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Abstract 

We consider first-order ordinary differential equations with quartic nonlinearities. The aim is to find the maximum 
number of periodic solutions into which a given solution can bifurcate under perturbation of the coefficients. It is shown 
that this number is ten when the coefficients are certain cubic polynomials. Equations with the maximum number of such 
periodic solutions are also constructed. The paper is heavily dependent on computing Groebner bases. 
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1. Introduction 

We consider differential equations of  the form 

-~- Z 4 ~- 0~(t)z 3 + f l ( t ) z  2 + ~(t)z,  (1.1) 

where z is complex-valued; the coefficients are real polynomials in the real variable t. A solution 
z(t) of  (1.1) satisfying z ( 0 ) = z ( 1 )  is called a periodic solution. The main concern is to estimate 
the number of  periodic solutions. This problem was suggested by C. Pugh as a version of  Hilbert's 
sixteenth problem (listed by S. Smale as Problem 7 in [6]). Recall that Hilbert's sixteenth problem 
is to determine the number of limit cycles of  polynomial differential systems in the plane. In [3], 
Lins Neto gave examples to demonstrate that there is no upper bound for the number of  periodic 
solutions unless suitable restrictions are placed on the coefficients. In his examples the coefficients 
are of  degree ~<2n and the number of  periodic solutions is n + 3; the question raised in [3] is to 
construct equations with more than n + 3 periodic solutions. 
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The multiplicity of  the periodic solution ~o(t) of  (1.1) is defined to be the multiplicity of  q~(0) as 
a zero of  the displacement function q : c ~-* z(1,  c)  - c; z(t ,  c)  is the solution satisfying z(0, c) = c. 
A periodic solution is called a simple solution if its multiplicity is 1. In order to keep track of  
the number of  periodic solutions, it is useful to take z complex. This is because the number of  
zeros of  q in a bounded region of  the complex plane cannot be changed by small perturbations. 
If the multiplicity of  q~(t) is k, then for any sufficiently small perturbations of the equation, there 
are precisely k periodic solutions in a neighborhood of q~(t) (counting multiplicity). This result is 
given in [4] in a more general form. Since the coefficients are real functions, an upper bound for the 
number of  periodic solutions of (1.1) is also an upper bound for the corresponding equation with z 
real. If  the multiplicity is greater than 1 then, as was explained in [1], we could reduce Eq. (1.1) 
to the form 

= Z 4 --~ ~ ( t ) z  3 + f l ( t ) z  2. (1.2) 

This equation, with z real, was considered in [5]; it was conjectured that the multiplicity of  z = 0 
is at most n + 3 if ~ and fl are polynomial functions in t of  degree ~< n. For the case n -- 2, it is 
shown in [1] that the maximum multiplicity is 8. The method used in [1] to compute the multiplicity 
is mainly based on formulae derived to compute the multiplicity when it is ~< 8. The calculation of 
multiplicity for n > 2 is extremely difficult and time consuming. 

In this paper, we explain how a computer algebra system can be used to compute the multiplicity 
and then to construct equations with many periodic solutions. The work which we describe depends 
on using the Groebner bases technique. We use M A P L E  in computing Groebner bases. The method 
is applied for the case in which the coefficients are of  degree 3; it is shown that the multiplicity 
of  z = 0 is at most 10. Equations in this class are constructed with 10 periodic solutions. Thus, the 
upper bounds given in [3, 5] are exceeded. 

Since we work in integer arithmetic, there are no rounding errors. It is certain that calculations by 
hand would be immeasurably slower and may be less reliable. However, special cases of  the results 
presented here agree with those done by hand in [1]. 

The method in [1] of  constructing equations with many periodic solutions is the bifurcations 
by successive perturbations. This method has to be modified in order to be applied to the cases 
considered in this paper. As explained in Section 4, this is done by using an exchange of stability 
argument. 

In Section 2, a brief introduction to Groebner bases is given. The method of  computing the 
multiplicity is described in Section 3, and the case n = 3 is then considered. In the last section, 
equations with many periodic solutions are constructed. 

