
Implementation and Applications of
Fundamental Algorithms relying on
Gröbner Bases in Free Associative

Algebras

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte

Dissertation

vorgelegt von

Diplom-Mathematiker Grischa Studzinski aus

Wuppertal

Berichter:

Prof. Dr. Eva Zerz, Prof. Dr. Martin Kreuzer

Tag der mündlichen Prüfung: 18.10.2013

Diese Dissertation ist auf den Internetseiten der

Hochschulbibliothek online verfügbar.

2

Summary

In 2009, La Scala and Levandovskyy introduced a new approach for the com-
putation of Gröbner bases of graded ideals in the free associative algebra. The
approach utilizes so-called letterplace correspondence and thus the computations
take place over a commutative polynomial ring. The latter is very important
for applied computer algebra, since data structures and algorithms have been
intensively studied in the last 50 years by numerous people. In 2012, La Scala
presented the generalized letterplace correspondence for general, not necessarily
graded ideals, where the homogenization was used.

In this thesis, an alternative approach has been studied, with the aim of direct
computations, which do not use homogenization and thus are more effective and
less complex. At first, the explicit isomorphism of the free associative algebra to
a subalgebra of letterplace ring, equipped with the nonstandard multiplication is
given. This lies in the heart of further constructions, data structures, algorithms
and implementation. Moreover, the very important question on the presenta-
tion of monomial ordering for the free algebra is addressed. The embedding into
letterplace ring allows the partial use of Robbiano’s Theorem in the latter, re-
sulting in the partial classification of orderings, in particular also of elimination
orderings.

The images of ideals of the free algebra in the letterplace ring have additional
structure, being shift-invariant. The new data structure was developed in order
to encode an infinite orbit under the action of the shift via the single element
and to transfer the fundamental operations into the new setting. Based on this
data structure, the algorithms for the computation of a two-sided Gröbner basis
of an ideal and of a left Gröbner basis of a left ideal in a finitely presented algebra
were designed. Both algorithms are not using homogenization and can be applied
to arbitrary ideals. Moreover, algorithms, important in applications, such as the
computations of elimination, syzygies, Gel’fand-Kirillov dimension and the upper
bound for the global homological dimension were considered and implemented.

The data structures and the Gröbner basis algorithms, mentioned above, were
thoroughly implemented in the kernel of computer algebra system Singular.
The implementation was extensively tested and compared to all major computer
algebra systems, featuring similar functionality. The comparison demonstrated,
that the implementation competes with and sometimes outperforms the fastest
systems available. Further applied algorithms were implemented in Singular
libraries.

The implemented tools were applied to numerous problems, ranging from group

3

theory (word problem and conjugator search problem for given elements in a
given finitely presented group as well as the question of the finiteness of the
latter group) with interest towards cryptography to the design of new generalized
inverses in monoids (due to Drazin). Moreover, the state-of-the-art concerning the
applications of generic tools like Gröbner bases to some important open problems
in computational theory of finitely presented groups is established.

4

Zusammenfassung

In 2009 stellten La Scala und Levandovskyy einen neuen Weg zur Berechnung von
Gröbnerbasen graduierter Ideale in der freien, assoziativen Algebra vor. Dieser
Ansatz benutzt die sogenannte Letterplace Korrespondenz und deswegen wer-
den die Berechnungen über einen kommutativen Polynomring ausgeführt. Dieser
ist äußerst wichtig für angewandte Computeralgebra, da Datenstrukturen und
Algorithmen in den letzten 50 Jahren von zahlreichen Wissenschaftlern inten-
siv studiert wurden. 2012 präsentierte La Scala die verallgemeinerte Letterplace
Korrespondenz für allgemeine, nicht zwingend graduierte Ideale vor, wobei Ho-
mogenisierung benutzt wurde.

In dieser Arbeit wurde ein alternativer Weg untersucht, mit dem Ziel, direkte
Berechnungsverfahren zu entwickeln, welche nicht Homogenisierung nutzen und
deswegen effektiver und weniger komplex sind. Zunächst wird ein expliziter Iso-
morphismus zwischen der freien, assoziativen Algebra und einer Unteralgebra
des Letterplace Ringes, welche versehen ist mit einer alternativen Multiplikation,
angegeben. Dieser Isomorphismus liegt allen weiteren Konstruktionen, Daten-
strukturen, Algorithmen und Implementationen zu Grunde. Darüber hinaus wird
die wichtige Frage nach einer Darstellung von Monomordnungen für die freie, as-
soziative Algebra angesprochen. Die Einbettung in den Letterplace Ring erlaubt
eine teilweise Nutzung des Satzes von Robbiano, wodurch eine partielle Klassi-
fikation der Ordnungen, insbesondere von Eliminationsordnungen, möglich ist.

Die Bilder der Ideale der freien Algebra im Letterplace Ring haben zusätzliche
Struktur, denn diese sind shift-invariant. Eine neue Datenstruktur wurde en-
twickelt, um die unendliche Bahn unter der Shift-Operation mittels eines Ele-
mentes darzustellen und um fundamentale Prozeduren in diese neue Situation
zu übertragen. Basierend auf dieser Datenstruktur wurden die Algorithmen für
die Berechnung einer zwei-seitigen Gröbnerbasis eines Ideals und einer Links-
Gröbnerbasis eines Links-Ideals in einer endlich präsentierten Algebra gestaltet.
Beide Algorithmen benutzen keine Homogenisierung und können auf beliebige
Ideale angewendet werden. Weiterhin wurden weitere Algorithmen, welche für
wichtige Anwendungen wie Berechnung von Elimination, Syzygien, Gel’fand-
Kirillov Dimension und eine obere Schranke der globalen Dimension benutzt
werden, betrachtet und implementiert.

Die oben erwähnte Datenstruktur und der Gröbnerbasen Algorithmus wurden
sorgfältig in der Kern des Computeralgebra Systems Singular implementiert.
Das Programm wurde dann intensiv getestet und mit anderen wichtigen Comput-
eralgebra Systemen verglichen. Dieser Vergleich zeigte, dass die Implementation

5

mit den anderen Systemen mithalten und in einigen Fällen sogar übertreffen kann.
Die weiteren Algorithmen wurden in Singular Bibliotheken implementiert.

Diese neuen Verfahren wurden auf zahlreiche Probleme, reichend vom Bereich
der Gruppentheorie (Wort-Problem, Konjugator-Such-Problem für gegebene El-
emente einer gegebenen endlich präsentierten Gruppe, sowie die Frage nach der
Endlichkeit dieser Gruppe) unter Berücksichtigung kryptographischer Fragestel-
lungen bis hin zur Gestaltung neuer, verallgemeinerter Inversen in Monoiden
(gegeben durch Drazin), angewendet. Darüber hinaus wird der Stand der Dinge
bezüglich der Anwendbarkeit von generischen Methoden wie Gröbnerbasen auf
einige wichtige Probleme der Berechnungen von endlich präsentierten Gruppen
neu definiert.

6

Introduction

Any finitely generated associative algebra can be presented as a factor of the free
associative algebra. Therefore computations in the free algebra have many appli-
cations in different areas of mathematics, like cryptography, ring theory, homo-
logical algebra, representation theory of monoids, groups and algebras, algebraic
system and control theory, quantum algebras, in mathematical and theoretical
physics.

Many of those computations rely on Gröbner bases, that is a Gröbner basis is
needed as input for an algorithm or at some point during the computations a
Gröbner basis must be computed.

In theory the question of Gröbner bases computations was studied since the early
years of computer algebra: Mora ([Mor86, Mor88, Mor94]), E. Green ([Gre93,
Gre00]), Ufnarovskij ([Ufn95, Ufn98]) and Cojocaru et al. ([CPU99]) presented
different facets of what we call today non-commutative Gröbner basis theory.
In particular Mora discussed free non-commutative algebras and their quotient
rings endowed also with negative (non-well-)orderings. and further extended this
theory. Other important contributions were made by Apel and Lassner ([AL88]),
moreover Apel further extended the theory in [Ape00].

In the last years there has been more progress in theoretical, implementational
and practical directions. Notably, the interest in free associative algebras grew
stronger, as indicated by e. g. the book of D. Green ([Gre03]), where the author
considers also negative (non-well-)orderings for certain non-commutative cases
with a very different motivation and meaning, compared to the theory of Mora
([Mor88]) and Apel ([Ape00]) and with the commutative case as in Greuel et al.
([GP08]). Evans and Wensley investigated in [EW07] involutive bases in non-
commutative algebras.
Computer algebra systems like Magma [BCP97] and GAP [GAP13] now include
packages which allow the user to compute Gröbner bases over the free algebra.
However, there is less progress towards applications of these Gröbner bases. No-
tably, Xiu, under the supervision of Kreuzer, implemented a variety of algorithms
for ApCoCoA which can be used for the most common applications of Gröbner
bases ([Xiu12]).

