {poly, 𝜕
𝑥
poly, 𝜕

𝑦
poly};

SetSystemOptions[“NSolveOptions” → {Tolerance
→ 10

∧
(−3)}];

soln = NSolve[polys, {𝑥, 𝑦}]
{{𝑥 → 1.18344, 𝑦 → 0.}}

From the plot (Figure 1) of the zero set of the polynomial
and derivatives, one sees that the derivatives cross near the
solution value but the polynomial itself (the closed curvewith
leftward pointing arcs centered on the 𝑥-axis) does not come
near to that solution.

𝑑 = 3;
cp = ContourPlot[Evaluate[polys], {𝑥, −𝑑, 𝑑},
{𝑦, −𝑑, 𝑑}, Contours → {0},
ContourShading → False,PlotPoints → 90]
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Figure 2 may help to explain why the approximate solu-
tion makes sense. We show not just the zero set but also level
sets where the polynomial takes on certain small values. Now
one sees that the polynomial is indeed small in a region near
that approximate solution of (1.18344, 0).

𝑑 = 3;
cp = ContourPlot[poly, {𝑥, −𝑑, 𝑑},
{𝑦, −𝑑, 𝑑}, Contours→ {0, .02, .2},
ContourShading → False,
PlotPoints → 90]

Here are the residuals of the polynomial and first deriva-
tives, evaluated at the approximate zero of that system.

polys/.soln
{{−0.00236885, −0.0373837, 0.}}

Example 7. We now show an overdetermined camera pose
problem from [27]. Here we need to raise precision artificially
so that the GroebnerBasis step can run to completion (when
precision of any coefficients becomes too low, it gives up).We
postprocess by chopping off small imaginary parts.

polys = {−4+𝑥2
1
−1.49071𝑥

1
𝑥
2
+𝑥
2

2
, −8+𝑥

2

1
−0.4𝑥

1
𝑥
3

+ 𝑥
2

3
, −4 + 𝑥

2

1
− 0.894427𝑥

1
𝑥
4
+ 𝑥
2

4
, −4 + 𝑥

2

2

− 1.49071𝑥
2
𝑥
3
+ 𝑥
2

3
, −8 + 𝑥

2

2
− 0.666667𝑥

2
𝑥
4

+ 𝑥
2

4
, −4 + 𝑥

2

3
− 0.894427𝑥

3
𝑥
4
+ 𝑥
2

4
};

SetSystemOptions[“NSolveOptions”
→ {Tolerance → {10∧(−3), 0}}];
Chop[soln = Quiet[NSolve[polys,WorkingPrecision
→ 8]], 10

∧
(−3)]

{{𝑥
1
→ 2.23606, 𝑥

2
→ 2.99999, 𝑥

3
→ 2.23607,

𝑥
4
→ 0.999999}, {𝑥

1
→ 2.23606, 𝑥

2
→ 2.99999,

𝑥
3
→ 2.23607, 𝑥

4
→ 0.999999}, {𝑥

1
→ −2.23606,

𝑥
2
→ −2.99999, 𝑥

3
→ −2.23607, 𝑥

4
→ −0.999999},

{𝑥
1
→ −2.23606, 𝑥

2
→ −2.99999, 𝑥

3
→ −2.23607,

𝑥
4
→ −0.999999}}

We check that the worst residual is not terribly large.

Max[Abs[polys/.soln]]
0.000064876

8. Univariate Approximate GCD

There is a vast literature on ways to compute approximate
polynomial GCDs. Most involve reformulations as linear
algebra problems and make use of numeric algorithms well
suited to computing matrix rank reliably in the presence of
approximation input. For background on such methods, see
[28–31] and references therein. We do not propose that the
methods to be shown below are faster or more reliable. But
they are to an extent automated (once the working precision
and tolerances are selected), use very simple code, and give
reasonable results quite quickly. At the time of this writing
this method is used to support some Mathematica control
theory code, in the situation where one needs to cancel
approximate zeros with poles.

For univariate polynomials it is well known that we can
extract a GCD via simple Gröbner basis computation.This is
in effect a form of polynomial remainder sequence and thus
bears similarity to the univariate case of themethod discussed
by T. Sasaki and F. Sasaki in [33].