2. Groebner bases 

The method of Groebner bases allows us to solve systems of  polynomial equations in an algo- 
rithmic fashion. In this section, the basis concepts are presented. We restrict the discussion to the 
parts related to our work. The details can be found in [2]. 

Let R be the ring of  all polynomials in x l , x 2 , . . .  , x ,  with real coefficients. A product x ,~x~2, . . .  ,Xnmn, 
with nonnegative exponents, is called a monomial. To define Groebner basis, we first have to fix a 
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term order. The lexicographic order is used in our computations. This order is the most suitable to 
eliminate variables from a set of  equations. 

Definition 2.1. Let x, < x,-1 < . . .  < x~; then 

ml  m 2 . . . x m n  ~ kl  k2 kn 
X 1 X 2 X 1 X 2 • . . X n 

when the left-most nonzero number ki - mi is positive. 
Let f = alPl + a2p2 + ' "  + ampm, with ai ~ 0, constants, and Pi are monomials satisfying p m <  

Pro-1 < " ' "  < Pl. The leading term of f ,  written I t ( f ) ,  is alP1. If f l , f 2  . . . .  , f s  are polynomials 
then the ideal generated by these polynomials is denoted by ( f l , f 2 , . . .  , f s ) .  For an ideal I C_C_ R 
denote by It(I) the set of  leading terms of  elements o f / ,  and by (It(l)) the ideal generated by the 
elements of  It(l). 

Definition 2.2. A finite subset G = { g l , g 2 , . . . , O s }  of  an ideal I is said to be a Groebner basis if 
(lt(g~), It(g2)... ,lt(g~)) --- (It(I)). A Groebner basis is called a reduced Groebner basis for an ideal 
I if for any gi, the coefficient of  lt(gi) is 1 and no monomial of  gi lies in (lt(G - {g~})). 

The main properties of  Groebner bases are summarized in the following proposition. 

Proposition 2.3 (Buchberger [2]). (1) Let  I be a polynomial ideal. For a given monomial order, 
I has a unique reduced Groebner basis. 

(2) Any Groebner basis for  an ideal I is a basis for  I. 
(3) Let  G be a Groebner basis o f  an ideal I and f a polynomial. The remainder on division o f  

f by G does not depend on the ordering o f  the elements o f  G. Moreover, f is an element o f  I i f  
and only i f  the remainder is zero. 

(4) Let  f l , f  a , . . . , fm  be polynomials. I f  the reduced Groebner basis o f  ( f  l , f  2 , . . . , fm)  is (1) 
then the equations f l . . . . .  f m =  0 have no solutions; i f  the basis is not (1) then they must have 
a solution (may be complex). 

In 1965, Buchberger presented an algorithm to compute the Groebner basis of  any given ideal. 
Many computer algebra systems implement a version of  Buchberger's algorithm. These systems usu- 
ally compute a reduced Groebner basis. In our computations, the computer algebra system M A P L E  
is used. The most commonly used commands in MAPLE ' s  Groebner basis package are: 

(1) gbasis(F, X, termorder): F is a list of  polynomials, X is a list of  indeterminates. It computes 
the reduced Groebner basis of  the ideal (G) with respect to the indeterminates X and the given term 
ordering. 

(2) normalf(p, F, X, termorder): p is a polynomial, F and X are as in (1). It computes the fully 
reduced form of  p with respect to the ideal (F), indeterminates X and the given term ordering. 

We also used the commands sturm to find the number of  real zeros of a polynomial, and resultant 
to find the resultant of  two polynomials. 