With the recent work of La Scala and Levandovskyy [LL09] a new way to compute
Gröbner bases emerged, where non-commutative Gröbner bases of graded ideals
in free algebras are computed via the letterplace correspondence. The most im-

7

portant point for practical computer algebra is that the computations take place
in a commutative ring, where the data structures as well as many fundamental
algorithms have been deeply studied and enhanced in the past 40 years. Using
homogenization La Scala generalized this approach to the case of non-graded
ideals ([Sca12]).

In this work we continue this research direction and present novel ideas, supported
by an implementation, for effective computations with general non-graded ideals
in the free algebra by utilizing the generalized letterplace correspondence. In par-
ticular, we provide a direct algorithm to compute Gröbner bases of non-graded
ideals. Surprisingly we realize its behavior as “homogenizing without a homoge-
nization variable”. Moreover, we develop new shift-invariant data structures for
this family of algorithms and discuss them.

The computations of Gröbner bases rely heavily on the choice of an ordering. For
the commutative case there is a classification of term orderings due to Robbiano
([Rob85]). In the non-commutative case however there is no such classification
and most works simply assume that there exists a good ordering, which is true
for the most situations. The lack of such a classification motivated us to study
orderings and we came up with an efficient way to represent good orderings using
the letterplace ring.

There are many applications for the computation of Gröbner bases and many
of these problems, for instance as collected in the famous Kourovka Notebook
(cf. [MK02]) fall into one of the following categories: determine whether a given
presentation defines a finite or infinite group, solve the (generalized) word prob-
lem, solve the conjugator search problem, or solve the isomorphism problem. All
these questions can be readily formulated in the monoid ring (or the group ring)
corresponding to the given presentation. Most of them boil down to computing
a single (one- or two-sided) Gröbner basis. As shown in [KB07], the conjugator
search problem corresponds to the computation of a certain two-sided syzygy
module.
These results have important applications in cryptography. Since the compu-
tational hardness of certain computations in finitely presented groups has been
at the core of several proposals for non-commutative cryptosystems (see for in-
stance [AAG99], [KLC+00] and the proposals in [GGK+06]), it is important
to examine the feasibility of a straightforward attack via computing a non-
commutative Gröbner basis.

Here we present the methods, based on the letterplace approach, which can be
used to study those problems.

Gröbner basics were coined by Buchberger and Sturmfels to denote the most
fundamental applications of Gröbner bases. In this work we concentrate on elim-
ination, syzygies and left Gröbner bases in factor algebras. Notably, Gröbner
basics were also recently studied by Xiu ([Xiu12]).

8

Acknowledgments

There are many people I would like to thank for their support.
First of all I would like to thank the German Research Foundation for the financial
support which made the whole project possible.

Then of course I would like to thank my supervisor Dr. Viktor Levandovskyy
who proposed the project to me, believed in and encouraged me and taught me a
lot. Working with Viktor was always fun, even if there was more work than time
available.

My sincere thanks go to Prof. Dr. Eva Zerz and Prof. Dr. Martin Kreuzer
for their support and for the possibility to write this thesis. It was always a
pleasure working for them and I count myself lucky to be part of their respective
workgroups.

During the project I many interesting people from the computer algebra commu-
nity. In my experience they are all really nice and I had many interesting and
fruitful discussions for which I am very thankful, especially Roberto La Scala,
who gave me new insights into the letterplace ring.
It was a great delight to personally meet Victor Ufnarovskij, who is not only a
brilliant mind, but also one of the kindest person I ever met.

I am deeply grateful to the whole Singular team who believed in the letterplace
approach and allowed to include our methods into Singular. Especially the
mailing list and Dr. Hans Schönemann were very helpful towards any question
related to the Singular kernel.

Of course I would like to thank my colleagues in Aachen as well as in Passau for
the many discussions, the help with problems which were not always related to
work and for making working on the project really fun. I would like to mention
two of them especially: Benjamin Schnitzler, without whom the implementation
in Singular would not be possible, and Daniel Andres, who was my colleague
from the very beginning when I started my diploma thesis and who knows the
answer to absolutely every question regarding LATEX.

Last but not least I like to mention my family and my friends, who supported
me throughout the project and accepted my escape from the social life especially
during the last phase of the work.

9

Contents

1 Basic Structures 13
1.1 Monoids, Groups and Rings . 13

1.1.1 The free associative algebra 16
1.2 Orderings . 17

1.2.1 An overview on orderings 21
1.3 Gröbner Bases . 23

1.3.1 The Gröbner basis algorithm 25
1.3.2 Improvement to the algorithm 33

1.4 Conclusion . 34

2 The Letterplace Ring 37
2.1 Letterplace Correspondence for graded Ideals 37
2.2 La Scala’s Approach to Extend the Letterplace Correspondence . 43
2.3 Place Grading . 45
2.4 A new Invariant for the Shift-Action 53

2.4.1 Using the shift-invariant representation 55
2.5 Gebauer-Möller for the Letterplace Ring 56
2.6 Representation of Orderings over the Letterplace Ring 57
2.7 Conclusion . 64

3 Gröbner Basics 67
3.1 Truncated Gröbner Bases . 67
3.2 Elimination . 71
3.3 Syzygies . 74
3.4 Factor Algebras . 79

3.4.1 Dimension computations 79
3.4.2 Left ideals in factor algebras 86

3.5 Conclusion . 90

4 Implementation, Applications and Examples 93
4.1 Overview on the Implementation 93

4.1.1 freegb.lib . 94
4.1.2 fpadim.lib . 95
4.1.3 Other computer algebra systems 95

4.2 Examples and Applications . 96
4.2.1 Generalized tetrahedron groups 97

11

4.3 Moore-Penrose Inverse and Drazin Pseudo-Inverse 99
4.4 Quotients of the Modular Group 100
4.5 Fibonacci Groups . 102
4.6 Comparison to other Systems . 104

4.6.1 Examples . 104
4.7 Future Work and Conclusion . 105

12

1 Basic Structures

In this chapter we will briefly present the basic structures we are dealing with as
well as lay down some notations. Then we will discuss the notion of orderings for
the free algebra which will lead to the theory of Gröbner bases.

1.1 Monoids, Groups and Rings

In the first section we present notations and basic structures which are the the-
oretical layout for our work. While most of this should be known to the reader
we like to introduce the setup which will be needed in a later chapter when the
applications of this work are discussed.

1.1 Definition. Let M be a set.

• If there is a map · : M×M →M satisfying a ·(b ·c) = (a ·b) ·c ∀a, b, c ∈M
then (M, ·) is called a semi-group.

• If in addition there is an element e ∈M such that e ·a = a ·e = a ∀a ∈M
then (M, ·) is called a monoid.

• A monoid (M, ·) is called group if for any element a ∈M there is an element
a−1 ∈M such that a · a−1 = a−1 · a = e.

1.2 Remark. Often one refers to · as multiplication and the sign is omitted
whenever there is no confusion possible. For simplicity we often identify M with
(M, ·). Let M be a monoid.

• M is called commutative or abelian if ab = ba holds for all a, b ∈M .

• An element a ∈M is called unit if there exists b ∈M such that ab = ba = e.
The element b is called the inverse of a. If only ab = e holds we call b a
right inverse and a right invertible.

Of course one can also introduce the notion of left invertible when ba = e holds.

1.3 Definition. Let M be a monoid.

• A subset N ⊆M is called a submonoid of M if e ∈ N and ab ∈ N ∀a, b ∈
N .

13

• A subset G ⊆ M is called generating set for the submonoid N of M if N
is the smallest submonoid containing G. We write N = 〈G〉 and we have
N = {g1g2 · · · gk | gi ∈ G, k ∈ N}.

It is important to note that everything we state for monoids also holds for groups.
The following example of a monoid will be at the center of our studies.

1.4 Definition. Let M be a group.

• A subset N ⊆M is called a subgroup of M if e ∈ N and ab−1 ∈ N ∀a, b ∈
N .

• A subset G ⊆ M is called generating set for the subgroup N of M if N is
the smallest subgroup containing G. Again, we write N = 〈G〉 and we have
N = {g1g2 · · · gk | gi ∈ G, k ∈ N}.

