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Abstract

Buchberger’s algorithm was already studied over many kinds of rings
such as principal ideal rings, noetherian valuation rings with zero divi-
sors, Dedekind rings with zero divisors, Gaussian rings, . . . . In this
paper, we propose the Buchberger’s algorithm over V[ε] satisfying to
ε2 = 0 where V is any noetherian valuation domain and we give some
applications in Zp�[ε] where p is a prime number and Zp� = {a

b
| a ∈

Z, b /∈ pZ}.

Keywords: Gröbner bases, dual noetherian valuation domain, S-polynomials,
Buchberger’s algorithm

1 Introduction

In 1965 Bruno Buchberger introduced the theory of Gröbner bases in poly-
nomials ring over a field in order to solve the ideal membership problem (see
[1, 2]). This theory was generalized by many authors in different ways such as
[5, 8, 9], . . . for the noncommutative case and [4, 6, 7, 10, 11] for the commu-
tative case.

In [6, 10, 11] authors presented Buchberger’s algorithm over noetherian
valuation rings with zero divisors and over Dedekind rings with zero divisors.
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Both methods don’t cover the ring V[ε] since this ring is neither a valuation
ring nor a Dedekind ring.

It is also proposed in [4] an interesting method for computing a Gröbner
basis over many kinds of rings with zero divisors, such rings cover Zn where
n is not a prime number as well as Zn[i] satisfying to i2 + 1 = 0, this method
cover many others rings with zero divisors but does not cover the ring of dual
valuation domain V[ε] satisfying to ε2 = 0 where V is a valuation domain.

In this paper we propose a method for computing a Gröbner basis over the
ring of dual noetherian valuation domain V[ε] and we present some applications
in Zp�[ε] where p is a prime number.

This paper is organized as follows:
Section 1: We study some elementary properties of the ring V[ε] and we

recall some necessary tools for computing a Gröbner basis.
Section 2: We adapt the Buchberger’s algorithm in V[ε].

2 Basic notions

Throughout this paper, we denote by V a noetherian valuation domain, V[ε]
the ring of dual valuation domain satisfying to ε2 = 0, whose elements are of
the form a + εb with a, b ∈ V and Jε = ε · V[ε] = {εa/a ∈ V} the set of zero
divisors of V[ε]. If R is a ring and E a subset of R, we denote by 〈E〉 the ideal
generated by E.

1. Division in V[ε]: An element z1 = a1 + εb1 divides z2 = a2 + εb2 in V[ε]

if and only if a1 divides a2 in V and a1 divides b2 − b1
a2

a1
in V.

2. Let R = V[ε][X1, . . . , Xm] be the free associative algebra with commut-
ing variables X1, . . . , Xm, defined over the ring V[ε].

• A monomial in R is a multivariate polynomial of the form g =
Xα1

1 · · ·Xαm
m where αi ∈ N. We denote Xα = Xα1

1 · · ·Xαm
m where

α = (α1, . . . , αm) and by M the set of all monomials in R.

• An element of the form zXα where z ∈ V[ε][X1, . . . , Xm] is called
a term.

• A term zXα divides z′Xβ in R if and only if z divides z′ in V[ε] and
Xα divides Xβ in R.

3. Monomials order: A total order < in M is said to be a monomial
order if it is a well ordering and If Xα < Xβ then Xα+γ < Xβ+γ for all
α, β, γ ∈ N

n.



Gröbner bases over a dual Noetherian valuation domain 541

• Lexicographic order: we say that Xα >lex Xβ if the first left non
zero component of α − β is > 0.

• Graded lexicographic order: We say that Xα >grlex Xβ if |α| >

|β| or if |α| =

s∑
i=1

αi = |β| =

s∑
i=1

βi and Xα >lex Xβ for α =

(α1, . . . , αn), β = (β1, . . . , βn).

4. Let f =
∑

α

zαXα be a nonzero polynomial in R. Let I = 〈f1, . . . , fs〉
be a finitely generated ideal of R and let us fix a monomial order < in
M, then:

• The multidegree of f is mdeg(f) := max{α/zα �= 0}.
• The leading coefficient of f is Lc(f) := zmdeg(f).

• The leading monomial of f is Lm(f) := Xmdeg(f).

• The leading term of f is Lt(f) := Lc(f) · Lm(f).

• 〈Lt(I)〉 := 〈Lt(g)/g ∈ I \ {0}〉.

5. Division algorithm (see [3, 10])

We recall the division algorithm in R. Let < be a monomial order
and f1, . . . , fs ∈ R. Then there exists q1, . . . , qs, r ∈ R such that

f =

s∑
i=1

qifi + r with mdegf ≥ mdeg(qifi) for qifi �= 0 and r = 0 or

each term occurring in r is not divisible by any of Lt(fi) ∀ 1 ≤ i ≤ s.