3. The calculation of multiplicity 

Consider the differential equation 

: Z 4 -~- ~(/)z 3 ÷ f l ( t )z  2. (3.1) 
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Let z(t ,c)  be the solution of  (3.1) satisfying z(0,c) = c. For 0~<t~< 1 and c in a neighborhood of 0, 
we write 

O O  

z(t ,c) = y~an( t )c  n, (3.2) 
n=l  

where 

al(0) = 1; an(O) = 0 (n > 1). (3.3) 

Thus, the displacement function becomes 
(2O 

q(c) = ( a l ( 1 )  - 1 ) c  -~- ~-~fln(1)c n. 
n=2 

The multiplicity o f z  = 0 is k > 1 if a~(1) = 1, a2(1) = a3(1) . . . . .  ak-l(1) = 0 and ak(1) ~ 0. 
The functions an(t) can be determined by substituting (3.2) into Eq. (3.1) and then comparing the 
coefficients of  c. It is clear that til(t) = 0, which implies that al( t)  = 1. For n > 1, the functions 
an(t) are determined by the relation 

an=  ~_, a i a j a k a l + ~  ~_~ a i a : a k + f l  ~ _ a i a j .  (3.4) 
i+j+k+l=n i+j+k=n i+j=n 

These equations can be solved recursively. However, the necessary calculations become extremely 
complicated as n increases. From (3.4), it follows that ~i2 = fl, ti3 = ~+fla2. Therefore, the multiplicity 
o f z  ---0 is 2 if f~ f l ( t ) d t 4 0  and it is 3 if f0 ~ f l ( t )=0  but f0 ~ 0fft)~0. The formulae for an, with n~<8 
are given in [1]. If  the coefficients are polynomials in t then the functions an(t) can be computed 
recursively using a computer algebra system. 

Suppose that ~ and fl are polynomials in t. The first step is to compute the functions an(t); these 
are polynomials in t and the coefficients of  c¢ and ft. M A P L E  is used to compute an(t) recursively 
from (3.4). Let qn = an(I). It is clear that qn are polynomial functions in the coefficients of  0~ and ft. 
To calculate the multiplicity, we reduce qn by means of  substitutions from the relations q2 = q3 = 
. . . .  qn-1 = 0. That is to compute the normal form of  qn with respect to the Groebner basis of  the 
ideal (q2, q 3 , " ' ,  qn-1). We continue in this procedure until the Groebner basis becomes (1) or until 
we have a system with no real solutions. In the case the basis is (1), we have to verify that the 
maximum multiplicity can be attained by certain real values of  coefficients; since the unsolvability is 
over the field of  complex numbers. The solution z = 0 is an isolated periodic solution ([1, Theorem 
2.2]); hence, the multiplicity of  z = 0 is finite. 

Now we apply the above procedure to the case in which 

fl( t ) = G + 2 At + 3 Bt 2, ~( t ) --- H + 2 Ct + 3 Dt2 + 4 Lt 3. (3.5) 

First consider the following particular cases. 

Lemma 3.1. Consider the differential equation (3.1) with ~ and fl as 9iven in (3.5). 
(i) Suppose that L = O, The multiplicity o f  z = 0 is at most 8; there is a unique equation with 

multiplicity 8. 
(ii) I f  B = 0 then the multiplicity o f  z = 0 is at most 5. 
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Proof.  (i) If  the multiplicity is greater than 3 then G = - A - B  and H = - C - D - L .  These values 
of  G and H are substituted in the formulae of  q,, for 4~<n~<8. The Groebner basis of  (q4,qs,q6,qT) 
is 

{ D , - 9 B  2 + l l 0 C , 3 B  + 2 A , - 2 2 0 0  + 3B 3} 

and (the normal form) 

2888 
- - n .  

q8 - 255 255 

It follows that this set of  equations has a unique solution and that q8 ¢ 0. 
(ii) If  q2 = q3 = 0 then q4 ---- 1 (AD + 2AL + 60). When q2 = q3 ---- q 4  ---- 0 then q5 = - 1 A .  The 

assumption q5 = 0 contradicts q4 = 0. Hence, the multiplicity is at most 5. 

Remark. The result of  Lemma 3.1(i) was obtained in [1], where the computations were done by 
hand. 

We proceed with B ¢ 0. The formula of  q4 is not linear in any of  the coefficients. Hence, it is not 
possible to eliminate one of  the variables from the assumption q4 ---- 0. To make the computations 
easier, we introduce the change of  variables z ~ Bz. Under this transformation Eq. (3.1) becomes 
of  the form 

= B z  4 + ~(t)z 3 q- f l ( t ) z  2, 

with 

fl(t) = G + 2A t  + 3 t  2, 

(3.6) 

or(t) = H + 2 Ct + 3Dt  2 + 4L t  3. (3.7) 

It is clear that the transformation preserves the multiplicity and the number of  periodic solutions. 