1.5 Example. Let X be a set and denote by x1, x2, . . . the elements of X. By
〈X〉 we denote the set of all words xj1 · · ·xjk in X, including the empty word,
denoted by 1. We define a multiplication on 〈X〉 by concatenation of words.
With the identity element 1 〈X〉 becomes a monoid, the so called free monoid.
For a word w = xj1 · · ·xjk we call k the length of w, denoted by lg(w).
For two words w,w′ ∈ 〈X〉 we call w′ a prefix or left-divisor of w if w = w′u for
some u ∈ 〈X〉 and suffix or right-divisor if w = uw′ for some u ∈ 〈X〉. Finally,
w′ divides w, if there are u, v ∈ 〈X〉 such that w = uw′v and we write w′ | w.
For a subset S ⊂ 〈X〉 we call a word w ∈ 〈X〉 normal with respect to S, if there
is no s ∈ S such that s | w.

1.6 Definition. Let M be a monoid and X be a set. A map · : M × X → X
is called a (left) action if (mn) · x = m · (n · x) ∀m,n ∈ M,x ∈ X and 1 · x =
x ∀x ∈ X. The set M · x := {m · x | m ∈M} is called the orbit of x.

Equivalently the notion of right action can be introduced.

1.7 Definition. • Assume we have a set R equipped with two composition
maps + and ∗, such that (R,+) is a group and (R\{0}, ∗) is a monoid. We
call (R,+, ∗) a ring, if we have a∗(b+c) = a∗b+a∗c and (b+c)∗a = b∗a+c∗a.
We refer to + as addition and ∗ as multiplication and skip the multiplication
sign whenever there is no confusion possible.

• Let (R,+, ∗) be a ring. If (R \ {0}, ∗) is an abelian group we call R a field.

• Let (R,+, ∗) be a ring and (M,u) be an abelian group. If (R, ∗) is acting
on M (from the left) such that (r+s) ·m = r ·mus ·m ∀r, s ∈ R,m ∈M
and r · (m1 um2) = r ·m1 u r ·m2 ∀r ∈ R,m1,m2 ∈M then M is called
a R (left) module.

• A R-module M is called a R-algebra if M itself is a ring.

14

1.8 Remark. One often calls the underlying set ring (module, monoid) if the
composition does not need to be introduced or is clear from the context.
If the ring R acts from the right on the R-module M such that m · (r + s) =
m · r um · s ∀r, s ∈ R,m ∈ M and (m1 um2) · r = (m1 · r) u (m2 · r) ∀r ∈
R,m1,m2 ∈ M we call M a right module and if M is a left and a right module
we call M a bi-module.

Assume we have a ring (R,+, ∗). We can define the opposite ring Ropp := (R,+, ?)
by setting a ? b = b ∗ a. Therefore, every right R-module M is a left Ropp module
and a bi-module can be viewed as a R×Ropp left module.

1.9 Definition. • Let (M, ·) and (N, ∗) be two monoids. A map f : M → N
is called monoid homomorphism if f(x · y) = f(x) ∗ f(y) ∀x, y ∈ M and
f(1M) = 1N .

• A monoid homomorphism between two groups M and N is called group
homomorphism.

• Let (M,u, ·) and (N,+, ∗) be two rings. A map f : M → N is called
ring homomorphism if it is a monoid homomorphism between (M,u) and
(N,+) as well as between (M, ·) and (N, ∗).

If f is bijective, then its inverse f−1 is also a homomorphism and f is called an
isomorphism in this case.

1.10 Definition. Let R be a ring and M be a R-module.

• A subset S ⊆ R is called a subring of R, if 1R, ab, a+ b ∈ S∀a, b ∈ S and S
is a ring.

• A subset N ⊆ M is called a (left) submodule of M , if N is a subgroup of
M and rn ∈ N ∀r ∈ R, n ∈ N .

• A subset I ⊆ R is called a two-sided ideal, if sr, rs ∈ I ∀s ∈ I, r ∈ R and
(I,+) is a subgroup of (R,+). An ideal I is called proper, if I 6= R.

Again, one can introduce the notion of right and bi-submodule as well as right
and left ideals. Note that if R is viewed as a R-module than two-sided ideals are
exactly the sub-bimodules of R and we can define left and right ideals accordingly.
If I is an (two-sided) ideal in R we write I E R.

1.11 Remark. We like to point out two special kinds of modules. Let M be a
R-module.

• We call M a free module if there exists a generating set E for M such that
for all finite subsets Ẽ ⊆ E we have that

∑
ei∈Ẽ

riei = 0 implies ri = 0 ∀i.

15

• A R-module P is called projective if there is a free R-module M and another
R-module N such that M = P ⊕N .

1.12 Remark. Let S be a submodule of the R-module M . Then we have an
equivalence relation on M given by a ∼ b ⇔ a− b ∈ S.

1.13 Definition. Let S be a submodule of the R-module M . Then the factor
module M/S is defined by the equivalence relation given by S. The elements
of M/S are the equivalence classes [a] = {a + b | b ∈ S} and M/S is again a
R-module.

This definition extends to algebras and rings and we call the corresponding struc-
tures factor algebra or factor ring respectively.

1.14 Definition. Given a monoid M and a field K we can define the monoid
ring KM as the set of all formal sums {

∑
i

aimi | ai ∈ K,mi ∈ M}. It is a

K-vector space via k
∑
i

aimi =
∑
i

(kai)mi ∀k ∈ K, (
∑
i

aimi) ∈ KM and a ring

via (
∑
i

aimi)(
∑
j

bjnj) =
∑
i,j

(aibj)(minj).

As an application of the structures and to conclude this section we present the
free algebra which will be the main tool throughout this work.

1.1.1 The free associative algebra

From now on let K be an arbitrary field and 〈X〉 be the free monoid in a countable
numbers of generators, denoted by x1, . . . , xn,
We define the free algebra as the monoid ring

K〈X〉 := {
∑
i∈I

αimi | αi ∈ K,mi ∈ 〈X〉, I an arbitrary index set,

only finitely many αi 6= 0}

and call the elements of K〈X〉 polynomials and the elements of 〈X〉 embedded in
K〈X〉 together with the identity 1 monomials.

Note that everything we say about left ideals can be easily translated to right
ideals.
Again, one can consider the enveloping algebra K〈X〉 ⊗ K〈X〉op, where K〈X〉op
denotes the opposite algebra, that is, K〈X〉 endowed with the multiplication
a ∗ b = b · a ∀a, b ∈ K〈X〉. Then K〈X〉 is a K〈X〉 ⊗ K〈X〉opp module and the
action of K〈X〉 ⊗K〈X〉opp on K〈X〉 is given by:

K〈X〉 ⊗K〈X〉opp ×K〈X〉 → K〈X〉 : (l ⊗ r, p) 7→ l · p · r.

As an example we state a theorem which shows how the free algebra can be used
to study general structures.

16

1.15 Proposition. Any finitely presented algebra A is isomorphic to a factor of
the free algebra.

Proof: Say A is generated by {ei | i ∈ S ⊆ N} and take K〈X〉 in the same
number of variables. Then one has a homomorphism φ : K〈X〉 → A : xi 7→ ei
and the Homomorphism Theorem holds the claim. q.e.d.

This can be used to study many interesting rings, like group and monoid rings,
and different kinds of algebras, like G-algebras or path algebras. We will see in
a later chapter some of those examples. For now we show how a group can be
represented as a factor of the free algebra.

1.16 Example. Consider a group G generated by {a1, . . . , an}. Moreover, as-
sume G is finitely presented, so we have finitely many relations {r1, . . . , rs} on
the generators. Consider the ring homomorphism φ : K〈x1, . . . , xn〉 → KG. We
then have K〈X〉/ ker(φ) ∼= KG. Since the group G itself forms a K-basis of KG
a K-basis of K〈X〉/ ker(φ) will represent the elements of the group.

1.2 Orderings

We now introduce orderings. While the definition works for (non-empty) sets in
general, we will study orderings for the free algebra in detail.

1.17 Definition. An (strict total) ordering < is a total, transitive and asym-
metric relation on a non-empty set X, that is

• If a < b then ¬(b < a) (asymmetry);

• If a < b and b < c then a < c (transitivity);

• Either a < b or b < a ∀a, b ∈ X, a 6= b (totality).

From now on let 〈X〉 be a monoid with neutral element 1 ∈ 〈X〉.

1.18 Definition. A total ordering < on 〈X〉 is called a

• well-ordering, if every non-empty subset of X has a least element with
respect to <.

• reduction ordering or compatible with multiplication, if for all m1,m2, l, r ∈
X with m1 < m2 we have lm1r < lm2r.

• monomial ordering, if it is a well-ordering and a reduction ordering. In
particular, 1 < x ∀x ∈ X.