Input: f1, . . . , fs, f and <.

Output: q1, . . . , qs, r.

Initialization: q1 := 0, . . . , qs := 0; r := 0 and p := f .

While p �= 0 do:

i := 1

DIVOCCUR:=False

while i ≤ s and DIVOCCUR:=False do

If Lt(fi) divides Lt(p) then

qi := qi +
Lt(p)

Lt(fi)
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p := qi − Lt(p)

Lt(fi)
· fi

DIVOCCUR:=True

Else

i := i + 1

If DIVOCCUR:=False then

r := r + Lt(p); p := p − Lt(p)

Example 2.1. In Z2�[ε][x, y] with x <lex y, let us divide f = (3 +
5ε)xy2 + 3εy by f1 = (5 − 2ε)x − εy2 and f2 = (7 − 3ε)xy. We find:

• f = (
3

5
+

31

25
ε) · f1 + (

3

5
εy4 + 3εy) if we start the division by f1.

• f = (
3

7
+

44

49
ε)y · f2 + (3εy) if we start the division by f2.

6. Gröbner basis: A subset G = {g1, . . . , gt} of an ideal I ⊂ R is
called Gröbner basis for I with respect to a monomial order < if I =
〈G〉 and 〈Lt(I)〉 = 〈Lt(G)〉.

3 Buchberger’s algorithm

Definition 3.1. S-polynomials: Let f, g ∈ R, and let us consider a
monomial order >. Denoting by Lt(f) = (a1+εb1) ·Xα, Lt(g) = (a2+εb2) ·Xβ

where a1, a2, b1, b2 ∈ V[ε]; α, β ∈ N
n. Let γ ∈ N

n with γi = max(αi, βi) for
each i, the S-polynomial of f and g is given by:

1. Suppose that f �= g:

• Lc(f) ∈ Jε and Lc(g) ∈ Jε then:

S(f, g) =

⎧⎪⎨
⎪⎩

b2

b1

Xγ

Xα
f − Xγ

Xβ
g if b1/b2

Xγ

Xα
f − b1

b2

Xγ

Xβ
g if b2/b1.

• If Lc(f) ∈ Jε and Lc(g) /∈ Jε then:

S(f, g) =

⎧⎪⎨
⎪⎩

a2

b1

Xγ

Xα
f − Xγ

Xβ
(εg) if b1/a2

Xγ

Xα f − b1

a2

Xγ

Xβ
(εg) if a2/b1.

If Lc(f) /∈ Jε and Lc(g) ∈ Jε then replace f by g and vice versa.
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• If Lc(f) /∈ Jε and Lc(g) /∈ Jε then:

S(f, g) =

⎧⎪⎨
⎪⎩

a2

a1

Xγ

Xα
(εf) − Xγ

Xβ
(εg) if a1/a2

Xγ

Xα
(εf) − a1

a2

Xγ

Xβ
(εg) if a1/a2.

2. Suppose that f = g then:

S(f, f) =

{
εf if Lc(f) ∈ Jε

0 if not.

Example 3.2. Let us compute in R = Z2�[ε][x, y] the S-polynomials of f =
(3+5ε)xy2+3εy, g = (7−3ε)xy, h1 = 5εx−(1+ε)y2 and h2 = 2εx2+(3−2ε)y
with respect to X <lex Y :

S(f, g) =
7

3
(εf) − y(εg) = 0

S(f, h1) =
5

3
(εf) − y2h1 = (1 + ε)y4

S(h1, h2) =
2

5
xh1 − h2 = −2

5
xy2 − (3 − 2ε)y

S(h1, h1) = −εy2.

Lemma 3.3. Let < be a monomial order, and f1, . . . , fs ∈ R = V[ε][X1, . . . , Xm]

such that mdeg(fi) = γ ∈ N
n for each 1 ≤ i ≤ s. Suppose that mdeg(

s∑
i=1

zifi) <

γ for some z1, . . . , zs ∈ V[ε]:

1. If Lc(fi) ∈ Jε ∀ 1 ≤ i ≤ s then

s∑
i=1

zifi is a linear combination with

coefficients in V[ε] of S-polynomials S(fi, fj) for 1 ≤ i ≤ j ≤ s.

2. If there exists i0 such that Lc(fi0) /∈ Jε then ε

s∑
i=1

zifi is a linear combina-

tion with coefficients in V[ε] of S-polynomials S(fi, fj) for 1 ≤ i ≤ j ≤ s.