Example 8. Here is another example from [28]. With a
relative error tolerance of two digits we recover a nontrivial
approximate GCD.

p1 = 𝑥14 + 3.00001𝑥10 − 7.99998𝑥7 − 25.00002𝑥6 +
3.00001𝑥

13
+ 9.00006𝑥

9
− 3.00001𝑥

5
− 2.00001𝑥

8
−

6.00005𝑥
4
+ 16.00004𝑥 + 2.00001;

p2 = 𝑥13 − 3.00003𝑥9 − 2.99999𝑥6 + 2.99999𝑥12 −
9.00006𝑥

8
− 8.99997𝑥

5
− 1.99998𝑥

7
+ 5.99999𝑥

3
+

5.99994;
First[𝑁[GroebnerBasis[setCoefficientPrecision
[{p1, p2}, 50], 𝑥,CoefficientDomain → Inexact
Numbers,Tolerance → 1/102]]]
−2.00015 + 3.00024𝑥

5
+ 1.𝑥
6

We see it corresponds closely to the GCD of the “obvious”
polynomial pair formed by rounding coefficients.

First[GroebnerBasis[{p1, p2}/.a Real: →Round
[𝑎], 𝑥]]

−2 + 3𝑥
5
+ 𝑥
6

Example 9. Now we show an example from [29], wherein
we look for approximate multiple factors by taking the GCD
of a polynomial with its derivative. Using coarse tolerancing
we get a common factor of degree 6, in agreement with that
reference.



8 ISRN Computational Mathematics

poly = 𝑥9 − (5.833333 + 2.333333𝑖)𝑥8 + (12.888889 +
11.7222222𝑖)𝑥

7
+ (−13.416667 − 24.694444𝑖)𝑥

6

+ (5.293210 + 28.703704𝑖)𝑥
5
+ (2.389403

− 20.183642𝑖)𝑥
4
+ (−3.790123 + 8.750857𝑖)𝑥

3

+(1.880630−2.247914𝑖)𝑥
2
+(−.452884+.299535𝑖)𝑥+

(.045217 − .013868𝑖);
Chop[𝑁[First[GroebnerBasis[setCoefficient
Precision[{poly, 𝐷[poly, 𝑥]}, 40], 𝑥, Coefficient
Domain→ InexactNumbers,Tolerance→ {1/104,
1/10
2
}]]]]

(0.013033486039440238 + 0.24739461042947114𝑖) −

(0.3199779084192973 + 1.7517086950261698𝑖)𝑥 +

(1.9659824714996788 + 5.134785008354451𝑖)𝑥
2
−

(5.221808113608173 + 7.66519441636273𝑖)𝑥
3
+

(6.888250445595586 + 5.721144296886046𝑖)𝑥
4
−

(4.33302767357858+1.6663679299044327𝑖)𝑥
5
+1.𝑥
6

9. Multivariate Approximate GCD

Multivariate polynomial approximate GCDs algorithms are
presented in [28–32, 40].They tend to use matrix methods or
polynomial sequences. We instead take an elimination ideal
method from [35], using approximate Gröbner bases as the
main computational engine to get the (approximate) LCM.
We follow with generalized division to extract the GCD. The
elimination ideal method gives an overdetermined system of
equations and hence fits nicely into the focus of this paper.

We show some examples below. Note that we make no
effort to locally improve the result, for example, by Newton’s
method.

Example 10. This is example exF07 from [30]. This is rela-
tively straightforward insofar as the input, if rationalized, has
a nontrivial (exact) GCD. The actual inputs are a bit long to
display, but are available as the set cleanF7 list at the URL in
the references.