17

Note that for a reduction ordering we have if m,n ∈ 〈X〉 are such that n divides
m, that is, if there exists l, r ∈ 〈X〉 with m = lnr, denoted by n | m, then we
have n < m, because for 1 < l, r ∈ 〈X〉 we have n = 1n < ln = ln1 < lnr = m.
With a given strict and total ordering on 〈X〉 we can write each polynomial
f ∈ K〈X〉 \ {0} in the free algebra K〈X〉 over 〈X〉 uniquely as f =

∑k
i=1 cimi,

such that ci ∈ K \ {0} and mi ∈ 〈X〉 with m1 < · · · < mk.

1.19 Example. Let 〈X〉 be the free monoid generated by {x1, . . . , xn} and as-
sume that x1 < x2 < . . . < xn, so we have a so-called linear preordering.

• Let µ, ν ∈ 〈X〉 \ {1}, such that µ = xj1xj2 · · ·xjk , ν = xl1xl2 · · ·xlk̃ . Then
we have:

µ <llex ν ⇐⇒ ∃1 ≤ i ≤ min{k, k̃} : xjw = xlw ∀w < i ∧ xji < xli
or ν = µν̃ for some ν̃ ∈ 〈X〉.

This is called the left lexicographical ordering.
Analogously one can define the right lexicographical ordering :

µ <rlex ν ⇐⇒ ∃1 ≤ i ≤ min{k, k̃} : xjk−w = xlk̃−w

∀w such that min{k, k̃} − w > i ∧ xji < xli
or ν = ν̃µ for some ν̃ ∈ 〈X〉.

• Take µ, ν as before. We define:

µ <gradlex ν ⇐⇒

{
k < k̃ , or

k = k̃ and µ <llex ν.

This is called the graded or degree (left) lexicographical ordering.

• Take ω = (ω1, . . . , ωn) ∈ Rn \ {0} and again let µ, ν ∈ 〈X〉 as before.

µ <ω ν ⇐⇒


k∑
i=1

ωji <
k̃∑
i=1

ωli or

k = k̃ and µ <llex ν.

This is called the weighted degree (lexicographical) ordering with weight
vector ω.

1.20 Remark. The degree lexicographical ordering is a monomial ordering and
enjoys many nice properties.
The (left or right) lexicographical ordering is not a monomial ordering, in fact
it is not even multiplicative: Take K〈x, y〉 with the left lexicographical ordering.
Then we have y2 > y, but y2x < yx. Nevertheless, the lexicographical ordering
gives rise to many other orderings and for that it is of interest.

It is important to note that there are different meanings of the word degree, which
are commonly confused with one another.

18

1.21 Definition. For a given ordering< we define the multi-degree of a monomial

m = xk1i1 · · ·x
kj
ij

as the j-tuple (k1, . . . , kj) and the total degree as
j∑
r=1

kr. If < is a

weighted degree ordering we also define the weighted total degree of m as
j∑
l=1

ωilkl

and denote it by degω(m). Moreover, by degxi(m) we denote the number of
occurrences of xi in m.
We define the leading monomial of a polynomial f =

∑k
i=1 cimi 6= 0 as the

maximum (with respect to <) of the set {mi | ci 6= 0} and denote it by lm(f).
Also we call the coefficient by lm(f) the leading coefficient, denoted by lc(f) and
we define the leading term of f as lt(f) = lc(f) · lm(f). The (total) degree of
a polynomial f is defined to be the (total) degree of its leading monomial. We
denote the total degree of f by tdeg(f) and the multi-degree by deg(f).
Finally we will denote with L(〈G〉) the leading ideal of 〈G〉, which is the ideal of
K〈X〉 generated by the leading monomials of G.
Since K is a field there is no loss of generality to assume that all polynomials of
a given generating set are monic, that is the leading coefficient equals 1.

1.22 Definition. Consider the elements of K〈X〉 as elements of K〈X,Y〉. If
K〈X,Y〉 is equipped with a monomial ordering < we denote the restriction of <
on K〈X〉by <|X. For m,n ∈ K〈X〉 holds: m <|X n :⇔ m < n ∀m,n ∈ K〈X〉.

1.23 Lemma. If < is a monomial ordering on K〈X,Y〉, then the restriction <|Y
of < on K〈Y〉 is again a monomial ordering.

Proof: By definition we have m1 <|Y m2 ⇔ m1 < m2 ∀m1,m2 ∈ 〈Y〉,
henceforth the properties of < can be easily translated to <|Y. q.e.d.

As we will see in a later chapter, another important type of ordering are elimi-
nation orderings.

1.24 Definition. Let K〈X,Y〉 be a free algebra in the variables X = {x1, . . . , xn}
and Y = {y1, . . . , ym}. An ordering < is called elimination ordering for X if ∀f ∈
K〈X,Y〉 \ {0} the property lm(f) ∈ 〈Y〉 already implies f ∈ K〈Y〉 ⊂ K〈X,Y〉.

1.25 Lemma. Assume we have an elimination ordering < for X on 〈X,Y〉, then
we have x > m ∀x ∈ X,m ∈ 〈Y〉.
Proof: Take arbitrary x ∈ X and m ∈ 〈Y〉. In order to fulfill the elimination
property we have lm(x+m) = x, since m is a monomial in 〈Y〉. q.e.d.

1.26 Corollary. Let K〈X,Y〉 be as before and take an elimination ordering <
for X. Then x > yi1 · · · yir ∀x ∈ X, yij ∈ Y, 1 ≤ j ≤ r, r ∈ N.

In commutative algebra an easy way to obtain an elimination ordering is to
introduce weights for the variables: those of X will have weight one and those of
Y will have weight zero. However, in the non-commutative case this leads to a

19

ordering which is not a reduction ordering.
One way to get to a monomial ordering which has the elimination property is to
start with a preordering and use the multiplication rule to expand it.

1.27 Example. Take K〈x, y〉 and say we want an elimination ordering for x. We
know that x > yn ∀n ∈ N and yn+1 > yn, the latter one being a consequence of
multiplicativity.
Then we can extend x > y2 > y to

x2 >

{
xy
yx

}
> x > y2 > y

using multiplicativity. In order to get a complete ordering for all monomials up
to total degree 2 we have to choose either xy > yx or xy < yx. For this example
we choose xy > yx.
Applying left and right multiplication of the variables one more time we will get

x3 > x2y > xyx > yx2 > x2 > xy2 > yxy >

{
xy
y2x

}
> yx > x > y3 > y2 > y.

So we have to choose whether xy > y2x or y2x > xy, each choice giving us an
elimination ordering up to total degree 3.
Continuing this procedure one has to make more choices, depending on the total
degree (and in the general case on the number of variables). In a later chapter
we will discuss the notion of a good representation for an ordering. For now we
will just give two examples of a monomial elimination ordering.

• For m1,m2 ∈ 〈X〉 we say m1 >Elim m2 if we have degxi(m1) > degxi(m2) for
some i ∈ n and degxl(m1) = degxl(m2)∀l ∈ {1, . . . , i − 1} or degxi(m1) =
degxi(m2)∀i ∈ n and m1 >llex m2. This ordering works similar to the
lexicographical ordering that is for any chosen j ∈ N with 1 < j ≤ n it is
an elimination ordering for xj, . . . , xn.

• For m1,m2 ∈ 〈X,Y〉 we say m1 >elim m2 if we have degX(m1) > degX(m2)
or degX(m1) = degX(m2) andm1 = lm2r for some l, r ∈ 〈X〉 or degX(m1) =
degX(m2), m1 6= lm2r for all l, r ∈ 〈X〉 and m1 >llex m2.

The first example corresponds to the choice y2x > xy, while the second ensures
that xy > y2x.

Since we have chosen 1 < x for each variable x it is clear that >Elim and >elim

are well orderings.
To see that these are indeed reduction orderings it is sufficient to check the
condition for each variable x ∈ X and x ∈ {X ∪Y} respectively. So assume we
have m1,m2 ∈ K〈X〉 with m1 >Elim m2 and take xi ∈ X. Since multiplication

20

from left or right does not change the relation between degxi(m1) and degxi(m2)
we only have to prove the claim in the case of degxi(m1) = degxi(m2)∀i ∈ n, which
also implies tdeg(m1) = tdeg(m2) and so the claim follows from fact that the
degree lexicographical ordering is a reduction ordering. Note that we could change
the second condition into degxi(m1) = degxi(m2)∀i ∈ n and m1 >gradlex m2 to
get the exact same ordering.
For <elim the proof follows similarly.

Before we conclude this section with some very interesting examples of orderings
we like to introduce the notion of gradings here.