Furthermore, each S-polynomial has multidegree < γ.

Proof:

1. Suppose that Lc(fi) = εbi ∈ Jε ∀ 1 ≤ i ≤ s and we can assume that
bs/bs−1/ . . . /b1 since V is a valuation domain.
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s∑
i=1

zifi = z1(f1 − b1

bs

fs) + z2(f2 − b2

bs

fs) + . . . + zs−1(fs−1 − bs−1

bs

fs) +

(z1
b1

bs
+ z2

b2

bs
+ . . . + zs−1

bs−1

bs
+ zs)fs.

By hypothesis, we have (z1
b1

bs
+ z2

b2

bs
+ . . .+ zs−1

bs−1

bs
+ zs) · εbs = 0 then,

(z1
b1

bs
+ z2

b2

bs
+ . . . + zs−1

bs−1

bs
+ zs)fs ∈ V[ε]S(fs, fs).

We deduce that

s∑
i=1

zifi =
∑
i,j

zi,jS(fi, fj).

2. Let Lc(fi) = ai + εbi and suppose that there exists at least i0 for which
ai0 �= 0 then:

ε
s∑

i=1

zifi =
∑

Lc(fi)/∈Jε

zi(εfi) +
∑

Lc(fi)∈Jε

(εfi).

Without loss of generalities we set:
∑

Lc(fi)/∈Jε

zi(εfi) =

k∑
i=1

zi(εfi) and

∑
Lc(fi)∈Jε

zi(εfi) =

s∑
i=k+1

zi(εfi), then:

s∑
i=k+1

zi(εfi) =
s∑

i=k+1

ziS(fi, fi) (*).

Assume that Re(Lc(fk))/Re(Lc(fk−1))/ . . . /Re(Lc(f1)) then:

k∑
i=1

zi(εfi) = z1[(εf1)− Re(Lc(f1))

Re(Lc(fk))
(εfk)]+z2[(εf2)− Re(Lc(f2))

Re(Lc(fk))
(εfk)]+

. . .+zk−1[(εfk−1)−Re(Lc(fk−1))

Re(Lc(fk))
(εfk)]+(z1

Re(Lc(f1))

Re(Lc(fk))
+z2

Re(Lc(f2))

Re(Lc(fk))
+

. . . + zk−1
Re(Lc(fk−1))

Re(Lc(fk))
+ zk)(εfk).

Since by hypothesis 0 = z1Lc(f1) + . . . + zsLc(fs) = ε(z1Lc(f1) + . . . +
zkLc(fk)) = ε(z1Re(Lc(f1)) + . . . + zkRe(Lc(fk))) then:

k∑
i=1

zi(εfi) =
∑
i,j

zi,jS(fi, fj) (**). Thus from (*) and (**) we get the

desired result.

�
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Theorem 3.4. Let < be a monomial order and G = {g1, . . . , gs} be
a finite set of polynomials of R = V[ε][X1, . . . , Xm]. Let I = 〈G〉 be an
ideal of R, then G is a Gröbner basis for I if and only if all remainder
of S-polynomials S(gi, gj) by G is zero for 1 ≤ i ≤ j ≤ s.

Proof

(a) S(gi, gj) ∈ 〈gi, gj〉 ⊂ 〈G〉 ⇒ S(gi, gj)
G

= 0 where S(gi, gj)
G

is the
remainder of S(gi, gj) under the division by G.

(b) Conversely, we need to prove that 〈Lt(I)〉 = 〈Lt(G)〉.
Let f ∈ I then

f =
s∑

i=1

higi (1)

where hi ∈ R and mdeg(f) ≤ max
i

{mdeg(higi)} = γ. Let γ be the

smallest multidegree satisfying to (1), then mdeg(f) ≤ γ.

• If mdeg(f) < γ, from (1) we have:

f =
s∑

i=1

higi =
∑

mdeg(higi)=γ

higi +
∑

mdeg(higi)<γ

higi (2)

Notice that:∑
mdeg(higi)=γ

higi =
∑

mdeg(higi)=γ

Lt(hi)gi+
∑

mdeg(higi)=γ

(hi−Lt(hi))gi

(3).
Let Lt(hi) = miX

αi with mi ∈ V[ε], then∑
mdeg(higi)=γ

Lt(hi)gi =
∑

mdeg(higi)=γ

mi(X
αigi) (*).

– Suppose that Lc(gi) ∈ Jε ∀ i then from the previous lemma
(*) become:∑
mdeg(higi)=γ

Lt(hi)gi =
∑
i,j

zijS(Xαigi, X
αjgj) where zij ∈

V[ε].