Timing[fgcd = floatPolynomialGCD[exF07polys
[[1]], exF07polys[[2]], {1/108, 1/104}]]
{0.816051, 2.00000000003 + 6.𝑥 + 10.𝑥

2
+ 8.𝑥
3
− 2.𝑥
4

+ 7.64022323556 × 10
−11
𝑦 + 7.99999999999𝑥𝑦

+ 2.54508805434 × 10
−13
𝑥
2
𝑦 − 8.𝑥

3
𝑦

− 7.99999999993𝑦
2
− 8.00000000002𝑥𝑦

2

− 10.𝑥
2
𝑦
2
+ 8.00000000001𝑦

3
− 3.99999999999𝑥𝑦

3

− 5.99999999999𝑦
4
+ 5.99999999998𝑧 − 10.𝑥𝑧

− 10.𝑥
2
𝑧 + 2.09215361085 × 10

−14
𝑥
3
𝑧 + 10.𝑦𝑧

+ 8.𝑥𝑦𝑧 + 4.𝑥
2
𝑦𝑧 − 3.99999999988𝑦

2
𝑧

+ 1.99999999999𝑥𝑦
2
𝑧 − 8.00000000004𝑦

3
𝑧

+ 5.99999999999𝑧
2
−4.𝑥𝑧

2
+2.𝑥
2
𝑧
2
−10.𝑦𝑧

2
−10.𝑥𝑦𝑧

2

− 9.99999999997𝑦
2
𝑧
2
− 2.𝑧
3
+ 4.𝑥𝑧

3
− 6.𝑦𝑧

3
− 2.𝑧
4
}

Example 11. This is an example from [1].

𝑐[x , u , n ] := (𝑥 + ∑𝑛
𝑗
𝑢[𝑗]
𝑗
+ 1)

2

f2[x , u , n ] := (𝑥2 − ∑𝑛
𝑗
𝑢[𝑗] − .5)

2

g2[x , u , n ] := (𝑥2 + ∑𝑛
𝑗
𝑢[𝑗] + .5)

2

We create a pair of polynomials with prescribedGCD.We
readily recover it using approximate arithmetic.

𝑓[5] = Expand[f2[𝑥, 𝑢, 5] × 𝑐[𝑥, 𝑢, 5]];
𝑔[5] = Expand[g2[𝑥, 𝑢, 5] × 𝑐[𝑥, 𝑢, 5]];
Timing[floatPolynomialGCD[𝑓[5], 𝑔[5],
{1/10
6
, 1/10

2
}]]

{4.96, 1. +2.𝑥+1.𝑥
2
+2.𝑢[1]+2.𝑥𝑢[1]+1.𝑢[1]

2
+2.𝑢[2]

2

+2.𝑥𝑢[2]
2
+2.𝑢[1]𝑢[2]

2
+1.𝑢[2]

4
+2.𝑢[3]

3
+2.𝑥𝑢[3]

3
+

2.𝑢[1]𝑢[3]
3
+2.𝑢[2]

2
𝑢[3]
3
+1.𝑢[3]

6
+2.𝑢[4]

4
+2.𝑥𝑢[4]

4

+2.𝑢[1]𝑢[4]
4
+2.𝑢[2]

2
𝑢[4]
4
+2.𝑢[3]

3
𝑢[4]
4
+1.𝑢[4]

8
+

2.𝑢[5]
5
+ 2.𝑥𝑢[5]

5
+ 2.𝑢[1]𝑢[5]

5
+ 2.𝑢[2]

2
𝑢[5]
5
+

2.𝑢[3]
3
𝑢[5]
5
+ 2.𝑢[4]

4
𝑢[5]
5
+ 1.𝑢[5]

10
}

Example 12. Here we show that, with some amount of noise
thrown in, we can still recover a reasonable approximate
GCD.

fnoise[5] = Expand[f2[𝑥, 𝑢, 5] × (𝑐[𝑥, 𝑢, 5] + .001) +
.002];
gnoise[5] = Expand[g2[𝑥, 𝑢, 5] × (𝑐[𝑥, 𝑢, 5] − .004) −
.007];
Timing[approxgcd = floatPolynomialGCD[fnoise
[5], gnoise[5], {10∧(−2), 10∧(−1)}]]
{4.93, 0.997 + 2.𝑥 + 1.𝑥

2
+ 2.𝑢[1] + 2.𝑥𝑢[1] + 1.𝑢[1]

2

+ 2.𝑢[2]
2
+ 2.𝑥𝑢[2]

2
+ 2.𝑢[1]𝑢[2]

2
+ 1.𝑢[2]

4
+ 2.𝑢[3]

3

+ 2.𝑥𝑢[3]
3
+ 2.𝑢[1]𝑢[3]