1.28 Definition. • A ring R is called graded if there is a decomposition into
additive groups R =

⊕
i∈N

Ri such that r ∈ Rk, s ∈ Rj ⇒ rs ∈ Rk+j ∀k, j ∈

N, that is RkRj ⊆ Rk+j. Elements of any factor Ri of the decomposition
are known as homogeneous elements of degree i. An ideal I E R is called
homogeneous if every element p ∈ I is the sum of homogeneous elements
that belong to I.

• Let R be a ring and A be a R-algebra. A filtration of A is an increasing
sequence of subspaces {0} ⊂ A1 ⊂ A2 ⊂ . . . ⊂ A such that A =

⋃
i∈N

Ai and

AjAk ⊆ Aj+k ∀j, k ∈ N.

Note that each graded ring is also a filtered algebra.
It is easy to see that on the free algebra monomial orderings induce a grading
whenever one has the notion of a (weighted) total degree. However, not every
grading is induced by an ordering. We will need this in a later chapter.

To close this section we present an overview of some examples of orderings.

1.2.1 An overview on orderings

E.L. Green stated in [Gre96] that one of the problems with answering questions
about universal Gröbner bases is that admissible orderings are not classified. In
fact most works about non-commutative Gröbner basis theory do not focus on
the question of orderings and it is often assumed that a good ordering exists and
even monomial elimination orderings are not studied well.
While we do not intend to work on a complete classification we want to give
an overview on some somehow unusual examples we encountered to encourage
further studies.

1.29 Example. Assume we have the free algebra K〈X〉 generated by n vari-
ables. We define an ordering inductively. For monomials m1,m2 ∈ K〈x1〉 we
set m1 = xk11 > m2 = xk21 ⇔ k1 > k2. Let 1 < k ≤ n. Then every
monomial m ∈ K〈x1, . . . , xk〉 can be written as m = m1xkm2xk . . . xkmr with
mi ∈ K〈x1, . . . , xk−1〉. Say m = m1xkm2xk . . . xkmr and n = n1xkn2xk . . . xknl

21

are two monomials. Then m > n if r > l or if r = l and there exists j such that
mi = ni for i > j and nj < mj.
This ordering can be used to present so called G-algebras as factors of the free
algebra and was discovered by Mora and presented in [KRW90]. Examples for
G-algebras include Weyl algebras and Ore extensions of associative rings (see for
example [Lev05]).
Note that this ordering has also the elimination property and was studied in this
regard in [BB98].

1.30 Example.
For n ≥ 2 define On(λji) as the K-algebra generated by x1, . . . , xn with the
relations xjxi = λjixixj, λji ∈ K, 1 ≤ i ≤ j ≤ n. We call On(λji) the skew
polynomial algebra.
Obviously there is an canonical K-algebra epimorphism π : K〈X〉 → On(λji). For
any given ordering ≺ on On(λji) we define a new ordering on K〈X〉 by setting

u <et v if

{
π(u) ≺ π(v), or

π(u) = π(v) and u <lex v
for any two monomials u, v ∈ 〈X〉.

We call <et the lexicographic extension. If ≺ is a monomial ordering on On(λji)
then <et is a monomial ordering as well as proven in [Li12].
This ordering is used to determine the correlation between Gröbner bases in K〈X〉
and On(λji). This examples gives rise to whole class of examples by extending
orderings from other algebras to K〈X〉, whenever there is an epimorphism.

1.31 Example. Consider a free algebra A := K〈x1, . . . , xn, y1, . . . , yr〉 in n + r
variables and take the set A≤d := K〈x1, . . . , xn, y1, . . . , yr〉≤d, that is the set of all
polynomials with unweighted total degree less or equal than d ∈ N.
Equip A with a weighted degree orderings, where the xi get the weight 1000d and
the yi the weight 1. Because this is a positive weight ordering on A it is a well
ordering, as stated before.
On A≤d on the other hand this ordering behaves like an elimination ordering,
since there is no monomial in K〈y1, . . . , yr〉≤d that is greater or equal to any
monomial containing at least one xi. This can be used to mimic an elimination
ordering when a degree bound is applied. For a detail description we refer to
[Tra07].

1.32 Example. Let X and Y be to disjoined sets of variables and consider K〈X〉
and K〈Y〉 equipped with monomial orderings <X and <Y.
Suppose u ∈ 〈X,Y〉. Then u can be written as u = a0b1a1b2 · · · ar−1brar, where
bi ∈ 〈Y〉 and ai ∈ 〈X〉. Let v ∈ 〈X,Y〉 be another monomial and write it as
v = c0d1c1 · · · cs−1dscs corresponding to the decomposition before. Now we say

u < v if

{
b1 · · · br <Y d1 · · · ds, or

b1 · · · br = d1 · · · ds and (a0, . . . , ar) <lex,X (c0, . . . , cr),

where <lex,X is the lexicographic ordering on (〈X〉)r+1 induced by <X. We call

22

<X o <Y:=< the wreath product ordering of <X and <Y.
Sims proved in [Sim94] that if <X and <Y are monomial orderings then so is
<X o <Y.

1.3 Gröbner Bases

This section introduces the general theory of non-commutative Gröbner bases.
We go along the lines of [Stu10], where a similar section was presented. We will
omit some of the details here and refer the interested reader to the original source.

1.33 Definition. Let G ⊂ K〈X〉\{0} and 〈G〉 =: I. A normal form of f ∈ K〈X〉
with respect to G is an element g ∈ K〈X〉 such that f − g ∈ I and either g = 0
or lm(gi) - lm(g) ∀gi ∈ G. We denote a normal form of f with respect to G by
NF(f,G).
A subset G ⊂ I is called a Gröbner basis of I if the leading monomial of an
arbitrary element in I is a multiple of the leading monomial of an element in G.
Equivalently, G is a Gröbner basis if 〈{lm(g) | g ∈ G}〉 = L(I).

1.34 Remark. Note that a Gröbner basis always exists, since we can take G =
I \ {0}. This is due to the fact that we do not demand our Gröbner basis to be
finite. In fact there are some ideals, which do not posses a finite Gröbner basis.
One can easily see the relevance of Gröbner bases: If G is a Gröbner basis of I
then a normal form for f ∈ I is given by 0 and this is the only choice we have.
However, neither the normal form nor the Gröbner basis are unique in general.
In order to get uniqueness we refine the definition a little bit.

1.35 Definition. A normal form g =
k∑
i=0

aiti, ai ∈ K, ti ∈ X of f ∈ K〈X〉

with respect to G is called reduced, if g is monic, that is, its leading coefficient is
1, and if lm(gw) - ti ∀i = 0, . . . , k, gw ∈ G. We often speak about the normal
form.

Before we solve our uniqueness problem, let us see the general idea on constructing
normal forms.

1.36 Definition. Let {gi | i ∈ J, J an arbitrary index set} = G ⊂ K〈X〉 and
〈G〉 =: I.

• Let τ̃i : X → K〈X〉 :

x 7→

{
A(lm(gi)− lc(gi)

−1gi)B, if x = Alm(gi)B for some A,B ∈ X

x otherwise

and let τi : K〈X〉 → K〈X〉 be the K-linear continuation of τ̃ . One calls τi
a reduction with gi.

23

• Let f ∈ K〈X〉. One says that τi acts trivially on f , if the coefficient
of Alm(gi)B is zero in f for all A,B ∈ X. f is called irreducible, if all
reductions act trivially on f .
In other words τi(f) = f ∀i ∈ J .

It is important to note that Gröbner bases are a special generating set.

1.37 Lemma. Let G be a Gröbner basis of a given ideal I. Then I = 〈G〉.

Proof: Since G ⊂ I we have 〈G〉 ⊂ I, so take f ∈ I \ 〈G〉 with minimal degree,
that is f := min

deg(f̃)
{f̃ ∈ I \ 〈G〉} (the minimum exists because we assume that <

is a monomial ordering) and say without loss of generality that f is monic. By
the definition of a Gröbner basis there exists g ∈ G such that lm(g) | lm(f), say
lm(f) = Alm(g)B for some A,B ∈ X. Then f̃ = f − AgB ∈ I and deg(f̃) <
deg(f), so by minimality f̃ ∈ 〈G〉. But then f = AgB+f̃ = AgB+

∑
p∈P⊂〈G〉

appbp ∈

〈G〉, which is a contradiction. q.e.d.

We now state an algorithm which allows one to compute normal forms with
respect to an arbitrary set of polynomials. We will focus on the case that this
set is a generating set, although this is not necessarily a requirement.