Since S(Xαigi, X
αjgj) =

Im(Lc(gi))

Im(Lc(gj))

Xγ

XαiLm(gi)
(Xαigi) −

Xγ

XαjLm(gj)
(Xαjgj) = Xγ−γijS(gi, gj) with Xγij = lcm(Lm(gi), Lm(gj)).

Therefore
∑

mdeg(higi)=γ

Lt(hi)gi =
∑
i,j

zijX
γ−γijS(gi, gj) (4).

By hypothesis for 1 ≤ i ≤ j ≤ s, S(gi, gj) =
∑

k

qijkgk

where mdeg(qijkgk) ≤ mdeg(S(gi, gj)), then
∑

mdeg(higi)=γ

Lt(hi)gi =
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∑
i,j,k

zijX
γ−γijqijkgk.

Since mdeg(S(gi, gj)) ≤ γij then
mdeg(Xγ−γijqijkgk) ≤ mdeg(Xγ−γijS(gi, gj)) < γ. By min-
imality of γ, we get a contradiction.

– Suppose that there exists i0 such that Lc(gi0) /∈ Jε then
from the previous lemma (*) become:

ε
∑

mdeg(higi)=γ

Lt(hi)gi =
∑

mdeg(hi(εgi))=γ

Lt(hi)(εgi)+
∑

mdeg(hi(εgi))<γ

Lt(hi)(εgi)

∑
mdeg(hi(εgi))=γ

Lt(hi)(εgi) =
∑

i

mi(X
αi(εgi)) =

∑
i,j

wi,jS(Xαigi, X
αjgj).

From the previous item we have seen that mdeg(S(Xαigi, X
αjgj)) <

γ and we can easily see that mdeg(mi(X
αiεgi)) = mdeg(mi(X

αigi)),
we get a contradiction.

– Suppose that Lc(gi) /∈ Jε ∀ i then from the previous lemma
(*) become

(ε
∑

mdeg(higi)=γ

mi(X
αigi)) =

∑
mdeg(hi(εgi))=γ

mi(X
αiεgi) =

∑
i,j

ti,jS(Xαigi, X
αjgj)

where ti,j ∈ V[ε]. From the previous item we have seen that
mdeg(S(Xαigi, X

αjgj)) < γ thus we get a contradiction.

Since mdeg(f) = γ, then there exists j0 such that mdeg(f) =
mdeg(hj0gj0) = γ. We have Lm(f) = Lm(hj0)Lm(gj0) = Xγ . Put

∧ = {i/Lm(hi)Lm(gi) = Lm(hj0)Lm(gj0)} then Lc(f) =
∑
i∈∧

Lc(hi)Lc(gi).

Therefore Lt(f) =
∑
i∈∧

Lt(hi)Lt(gi) hence Lt(f) ∈
∑
i∈∧

〈Lt(gi)〉 ⊂
〈Lt(G)〉.

�

The previous theorem guaranties that we can compute a Gröbner basis
of an ideal of R after a finite number of step. We are now ready to give
the algorithm for computing a Gröbner basis.

Buchberger’s algorithm.

Input: g1, . . . , gs ∈ R and < a monomial order.

Output: A Gröbner basis G for I = 〈g1, . . . , gs〉 with {g1, . . . , gs} ⊆ G

G := {g1, . . . , gs}
REPEAT

G′ := G
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For each pair gi, gj in G′ DO

S := S(gi, gj)
G′

If S �= 0 THEN G := G′ ∪ {S}
UNTIL G = G′

Example 3.5. Let R = Z3�[x, y] and let us fix a monomial order
x <lex y. Consider the set F = {f1 = (3 + 5ε)xy2 + 3εy, f2 = 5εx −
(1 + ε)y2}. We want to construct a Gröbner basis for I = 〈F 〉 in R with
respect to x <lex y. Set G = {g1 := f1, g2 := f2}
S(g1, g2) = (εg1) − 3

5
y2f2 =

3(1 + ε)

5
y4 and S(g1, g2)

G
=

3(1 + ε)

5
y4 =

g3, G = {g1, g2, g3}.
S(g2, g2) = εg2 = −εy2 = S(g2, g2)

G
= g4, G = {g1, g2, g3, g4}.

Notice that S(g1, g4) = S(g1, g3) = S(g4, g4) = S(g3, g4) = 0 and S(g2, g3)
G

=

S(g2, g4)
G

= 0.

Thus G = {(3 + 5ε)xy2 + 3εy, 5εx − (1 + ε)y2,
3(1 + ε)

5
y4,−εy2} is a

Grb̈ner basis for I = 〈(3 + 5ε)xy2 + 3εy, 5εx− (1 + ε)y2〉.
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