3
+ 2.𝑢[2]

2
𝑢[3]
3
+ 1.𝑢[3]

6
+

2.𝑢[4]
4
+ 2.𝑥𝑢[4]

4
+ 2.𝑢[1]𝑢[4]

4
+ 2.𝑢[2]

2
𝑢[4]
4
+

2.𝑢[3]
3
𝑢[4]
4
+1.𝑢[4]

8
+2.𝑢[5]

5
+2.𝑥𝑢[5]

5
+2.𝑢[1]𝑢[5]

5

+2.𝑢[2]
2
𝑢[5]
5
+2.𝑢[3]

3
𝑢[5]
5
+2.𝑢[4]

4
𝑢[5]
5
+1.𝑢[5]

10
}

A natural question, which we now consider, is what this
result might represent. We will show that it is an exact (up
to the numerical precision in use) GCD for a nearby set of
inputs. For purposes of assessing proximity we will use the
customary 1-norm of a given polynomial, defined as the sum
of the absolute values of its coefficients. To gauge the quality
of our approximated GCD we will try to find a nearby set of
inputs that has this GCD exactly. This is straightforward to
do using the generalized division with remainder (also called
polynomial reduction) of Buchberger’s algorithm [22, 23, 35,
36]. We will reduce each input polynomial by the candidate
GCD and check the size of the resulting polynomial relative
to the input. We then subtract this from the input. That gives
our “nearby” input that is exactly divisible by the GCD. We
illustrate this with the above example.

We compute the generalized remainders.

quot1 = Expand[PolynomialReduce[fnoise[5],
approxgcd][[2]]];
quot2 = Expand[PolynomialReduce[gnoise[5],
approxgcd][[2]]];

Here are the norms of the inputs and also of these
remainders.

Map[polynomialNorm, {fnoise[5], gnoise[5]}]
{2033.79, 2070.07}
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Map[polynomialNorm, {quot1, quot2}]
{20.0604, 5.27909}

So the perturbation polynomials, quot1 and quot2, are
indeed small compared to the input polynomials.

Now we check that the perturbations formed by subtract-
ing these from their respective inputs; each is divisible by the
GCD polynomial. This is shown by the fact that the divisions
give only constant terms on the order of the computational
error one expects from the precision we used.

Expand[PolynomialReduce[fnoise[5] − quot1,
approxgcd][[2]]]
−1.22133074543 × 10

−17

Expand[PolynomialReduce[gnoise[5] − quot2,
approxgcd][[2]]]
−6.10687436863 × 10

−18

One can moreover check that the approximate GCD
computed from these perturbed inputs, using much higher
tolerances, agrees (up to constant multiple) with the GCD
found in the noisy input problem.

We remark that one can use optimization methods such
as iterative refinement in order to attempt to improve the
perturbations by making them smaller in norm. In this
setting one might also allow for perturbing the GCD, so
long as it remains an exact GCD of the (newly) perturbed
inputs. Such ideas appear in [28–32, 40] and references
therein. One might use the perturbations as computed above
as starting points for optimizations. We also remark that we
have made no attempt to constrain the coefficient values of
the perturbations. Hence the nearby polynomials could have
(relatively small) terms that did not appear in the original
inputs.

10. Summary and Future Directions

We have demonstrated how relative and absolute error from
numerical computation can be adapted to the setting of
numerical Gröbner bases.While by nomeans flawless, we see
fromnumerous examples that these approaches hold promise
for handling overdetermined systems of algebraic equations.
These computational methods also apply to other problems
from hybrid symbolic-numeric computation, such as finding
approximate polynomial GCDs.

While most examples covered seem to work efficiently
and give reasonable results, it remains an open question as
to how competitive these methods are in regard to speed
and quality of results, as compared to other approaches. An
advantage to Gröbner bases is that polynomial algebra is
carried out in a sparse setting; manymethods based on linear
algebra require dense matrix manipulation. The examples
presented offer evidence that, when working with input of
modest degree, Gröbner bases methods are viable. That the
coding is simple makes them all the more attractive.