1.38 Algorithm.

Input: An ideal I E K〈X〉 with a given generating set G = {gi | i ∈ J},
f ∈ K〈X〉

Output: g, a reduced normal form of f w.r.t. G
Set g = f .
while τi acts non-trivially on g for some i ∈ J do
g = τi(g);

end while;

return g;

1.39 Remark. It is still not clear that the normal form is unique and in fact
it is not. This is due to the fact that G is an arbitrary generating set and the
construction of the normal form given in the algorithm depends on the choice
of the reductor. The normal form will become unique once we find a special
Gröbner basis, such that the choices we have to make are minimal.
Moreover we have no guarantee that the procedure terminates. Therefore one
needs to introduce the notion of reduction-finite elements, which is in general a
property induced by the ordering. For details we refer the interested reader to
[Stu10]. For now we just introduce the properties which are required for a normal
form in order to be unique.

24

1.40 Definition. Let G ⊂ K〈X〉 and 〈G〉 =: I.

• G is called simplified or minimal, if lm(g) /∈ L(G \ {g}) ∀g ∈ G.

• G is called reduced Gröbner basis, if G is simplified, a Gröbner basis and
for every g ∈ G we have:

1. g is monic.

2. g − lm(g) is in reduced normal form with respect to I.

1.41 Remark. Note that we build the normal form with respect to I. This is only
a technical issue: in fact it would be absolutely equivalent if we had demanded a
normal form with respect to G, since a Gröbner basis is a generating set and if
a monomial is divisible by some leading monomial of a polynomial contained in
I, then it is divisible by a leading monomial of an element of the Gröbner basis.
However, with this formulation the reduction of g − lm(g) does not depend on
the choice of the Gröbner basisas long as the ordering is fixed.
In order to prove the existence of a unique normal form one has to introduce the
term of reduction-unique elements. We will not go into detail about that here,
as stated before, but it is important that a reduced Gröbner basis allows one to
compute a unique normal form with respect to a fixed monomial ordering.

1.3.1 The Gröbner basis algorithm

For this section we will always assume that our ideal I is finitely generated, due
to the fact that we want to do some computations, which would be quite difficult
if we start with an infinite generating set. Nevertheless this assumption is not
necessary. Note that even with a finite generating set we may get a Gröbner basis
which is infinite, as we will see in an example later on. We will follow mainly
[Stu10].
Again we may assume that all polynomials in a generating set are monic.

1.42 Definition. Let G = {g1, . . . , gω} ⊂ K〈X〉.
We call a polynomial f weak with respect to G, if f =

ω∑
k=1

∑
j

ck,jlk,jgkrk,j, where

ck,j ∈ K and lk,j, rk,j ∈ X such that lk,jlm(gk)rk,j ≤ lm(f) ∀k = 1, . . . , ω.
Let H ⊂ K〈X〉. A polynomial f is called reducible from H with respect to G,
if weakness with respect to G of all elements of H implies weakness of f with
respect to G.

Note that weakness is a special form of generating f with elements of G. Since it
is allowed to use the same generator more than one time it should be allowed for
weakness as well. For example the polynomial p := xy + yx + xyx ∈ 〈y〉 should
be weak with respect to {y}.
Again one may avoid the twin-sum in the definition of weakness by considering
the enveloping algebra.

25

1.43 Definition. Let G = {gi | 1 ≤ i ≤ ω} be a set of monic polynomials. An
obstruction of G is a six-tuple (l, i, r;λ, j, ρ) with 1 ≤ i, j ≤ ω and l, r, λ, ρ ∈ X
such that lm(gi) ≤ lm(gj) and llm(gi)r = λlm(gj)ρ. For any given obstruction we
define the corresponding S-polynomial as s(l, i, r;λ, j, ρ) = lgir − λgjρ. A set D
of polynomials is called basic for G if every S-polynomial of G is reducible from
D with respect to G.

1.44 Motivation. Starting with a generating set for I the set of all non-weak
S-polynomials will be a Gröbner basis. This seems to be an easy way to compute
a Gröbner basis, since one only has to compute all S-polynomials and check if
they are weak or not. This procedure has the disadvantage that it would take
forever, literally, since the set of all obstructions is infinite. So our medium-term
issue is to discard most of these obstructions.

1.45 Lemma. Let G = {gi | 1 ≤ i ≤ ω} be a set of monic polynomials and
(l, i, r;λ, j, ρ) a weak obstruction, that is, the corresponding S-polynomial is weak
with respect to G. Then all obstructions (l̃, i, r̃; λ̃, j, ρ̃) with l̃ = w1l, r̃ = rw2,
λ̃ = w1λ and ρ̃ = ρw2, where w1, w2 are arbitrary monomials, are also weak.

Proof: Set s := s(l, i, r;λ, j, ρ) and s̃ := s(l̃, i, r̃; λ̃, j, ρ̃). Because the obstruction

is weak we can write s = lgir−λgjρ =
ω∑
k=1

∑
l

ck,llk,lgkrk,l with ck,l ∈ K,lk,l, rk,l ∈ X,

lk,llm(gk)rk,l ≤ lm(s) ∀k = 1, . . . , ω. Now we have s̃ = l̃gir̃ − λ̃gj ρ̃ = w1(lgir −
λgjρ)w2 = w1sw2 = w1(

ω∑
k=1

∑
l

ck,llk,lgkrk,l)w2 =
ω∑
k=1

∑
l

ck,l l̃k,lgkr̃k,l with

l̃k,l = w1lk,l and r̃k,l = rk,lw2.
Furthermore we see that l̃k,llm(gk)r̃k,l ≤ w1lm(s)w2 = lm(s̃), which shows that s̃
is weak with respect to G. q.e.d.

So multiples of obstructions need not be considered. However the set we have to
consider is still infinite. But the lemma helps us to prove our claim in 1.44.

1.46 Theorem. For a set G of polynomials generating an ideal I of K〈X〉, the
following statements are equivalent:

(i) G is a Gröbner basis.

(ii) The reduced normal form of each polynomial in I is equal to 0.

(iii) Each S-polynomial of G is weak with respect to G.

(iv) The empty set is a basic set for G.

Proof:
(i) =⇒ (ii): Induction with respect to the monomial ordering <:
The normal form of 0 equals 0. Take 0 6= f ∈ I and assume f is monic.

26

Since G is a Gröbner basis there exists g ∈ G such that lm(g) | lm(f), that
is, ∃l, r ∈ X : llm(g)r = lm(f). Because of f, g ∈ I we have f̃ := f − lgr ∈ I
and deg(f̃) < deg(f). By the induction hypothesis, the normal form of f̃ equals
zero and we obtain that the normal form of f equals zero as well.
(ii) =⇒ (iii): Suppose s = s(l, i, r;λ, j, ρ). By assumption the normal form of s
with respect to G equals 0, so s is weak by the definition of weakness.
(iii)⇐⇒ (iv): Clear by definition.
(iii) =⇒ (i): Suppose f ∈ I, but lm(f) /∈ 〈{lm(g) | g ∈ G}〉 and lm(f) is
minimal with respect to <. Now there are at least two polynomials gi, gj ∈ G,
gi 6= gj, such that f =

∑
l

ci,lli,lgiri,l +
∑
l

cj,llj,lgjrj,l +
∑

gk∈G,gk 6=gi,gj

∑
l

ck,llk,lgkrk,l,

ck,l ∈ K, lk,l, rk,l ∈ X ∀k and t := lm(
∑
l

li,lgiri,l) = lm(
∑
l

lj,lgjrj,l) > lm(f).

Now by assumption s := s(lm(li,l), i, lm(ri,l); lm(lj,l), j, lm(rj,l)) is weak and s =∑
k∈J

∑
l

ak,lgkbk,l, where J is an arbitrary set of indices and gk ∈ G, such that all

leading terms of gk are smaller than t. Then f =
∑
l

lc(li,lri,l)lc(lj,lrj,l)
−1lj,lgjrj,l+∑

l

lc(li,lri,l)
∑
k∈J

ak,lgkbk,l +
∑
h6=i,j

∑
l

lh,lghrh,l is an expression of f with fewer sum-

mands with leading term equal to t. If we do this iteratively until we have only
one term equal to t left, we reach a contradiction and we can conclude that G is
a Gröbner basis. q.e.d.

Note that the generating set is not taken to be finite. If we do not enumerate the
polynomials in a generating set G, we often write (l, g, r;λ, p, ρ) for the obstruc-
tion of g, p ∈ G.
Now we focus on finding a finite set of obstructions, from which we can construct
a Gröbner basis. Therefore we introduce the concept of overlap.