Theorem 3.2. I f  g(t)  and fl(t) are as given in (3.7) with B ¢ O, then the multiplicity o f  z = 0 as 
a periodic solution of (3 .6 )  is at most  10. There are exactly two equations with multiplicity 9 and 
only one equation with multiplicity 10. 

Before giving the proof of  this theorem, we first need the following lemmas. 

Lemma 3.3. The following set o f  equations g has exactly two solutions, and at these solutions 
he0.  

9 = {L + 210 B, C - L - DA - 2 LA, 669 + 819A + 273 A 2 + 91 L, 690 761 659 770D 

- 5 2 9  603 074 0 0 0 A L  2 - 3 784 079 710 684LA - 143 289 911 550A - 214 934 867 325 

- 4  294 596 246 486 L - 794 404 611 000 L 2, 356 224 811 985 + 9 658 507 581 840 L 

+49 193 036 238 892 L 2 + 6 884 839 962 000 L 3 }. 

h = 7 432 043 813 690 284 179 819 A + 2 332 460 012 229 918 021 699 

+9  577 421 984 298 220 973 577A 2 + 6 239 817 676 615 770 003 266A 3 

+2  055 750 840 052 527 115 680A 4 + 274 100 112 007 003 615 424A 5. 
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Proof. The ' fifth polynomial in g has three real roots; one root in each of the intervals ( - 7 , - 6 . 9 ) ,  
( -0 .2 , -0 .15 )  and ( -0 .1 , -0 .01) .  The third polynomial has real roots in A only when L takes the 
smallest value. For this value of L, there are two values for A. The values of  B, C and D can be 
computed directly. The Groebner basis of  the ideal (9 U {h}) is (1). Hence, h ~ 0 at the solutions 
of the set g. 

Lemma 3.4. The following set o f  equations g has a unique solution and at this solution h > O. 
Moreover, the values of  B, C, and L are positive: 

g --- (2 L + D, 9 L + 420 B - 7 C, 534102076506106231200 B 

- 107327049014127655440 L 4 -q- 49807865189040381894 L 

-198097233956762834177L 2 + 259555217205378497832L 3 

-4275888771408309720,  2404414264896 L - 16621256838576 L 2 

+50374642156267 L 3 - 127405376280 - 58739178025944L 4 

+22837860143280L5}, 

h -- 4274756043356630109927956616625680L 4 

+7888214947960280025283330278171769L z 

-10338106741515452011319376030658104L 3 

+ 170673557528835516628724153391090 

- 1979593869697118470143039494712843 L. 

Proof. First we consider the fourth polynomial in g. If  we divide by the coefficient of  L 5 then the 
coefficients in the resulting polynomial are contained in ( -3 ,3 ) .  Hence, the roots are contained in 
the interval ( -4 ,4 ) .  The real roots are positive. By Sturm test, it has only one real root, lo, in this 
interval. In fact, the root is located in the interval (0.13, 0.15). The other variables can be determined 
uniquely from the other polynomials. Using the same idea used in Lemma 3.3, h' does not vanish 
in (0.13,0.15). The value of  h at 0.135 is positive. Hence, h(lo) > 0. Similarly, the polynomials 
defining B and C are monotonic in (0.13,0.15) and positive at 0.135. Thus, the values of  B and C 
are positive. 

The Groebner basis, with respect to the list of  variables [B,C,D,A,L], of the ideal generated by 
{q4, q s , . . . ,  q,} is denoted by #n. 

Proof of Theorem 3.2. If  q2 ---- q3 = 0 then G = - A  - 1 and H = - C  - D - L. These values of  G 
and H are substituted in the remaining q~s. With this substitution, we have: 

q4 = ~ ( 9 Z  - 7 C  -I- 4 2 0 B  -b 7 A D  -b 1 4 0 A L ) .  