An open area for further work is in determining, in some
automated fashion (perhaps based on problem type), what
reasonable tolerances for a specific problem are. A possible

approach would be to set up an outer level optimization,
wherein one strives tomaximize a degree of a candidateGCD,
or the (finite) number of solutions to an overdetermined
system, and has for parameters these tolerances. This is
another place where SVD-based matrix approaches have an
advantage; a “natural” tolerance is generally revealed from
the largest ratio in consecutive singular values (possibly
excepting cases where a jump is from a very small singular
value to zero). At present all Gröbner basis methods need
some prespecification of tolerance.

Another avenue for future work is to adapt methods
from [24] to handle overdetermined systems at modest
precision. Those methods for polynomial GCD are often
significantly faster than what we indicate in this paper. They
use approximate arithmetic but require (nearly) exact input.
To date we have not succeeded in making them work with
tolerancing, so they do not apply to fuzzy systems where
a GCD or factorization is only correct up to some modest
tolerance. It would thus be quite useful to get these methods
to work well with tolerancing.

It is also an open question whether symbolic “epsilon”
powers can be used to improve themethods of this paper.The
idea, roughly, is to replace coefficients that are deemed “small”
(according to some relative error tolerance, say) by suitable
powers of a variable that is local in the term ordering sense
(hence monomials having powers of this variable are smaller
than any monomial not containing it, including constants).
Variants of this idea are discussed in [5, 9–11, 13].

Based on experimentation and comparison of timings
with other methods reported, we state a tentative conclusion.
The methods of this paper are viable and effective when the
problem at hand is unperturbed from an exactly solvable
variant. They often give good results when the problem is
overdetermined, provided the noise is modest relative to an
exactly solvable nearby problem, and the scale of coefficients
does not vary too much. In other situations it is not clear
whether our methods can be adapted so readily.

11. Code Appendix

Below is code used in computations in this paper.

setCoefficientPrecision[a ?NumberQ, prec ] :=
If[Abs[𝑎] < 10∧(−prec), 0, SetPrecision[𝑎, prec]]
setCoefficientPrecision [a ?NumberQ×b ?(!Number
Q[#]&), prec ] := setCoefficientPrecision[𝑎, prec] × 𝑏
setCoefficientPrecision[(a Plus|a Times|a List),
prec ]:= Map[setCoefficientPrecision[#, prec]&, 𝑎]
setCoefficientPrecision[a , ]:= 𝑎
floatPolynomialLCM[poly1 , poly2 , tol ] :=Module
[{vars, mat, V, cvars, newpolys, rels, gb, rul},
vars = Variables[{poly1, poly2}];
mat = {{1, 1, 1}, {poly1, 0, 0}, {0, poly2, 0}};
cvars = Array[V, 3];
newpolys = mat ⋅ cvars;
rels = Flatten[Union[Outer[Times, cvars, cvars]]];
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newpolys = Join[newpolys, rels];
gb = GroebnerBasis[newpolys,Prepend[vars,
Last[cvars]],Most[cvars],MonomialOrder →
EliminationOrder,Tolerance → tol,
CoefficientDomain → InexactNumbers
[Precision[newpolys]], Sort
→ True];
rul = Map[(# → {})&, rels];
gb = Flatten[gb/.rul];
First[gb]/.Last[cvars] → 1]
floatPolynomialGCD[p1 , p2 , tol ]
:= Expand[PolynomialReduce[p1 × p2,
floatPolynomialLCM[p1, p2, tol],
CoefficientDomain → InexactNumbers][[1, 1]]]
polynomialNorm[poly Plus]:= Plus@@Map
[polynomialNorm, poly]
polynomialNorm[poly Times]:= Abs[poly/.
Thread[Variables[poly]→ 1]]
polynomialNorm[poly Power] := 1
polynomialNorm[poly ?NumericQ] := Abs[poly]

Here are inputs for several of the examples.