1.47 Definition. We say two monomials t1, t2 ∈ X have overlap b ∈ X or overlap
at b ∈ X if there are a, c ∈ X such that t1 = ab and t2 = bc or t1 = ba and t2 = cb
or t1 = b and t2 = abc. If 1 is the only overlap between t1 and t2 we say the
monomials have no overlap. Equivalently the monomials are called coprime.
An obstruction (l, i, r;λ, j, ρ) is said to have no overlap if there exists w ∈ X such
that llm(gi)r = llm(gi)wlm(gj)ρ or llm(gi)r = λlm(gj)wlm(gi)r.

This generalizes the notion of a common divisor. As in the commutative case one
wants to construct only those S-polynomials which do not reduce to zero or at
least as few as possible more. Therefore the next propositions are useful.

1.48 Lemma (Product Criterion). Let g1, g2 ∈ K〈X〉 be such that l1 := lm(g1)
and l2 := lm(g2) have no overlap. Then every obstruction (l, g1, r;λ, g2, ρ) with
l, r, λ, ρ ∈ X has no overlap.

Proof: Since l1 and l2 have no overlap lm(lg1r) = lm(λg2ρ) implies that either
ll1 and λ or l1r and ρ have overlap l1.
Assume the first case is true. Then r and l2 overlap at l2, say r = l2r. Then

27

r = ρ and therefore ll1r = ll1l2r = ll1l2ρ which shows that (l, g1, r;λ, g2, ρ) has
no overlap.
Now if l1r and ρ overlap at l1 then l and λl2 have overlap l2 and l = ll2 = λl2.
Hence we get ll1r = λl2l1r and again we obtain that (l, g1, r;λ, g2, ρ) has no
overlap. q.e.d.

1.49 Theorem. Let G = {gi | i = 1, . . . , ω} ⊂ K〈X〉. Every obstruction without
overlap is reducible from an S-polynomial with overlap with respect to G.

Proof: Let b = (l, i, r;λ, j, ρ) be an obstruction without overlap and denote by
s its S-polynomial. Since llm(gi)r = λlm(gj)ρ we have either r = wlm(gj)ρ or
l = λlm(gi)w.
If the former is valid then we also have λ = llm(gi)w and by Lemma 1.45
b = (l, i, wlm(gj)ρ; llm(gi)w, j, ρ) is reducible from (1, i, wlm(gj); lm(gi)w, j, 1).
Therefore we assume l = ρ = 1.
Write gi =

∑
h

chth, gj =
∑
p

dpup with th, up ∈ 〈X〉, ch, dp ∈ K \ {0}, such

that th > th+1 and up > up+1. Now s = gir − λgj = giwlm(gj) − lm(gi)wgj =
giw(gj −

∑
p,p 6=1

dpup)− (gi−
∑
h,h 6=1

chth)wgj =
∑
h,h6=1

chthwgj −
∑
p,p 6=1

dpgiwup. Assume

c2t2wu1 = d2t1wu2, that is the leading terms t2wlm(gj) and lm(gi)wu2 of the
two summations cancel each other. Since t2 < t1 and u2 < u1 this only occurs
if c2 = d2 and there are v1, v2 ∈ 〈X〉, such that t1 = t2v1 and u1 = v2u2 with
v1w = wv2. If w is a left divisor of v1, say v1 = wv′1, then v2 = v′2w, which
implies that v′1 = v′2 and therefore (1, i, wlm(gj); lm(gi)w, j, 1) is reducible from
(1, i, v′1lm(gj); lm(gi)v

′
1, j, 1) by Lemma 1.45. If w is not a left divisor of v1, then

w has a self overlap, that is, w = v1w
′ = w′v2. and again we apply Lemma 1.45.

So we may assume w = 1 that is, b = (1, i, lm(gj); lm(gi), j, 1). We find

s = gilm(gj)− lm(gi)gj = lm(gi)lm(gj) +
∑
h,h6=1

chthlm(gj)− lm(gi)lm(gj)

−
∑
p,p 6=1

lm(gi)dpup =
∑
h,h 6=1

chth(gj −
∑
p,p 6=1

dpup)−
∑
p,p 6=1

(gi −
∑
h,h6=1

chth)dpup

= (
∑
h,h6=1

chth)gj − gi(
∑
p,p 6=1

dpup) ∈ 〈gi, gj〉,

so s is weak with respect to G, which implies that it is reducible from G. q.e.d.

The theorem states: If an S-polynomial s(l, gi, r;λ, gj, ρ) is not weak with respect
to G, then the leading monomials of the two polynomials gi and gj have an
overlap. This will help us to find a finite basic set.

1.50 Lemma. Let G = {gi | i = 1, . . . , ω} ⊂ K〈X〉. There is a finite basic set D
of S-polynomials of G, such that every S-polynomial of G in D corresponds to an
obstruction (l, i, r;λ, j, ρ) with overlap and with either one of the two parameters
{l, λ} and one of {r, ρ} equal to 1 or λ = ρ = 1.

28

Proof: We write s = s(l, i, r;λ, j, ρ), lm(gi) = m1 . . .mp and lm(gj) = n1 . . . nq
with mk, nk̃ ∈ 〈X〉 of degree 1, k = 1, . . . , p; k̃ = 1, . . . , q (this means that each
mk and nk̃ corresponds to an xi, i = 1, . . . , n). Now if s is not weak, then it must
have some overlap. In particular, lm(gi) and lm(gj) must overlap. This can occur
in three ways:

m1 · · ·mh = nq−h+1 · · ·nq, 1 ≤ h < p,

n1 · · ·nh = mp−h+1 · · ·mp, 1 ≤ h < p,

m1 · · ·mp = nh+1 · · ·nh+p, 1 ≤ h < q − p.

In particular, for every two polynomials the number of possible overlaps is finite.
We show that D needs to contain at most one S-polynomial for every overlap,
which completes the proof. Assume lm(gi) and lm(gj) have nontrivial overlap. To
satisfy the equation llm(gi)r = λlm(gj)ρ, the factors that are not in the overlap
have to be in λ or ρ respectively in l or r (cf. proof of Lemma 1.48). So for every
obstruction corresponding to some overlap the monomials llm(gi)r and λlm(gj)ρ
have to be equal to l̃wr̃ and λ̃wρ̃, respectively, with w equal to

w = n1 · · ·nq−hlm(gi) = lm(gj)mh+1 · · ·mp,

w = lm(gi)nh+1 · · ·nq = m1 · · ·mp−hlm(gj),

w = n1 · · ·nhlm(gi)nh+p+1 · · ·nq = lm(gj),

in the respective cases. Now by Lemma 1.45 these obstructions are weak except
when l̃ = r̃ = λ̃ = ρ̃ = 1. So for every possible overlap there exists a single
S-polynomial such that all other obstructions are reducible from it with respect
to {gi, gj}. In the respective cases, the corresponding obstructions are

(n1 · · ·nq−h, i, 1; 1, j,mh+1 · · ·mp),
(1, i, nh+1 · · ·nq;m1 · · ·mp−h, j, 1),
(n1 · · ·nh, i, nh+p+1 · · ·nq; 1, j, 1).

This means that s need only to be in D if at least one of the two parameters l
and λ and one of the two parameters r and ρ are equal to 1. q.e.d.

We refer to the S-polynomial corresponding to an overlap ω = (l, g, r;λ, g′, ρ), we
have to consider, as S(ω).

We distinguish between three kinds of obstructions:

1.51 Definition. Let s = (l, i, r;λ, j, ρ) be an obstruction of the set G = {gi |
1 ≤ i ≤ ω} of monic polynomials in K〈X〉.

• If l = 1, then we call s a right obstruction.

• If l 6= 1 and r = 1, then we call s a left obstruction.

29

• If s is not a right nor a left obstruction and λ = ρ = 1, then we call s a
central obstruction.

1.52 Corollary. Let G be a set of polynomials in K〈X〉 and let D be the set of
all non-zero normal forms of S-polynomials with respect to G corresponding to
all left, right and central obstructions of G. Then D is a basic set for G.

In the definition above the restriction to a finite set G is not necessary, since an
obstruction includes only two polynomials. However, as stated before, for “real-
life” computations finiteness is required and so we will assume for the rest of this
section that G = {gi | 1 ≤ i ≤ ω}.

We finally introduce an algorithm that computes a reduced Gröbner basis.

1.53 Definition. Let I be a two-sided ideal of K〈X〉 and let G, D be subsets
of K〈X〉. We say that (G,D) is a partial Gröbner pair for I if the following
properties are satisfied:

1. All polynomials in G ∪D are monic.

2. G is a generating set of I.

3. Every element of D belongs to I and it is in normal form with respect to
the polynomials in G.

4. The set D is basic for G.

5. For every f ∈ G the normal form with respect to G∪D of the normal form
with respect to G \ {f} equals zero.

1.54 Remark. Let I be a two-sided ideal in K〈X〉 and let (G,D) be a partial
Gröbner pair for I. If D is the empty set, then G is a Gröbner basis.