I f  q4 = 0 t h e n  

qs--  88201 ( 2 A + 3 ) ( L + 2 1 0 B ) .  

Therefore, q5 = 0 when 2A + 3 = 0 or L + 210B = 0. We consider these two cases separately. 



M.A.M. AlwashlJournal of Computational and Applied Mathematics 75 (1996) 67-76 73 

(i) Case L +210B = 0. The Groebner basis 98 is the set of  polynomials 9 of Lemma 3.3, with the 
last three polynomials multiplied by L. If L = 0 then B = 0; this contradicts our assumption. The nor- 
mal form of q9 is k h ,  where h is the one given in Lemma 3.3 and k is a negative constant. Hence, by 
Lemma 3.3, the multiplicity is at most 9 with exactly two equations with this maximum multiplicity. 

(ii) Case 2A + 3 = 0. The Groebner basis 98 is the set 9 given in Lemma 3.4, with the last 
three polynomials multiplied by L. The normal form of  q9 with respect to 98 is zero; that is the 
multiplicity cannot be 9. The normal form of  ql0 with respect to 98 = 09 is kh, where h is given in 
Lemma 3.4 and k is a positive constant. Therefore, by Lemma 3.4, the multiplicity is at most 10 
with only one equation with this maximum multiplicity. 

Remark. By the change of  variable z ~-~ B 1/3 z ,  Eq. (3.6) is transformed to the form (3.1). Therefore, 
the conclusions of  Theorem 3.2 also hold for (3.1) with ~ and ~ as in (3.5). 

4. Bifurcation of periodic solutions 

The method of  constructing equations with many periodic solutions can be summarized in the 
following steps: 
• Start with an equation for which the multiplicity of  z = 0 is K; that is q2 = q3 . . . . .  qK-1  = 0 

but qK ~ 0. Let U be a neighborhood of 0 in the complex plane containing no other periodic 
solution. 

• Perturb the coefficients of  the equation, if possible, so that the multiplicity is K -  1. The total 
number of periodic solutions with initial values in U is unchanged by sufficiently small perturba- 
tions. Hence, there is a nonzero periodic solution ~b, say, with ~O(0)eU. Since complex solutions 
occur in conjugate pairs, it follows that ~ is real. Let WI be a neighborhood of ~k(0) and U1 be 
a neighborhood of 0 such that U 1 ~_J W 1 C U and U 1 N W 1 = ~. Make another perturbation so that 
the multiplicity of  z = 0 is K -  2. A second real nonzero periodic solution with initial point in 
U1 is bifurcated; there remains a real periodic solution with initial point in W1. 

• Continuing in this way, we end up with an equation with K -  2 distinct nonzero periodic solutions 
and z = 0 of  multiplicity 2. 

This is the procedure used in [1] to construct equations with 8 periodic solutions. The same 
method cannot be used when q2 = q 3  . . . . .  qk-1 = 0 implying that qk = 0 for certain k. That 
is, the multiplicity cannot be k. In fact, this is the case for equations we are considering (as 
in Theorem 3.2). So the above steps fail to yield K -  2 real periodic solutions. However, it is 
possible to bifurcate K -  2 periodic solutions by exchanging the stability. 

• Let z = 0 be of  multiplicity k, with k even, and qk > 0. Hence, z = 0 is unstable. Suppose that 
after a perturbation the multiplicity is k - 2 and q~-2 < 0; z = 0 is stable. If the perturbation 
is sufficiently small, then two real nonzero periodic solutions bifurcate out of  the origin; one is 
positive and the other is negative. 
We use these steps to construct equations with 10 periodic solutions. Consider Eq. (3.6) with 

and fl as in (3.7). To do the above procedure, the conditions which determine the multiplicity are 
needed. These conditions are obtained by computing the Groebner basis of  (q2,q3,""  ,qn-1), and 
then computing the normal form of qn with respect to this basis. These are given in the following 
proposition (with k l , k2 , . . .  ,k6 are positive real constants). 
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Proposition 4.1. Suppose that ~ and fl are as in (3.7) with G = - A  - 1 and H = - C  - D - L. 
For the differential equation (3.6), the multiplicity o f  z = 0 is determined by 

(i) If  q4 = kl (420B - 7C  + 9L + 7AD + 14LA) ~ 0 then the multiplicity is 4. 
(ii) If  q4 = 0 and q5 = -k2 (2A + 3)(L + 210B) ~ 0 then the multiplicity is 5. 