polysCassou = {6𝑏4𝑐3 + 21𝑏4𝑐2𝑑 + 15𝑏4𝑐𝑑2 + 9𝑏4𝑑3 −
8𝑏
2
𝑐
2
𝑒 − 28𝑏

2
𝑐𝑑𝑒 − 144𝑏

2
𝑐 + 36𝑏

2
𝑑
2
𝑒 − 648𝑏

2
𝑑 −

120, 9𝑏
4
𝑐
4
+30𝑏
4
𝑐
3
𝑑+39𝑏

4
𝑐
2
𝑑
2
+18𝑏
4
𝑐𝑑
3
−24𝑏
2
𝑐
3
𝑒−

16𝑏
2
𝑐
2
𝑑𝑒 − 432𝑏

2
𝑐
2
+ 16𝑏
2
𝑐𝑑
2
𝑒 − 720𝑏

2
𝑐𝑑 + 24𝑏

2
𝑑
3
𝑒 −

432𝑏
2
𝑑
2
+ 16𝑐
2
𝑒
2
− 32𝑐𝑑𝑒

2
+ 576𝑐𝑒 − 240𝑐 + 16𝑑

2
𝑒
2
−

576𝑑𝑒 + 5184, −(15𝑏
2
𝑐
3
𝑒) + 15𝑏

2
𝑐
2
𝑑𝑒 − 81𝑏

2
𝑐
2
+

216𝑏
2
𝑐𝑑−162𝑏

2
𝑑
2
+40𝑐
2
𝑒
2
−80𝑐𝑑𝑒

2
+1008𝑐𝑒+40𝑑

2
𝑒
2
−

1008𝑑𝑒+5184, −(4𝑏
2
𝑐
2
)+4𝑏
2
𝑐𝑑−3𝑏

2
𝑑
2
+22𝑐𝑒−22𝑑𝑒+

261};
polysCaprasse = {−2𝑥+2𝑡𝑥𝑦−𝑧+𝑦2𝑧, 2+4𝑥2−10𝑡𝑦+
4𝑡𝑥
2
𝑦 − 10𝑦

2
+ 2𝑡𝑦
3
+ 4𝑥𝑧 − 𝑥

3
𝑧 + 4𝑥𝑦

2
𝑧 − 𝑥 + 𝑡

2
𝑥 −

2𝑧+2𝑡𝑦𝑧, 2 − 10𝑡
2
−10𝑡𝑦+2𝑡

3
𝑦+4𝑥𝑧+4𝑡

2
𝑥𝑧+4𝑧

2
+

4𝑡𝑦𝑧
2
− 𝑥𝑧
3
};

polysCaprasseModified = {−2𝑥 + 2𝑡𝑥𝑦
−100001𝑧/100000 + 𝑦

2
𝑧, 2000001/1000000 + 4𝑥

2
−

10𝑡𝑦 + 4𝑡𝑥
2
𝑦− 10𝑦

2
+ 2𝑡𝑦
3
+ 4𝑥𝑧 − 𝑥

3
𝑧 + 4𝑥𝑦

2
𝑧, −𝑥 +

𝑡
2
𝑥−2𝑧+ 2𝑡𝑦𝑧, 2 − 10𝑡

2
−10𝑡𝑦+ 2𝑡

3
𝑦+4𝑥𝑧+ 4𝑡

2
𝑥𝑧+

4𝑧
2
+ 4𝑡𝑦𝑧

2
− 𝑥𝑧
3
};

polysKatsura8 = {−x1 + x12 + 2x22 + 2x32 + 2x42 +
2x52 + 2x62 + 2x72 + 2x82 + 2x92,
−x2+2x1x2+2x2x3+2x3x4+2x4x5+2x5x6+2x6x7+
2x7x8 + 2x8x9,
x22 − x3 + 2x1x3 + 2x2x4 + 2x3x5 + 2x4x6 + 2x5x7 +
2x6x8 + 2x7x9,
2x2x3−x4+2x1x4+2x2x5+2x3x6+2x4x7+2x5x8+
2x6x9,
x32 +2x2x4− x5+2x1x5+2x2x6+2x3− x7+2x4x8+
2x5x9, 2x3x4 + 2x2x5 − x6 + 2x1x6 + 2x2x7 + 2x3x8 +
2x4x9,

x42 + 2x3x5 + 2x2x6 − x7 + 2x1x7 + 2x2x8 +
2x3x9, 2x4x5 + 2x3x6 + 2x2x7 − x8 + 2x1x8 + 2x2x9,
−1+x1+2x2+2x3+2x4+2x5+2x6+2x7+2x8+2x9};