(iii) If  the polynomials in the set 95 vanish and q6 ~ 0 then the multiplicity is 6: 

95 = {2A + 3 8 4 0 B -  14C - 2 1 D -  24L}, 

q6 = - k 3  ( - 2 1 L  + 52L 2 + 144 144LB - 68 796B + 50450400B 2) ¢ 0. 

(iv) If the polynomials in the set 96 vanish and q7 ~ 0 then the multiplicity is 7: 

96 ~ { - - 2 4  L + 840 B - 7 (2 C + 3 D ) , - 8 1 9  (2 C + 3 D) - 2 838 L + 64 792 L 2 

+ 3 6 0 3 6 0 L ( 2 C  + 3D) + 5005(2C  + 3D)2,2A + 3}, 

q7 = k4 (O q- 2L)(273 (2 C + 3 D) + 946L). 

(v) If the polynomials in the set q7 vanish and q8 ~ 0 then the multiplicity is 8: 

97 = { 9 L  + 4 2 0 B -  7C, 10010C 2 -  24024LC + 14378L 2 + 1 0 3 8 L -  819C, 

2 L + D , 2 A + 3 } ,  

q8 = ks( 378 010 776 CL 2 - 379 018 536 LC + 44 940 168 C - 478 131 732 L 3 

+480 953 707L 2 - 57 080 886L). 
O 

(vi) If  A - 3 and the polynomials in the set 9 = 98 = 99 of Lemma 3.4 vanish then the 2' 
multiplicity is 10 and the origin is unstable. In this case, q~0 = k6 h, where h is the polynomial in 
Lemma 3.4. 

3 and let bo, co, do, lo be the unique solution of  the system 98. Before giving the main Let ao = - ~  
result of this section, we prove a lemma. 

Lemma 4.2. Let  

h (L ,C)  = 10010C 2 - 24024LC + 14378L 2 + 1 0 3 8 L -  819C. 

(i) I f  L =- ll = lo+e then there is a unique number C = cl, a function o f  e, satisfyin9 h ( l l , c l )  = 0 
and l im~o el = Co. 

(ii) The directional derivative o f  q8 in the direction o f  h(L, C)  at (lo, eo) is negative. 

Proofl (i) The polynomial h is an element of  97; so it vanishes at (10,c0). The result follows, by 
the implicit function theorem, provided that Oh/OC ~ 0 and Oh/OL ~ 0 at (lo, co). But, Oh/~C = 
2 0 0 2 0 C -  2 4 0 2 4 L -  819. Substituting the value of C from the relation Oh/OC = 0 into h gives 

h = ~ 0 ( - 1 6 0 1 6 L  2 + 2 4 2 8 8 L -  7371). 

Similarly, Oh/aL = 0 implies that 

h =  1 7-2~(-2 616 796L 2 + 3 968 328L - 1 203 561). 



M.A.M. Alwash/Journal of Computational and Applied Mathematics 75 (1996) 67-76 75 

The resultant o f  each o f  these polynomials and the polynomial  in g8 which determined I0 is not 
zero. Hence, the partial derivatives do not vanish at (10, Co). 

(ii) The directional derivative is given by  

Oh ~q8 Oh aq8 
d -  

OC OL OL OC 

= k (61 932 618 419 401 690 655 197 932L 3 - 47 472 516 684 148 927 365 488 252L 2 

+ 11 943 820 370 438 090 329 888 569 L - 1 031 706 386 063 122 476 266 595 

- 2 5  540 136 280 225 260 051 707 440 Z 4), 

where k is a positive constant. By Sturm theorem (on M A P L E ) ,  the polynomial  d has no real roots; 
it is negative at L ---- 0. Hence, the directional derivative is negative. 