Here are equations from http ://mathematica .stackex-
change.com/questions/13947/nsolve-gives-additional-solu-
tions-that-dont-satisfy-the-equations/.

trigparamexprs = {𝑐[1]∧2+𝑠[1]∧2−1, 𝑐[2]∧2+𝑠[2]∧2−
1, 𝑐[3]

∧
2 + 𝑠[3]

∧
2 − 1,

𝑦1[1](−(0.564692𝑐[1]) + 𝑐[2] − 0.825302𝑠[1]) − 1,
𝑦1[2](0.503363𝑐[2] + 𝑐[3] − 0.864075𝑠[2]) − 1,
𝑦1[3](𝑐[1] − 0.478806𝑐[3] + 0.877921𝑠[3]) − 1,
𝑦1[1](−(0.825302𝑐[1]) + 0.564692𝑠[1] + 𝑠[2])

−𝑦2[1](−(0.877921𝑐[3]) + 𝑠[1] − 0.478806𝑠[3]),
𝑦2[1](𝑐[1] − 0.478806𝑐[3] + 0.877921𝑠[3]) − 1,
𝑦2[2](−(0.564692𝑐[1]) + 𝑐[2] − 0.825302𝑠[1]) − 1,
𝑦1[2](−(0.864075𝑐[2]) − 0.503363𝑠[2] + 𝑠[3])

−𝑦2[2](−(0.825302𝑐[1]) + 0.564692𝑠[1] + 𝑠[2]),
𝑦2[3](0.503363𝑐[2] + 𝑐[3] − 0.864075𝑠[2]) − 1,
𝑦1[3](0.877921𝑐[3] − 𝑠[1] + 0.478806𝑠[3])

−𝑦2[3](−(0.864075𝑐[2]) − 0.503363𝑠[2] + 𝑠[3])};
vars = Variables[trigparamexprs];

We can run the solver as follows.

SetSystemOptions[“NSolveOptions”
→ {“Tolerance” → 10∧(−10)}];
sol = NSolve[trigparamexprs, vars];

If instead we run at default settings we get some “spuri-
ous” solutions, as explained earlier in the paper.We showhere
that both solution size and residual size can be quite large.

SetSystemOptions[“NSolveOptions”
→ {“Tolerance” → 0}];
sol = NSolve[trigparamexprs, vars];
Map[Max[Abs[#]]&, vars/.sol]
Map[Max[Abs[#]]&, trigparamexprs/.sol]
{2.79314×10

16
, 2.79314×10

16
, 1.5761×10

16
, 1.5761×

10
16
, 1.5096 × 10

16
, 1.5096 × 10

16
, 17.8457, 17.8457}

{1., 1., 1., 1., 1., 1., 9.99200722163 × 10
−16,

9.99200722163 × 10
−16
}

We can get a smaller residual by solving a nearby exact
system, as below. One may notice that the residuals of the
unwanted solutions (all but the last two) are around machine
precision larger in scale than the residuals of the two good
solutions at the end.

exactexprs = Rationalize[trigparamexprs, 0];
sol50 = NSolve[exactexprs == 0, vars,
WorkingPrecision → 50];
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Of course if we plug the solutions to the exact problem
into the original one, the residuals from the bad solutions
are again quite large. This goes to illustrate the extreme ill
conditioning that gave rise to the unwanted solutions.

Map[Max[Log[Abs[#]+1]]&, trigparamexprs/.sol50]
{0.936292, 0.936292, 0.628562, 0.628562, 0.98432,

0.98432, 8.881784197 × 10
−16,

8.881784197 × 10
−16
}

This following code is for the camera pose problem.

coords = {{1, 2, 1.49071, 4}, {1, 3, .400000, 8}, {1, 4,
.894427, 4}, {2, 3, 1.49071, 4}, {2, 4, .666667, 8},
{3, 4, .894427, 4}};
vars = Array[𝑥, 4];
polys = MapThread[𝑥[#1]2+𝑥[#2]2−#3𝑥[#1]𝑥[#2]−
#4&,Transpose[coords]]
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problems,” Communications in Computer Algebra, vol. 30, no. 4,
pp. 26–32, 1996.

[19] D. Cox, “Introduction to Gröbner bases,” in Proceedings of
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