In the followings a0, b0, Co, do, l0 are as defined above and ca as defined by Lemma 4.2. 

Theorem 4.3. Let 

fl(t) = G + 2At  + 3 t 2 

with 

and ~( t ) :  H + 2 Ct + 3 Dt2 + 4 Lt 3 

m = a 0 ~- e4, 

1 3 
B --- 4-26(7 c1 - 9 lo) - ~ el, 

C ---- Cl - 3 e2 + 2 g4 (e2 -]- 3 e 3 ) -~- e5, 

D = do - 2el  + 2e2 - 8e3, 

L = 10 + el + 7 e3, 

and G - - - A - I + e T ,  H = - C - D - L + e 6 .  

(i) I f  ek (2 ~<k ~<7) are nonzero with el > 0 and such that I ekl is sufficiently small compared to 
[ ek-l I then Eq. (3.6) has nine distinct real periodic solutions. 

(ii) lf, in addition, e8 is small enough then the equation 

= B z  4 q- ~( t ) z  3 q- 3( t )z  2 + e8z 

has ten distinct real periodic solutions. 

Proof .  (i) I f  ek = 0 for k -- 1 , . . . ,  7 then z -- 0 is unstable and o f  multiplicity 10. With e 1 ~ 0 but 
ek = 0 ( k  > 1), let L = l0 + el, and D = d l  = do - 2el .  Choose C --- cl, the value determined in 
Lemma 4.2, and let B = bl l = 4-T6(7 c1 - 9 10 - 9 el ). The polynomials in g7 vanish at these values 
o f  the coefficients. The polynomials in the sets g7 U {qs} and g8 have the same solution set. Hence, 
for the values o f  (L,C) satisfying gT, q8 vanishes only at (lo, co); since 98 has a unique solution. 
In particular, qs(ll,Cl) ~ O. By Lemma 4.2(ii), the function q8 is negative i f  el > 0 and positive 
i f  el < 0. Hence, i f  el > 0 and small enough then the multiplicity is 8 and z = 0 is stable. The 
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stability of  the origin is reversed by this perturbation. By  the argument presented at the beginning 
of  the section, two real nonzero periodic solutions, ~Pl and ~P2, have bifurcated out o f  the origin. 

Now, we choose e2 ~ 0 and ek = 0 (k  > 2). In this case, we  let D = d2 = dl + 2e2, and C = 
c2 = cl - 3 e2. The conditions in g6 are satisfied and q7 : 4 k4 e2(273 cl - 346 ll ). Here, we use the 
fact that dl + 2 ll -- 0. The possibility 273 Cl - 346 ll -- 0 together with g7 imply that ll = Cl -- 0. 
Therefore, if  e2 is nonzero then the multiplicity is 7. A real periodic has bifurcated from the origin. 
I f  the perturbation is small enough, there remain two periodic solutions in a neighborhood of  q~l 
and ~02. We make another perturbation, L = 12 : Ii + 7 e3, D = d3 : d2 - 8 133. In this case, the 
conditions in 95 are satisfied and q6 = 7k3 ~3 (144 144bl + 104 l l  ÷ 3 6 4 5 3  - 2 1 ) .  Here, we use the fact 
that q6(bl, 11 ) = 0. A fourth periodic solution is bifurcated out o f  the origin. The next two steps are 
similar. I f  A = ao + e4, and C = c2 + 2 e4 (e2 + 3 e3), then q5 : -k2  54 (12 + 210 bl ); if  C = c4 = c3 + e5 
then q4 : -7k155. Finally, we perturb H and G by  56 and e7, respectively. 

From the previous steps, we end up with an equation having nine distinct periodic solutions 
(including z = 0). 
(ii) For the equation in part(i) z = 0 is still o f  multiplicity 2. By  adding a linear term 58 z, another 
periodic solution is bifurcated. 

Remark .  Using the equation above and making the change o f  variables z H B 1/3 z ,  an equation of  
the form (1.1) with ten periodic solutions can be constructed; the degrees of /~  and ct are still 2 and 
3, respectively. 
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