Since K〈X〉 is not Noetherian, for example the ideal 〈x1xn2x1 | n ∈ N〉 can not
be finitely generated, our algorithm may not terminate in all cases. However, we
will see later that we can use this algorithm to get some important results after
finitely many steps.

1.55 Algorithm.

Input: a (finite) generating set G for I E K〈X〉
Output: a reduced Gröbner basis for I

Compute all non-zero normal forms of S-polynomials with respect to G corre-
sponding to all left, right and central obstructions of G and call the resulting
set D. Then (G,D) is a partial Gröbner pair. Construct a new partial Gröbner
pair (G̃, D̃) as follows:

1. Take f ∈ D and set G̃ = {g1, . . . , gω, gω+1 := f}.

30

2. Compute the left, right and central obstructions of G̃ of the form
(l, i, r;λ, ω + 1, ρ) and (l, ω + 1, r;λ, j, ρ) for certain i, j ∈ {1, . . . , ω} and
l, r, λ, ρ ∈ 〈X〉 and put the non-zero normal forms of their S-polynomials
with respect to G∪D in D, such that D becomes a basic set for G̃. Call
this new basic set D̃.

3. For each i ∈ {1, . . . , ω} compute the normal form g′i with respect to
G̃ \ {gi} of gi. If g′i = 0 remove gi from G̃. Otherwise, if g′i is distinct
from gi,

a) replace gi by g′i;

b) compute the left, right and central obstructions of the new G̃ in-
volving g′i;

c) if the normal form with respect to G̃∪D̃ of an S-polynomial of such
an obstruction is non-zero then add its normal form to D̃.

4. Replace each d ∈ D̃ by its normal form with respect to (G̃ ∪ D̃) \ {d}.

1.56 Theorem. In the situation of 1.55, the ideal generated by the leading mono-
mials of G is strictly contained in the ideal generated by the leading monomials
of G̃. If D̃ = ∅ then G̃ is a Gröbner basis for I (and the routine stops).

Proof: First we have to show that (G̃, D̃) is a partial Gröbner pair, which means
we have to verify condition one to five of Definition 1.53.
Since all polynomials in G̃ and D̃ are normal forms, they are monic, we get
condition 1.
If gi ∈ G̃ adjusted as in step 4 of the algorithm, then the ideal generated by
{g′i} ∪ (G \ {gi}) coincides with I, so we get condition 2.
Clearly all elements of D̃ belong to I and are in normal form with respect to G̃
and this is condition 3.
Because of 1.52, D̃ is a basic set for G and hence condition 4.
For every element g ∈ G̃ \ G, the normal forms of the newly computed central
obstructions of G involving g take care of condition 5.
That L(G) ⊂ L(G̃) is valid follows immediately from the construction we have
made.
The final assertion is a consequence of Remark 1.54. q.e.d.

1.57 Example. For all examples we take the lexicographical ordering with
x1 > x2 > . . . > xn or x > y > z respectively.

• Take K〈x, y〉 and G1 = {xyx+ y2}.
There is only one obstruction to consider, since the only central obstruction
are the trivial ones and every left obstruction is equal to a right obstruction,
namely (xy, 1, 1; 1, 1, yx) = xy3 − y3x. =⇒ D1 = {xy3 − y3x}.
Now G2 = {xyx + y2, xy3 − y3x}, since xy3 − y3x is in normal form with

31

respect to g1.
Because our new g2 only has trivial obstruction with itself, there is only
one new obstruction: (1, 1, y3;xy, 2, 1) = y5 + xy4x, which has normal form
0 with respect to G2, so G2 is a Gröbner basis for I = 〈G1〉.

• Take G = {xixj − xjxi | 1 ≤ i < j ≤ n} ⊂ K〈X〉. We claim that G is
already a Gröbner basis.
The only non-trivial overlaps are given by the polynomials xixj − xjxi and
xjxw − xwxj, where 1 ≤ i < j < w ≤ n. The S-polynomial can be
computed by (xixj − xjxi)xw − xi(xjxw − xwxj) = xixwxj − xjxixw which
reduces to zero, using the leading monomials of xixw − xwxi, xjxw − xwxj
and xixj − xjxi ∈ G.
Note that G generates the commutator ideal, so we have K[x1, . . . , n] ∼=
K〈X〉/〈G〉.

• Let us consider the generating set B = {yzxy− xyzx, zxyz− xyzx, zxyz−
yzxy} ⊆ K〈x, y, z〉, which consists of braid relations (cf. [Gar07]). Then
the unique reduced Gröbner basis is given by G = {yzxy − zxyz, xyzx −
zxyz, xzxyz − zxyzy, yznxyz − zxyz2xn−1, xznxyz − zxyzyxn−1 | n ∈ N}.
Obviously, none of the elements of G is redundant.
To see that G is in fact a Gröbner basis one has to consider all pairs (gi, gj)
of elements of G and check if all possible obstructions of (gi, gj) vanish
to zero. We demonstrate this for w1 := yznxyz − zxyz2xn−1 and w2 :=
yzmxyz− zxyz2xm−1 for arbitrary n,m ∈ N. We only have to worry about
the right overlap, since n and m are arbitrary elements in N (so we can
exchange their places for the left overlap). Now w1 and w2 overlap at yz
and we have:

(yznxyz − zxyz2xn−1)·zm−1xyz − yznx · (yzmxyz − zxyz2xm−1)
= − zxyz2xn−1zm−1xyz + yznxzxyz2xm−1

xzxyz−zxyzy−−−−−−−→ yzn+1xyzyzxm−1 − zxyz2xn−1zm−1xyz
yzn+1xyz−zxyz2xn−−−−−−−−−−−→ zxyz2xnyzxm−1 − zxyz2xn−1zm−1xyz
xyzx−zxyz−−−−−−→ zxyz2xn−1zxyzxm−2 − zxyz2xn−1zm−1xyz
xyzx−zxyz−−−−−−→ zxyz2xn−1z2xyzxm−3 − zxyz2xn−1zm−1xyz
xz2xyz−zxyzyx−−−−−−−−−→ zxyz2xn−2zxyzyxm−2 − zxyz2xn−1zm−1xyz
xzxyz−zxyzy−−−−−−−→ zxyz2xn−3zxyzy2xm−2 − zxyz2xn−1zm−1xyz
xzm−1xyz−zxyzyxm−2

−−−−−−−−−−−−−→ zxyz2xn−3zxyzy2xm−2 − zxyz2xn−2zxyzyxm−2
xzxyz−zxyzy−−−−−−−→ 0.

32

This example also shows that a Gröbner basis does not need to be finite, even if
the ideal is finitely generated.

1.3.2 Improvement to the algorithm

In commutative as well as non-commutative Gröbner basis theory it is well-
known, that the practical use of criteria to reduce the set of critical pairs has
very effective impact on the performance. Out of several criteria, first formulated
by Buchberger, the product criterion in the case of free algebras is naturally ap-
pearing during the consideration of overlaps of polynomials. The chain criterion
applies, but it can be refined further, following the work of Gebauer and Möller
[GM88] in the commutative case.

Gebauer-Möller’s criterion has been generalized to the setup of modules in
[KR00] and [KR05], while in the non-commutative case Mora gave a detailed
presentation of superfluous pairs in [Mor94], which was adapted to fit practical
computations, as for example in [Xiu12].
Here we will presented the theoretical layout and then study the practical use of
the criterion in a later chapter.

For this section we will assume that each set P ⊂ K〈X〉 is interreduced, meaning
∀p, q ∈ P, p 6= q : lm(p) - lm(q) and that each p ∈ P is monic.

Recall that the Product Criterion Theorem 1.48 states that only those pairs
involving an overlap need to be considered, that is lm(p) = ab and lm(q) =
bc for some monomials a, b, c. Therefore one only has to consider pairs π =
(1, pi, r;λ, pj, 1), such that lm(pir) = lm(λpj).

1.58 Definition. For an obstruction π = (1, pi, r;λ, pj, 1) we denote by cm(π) :=
lm(pir) = lm(pi)r = λlm(pj) the common multiple of pi and pj with respect to
the overlap considered in π.

Let us consider a set of polynomials P and construct the set of all critical pairs
π(P) by searching for overlaps in the leading monomials, that is π(P) contains
all those elements we want to compute S-polynomials to enter the set D in the
algorithm. We want to apply the criteria to π(P) to reduce its size.

1.59 Theorem. Assume we have a set of polynomials P , its set of critical pairs
π(P) and a pair π = (1, pi, ri;λk, pk, 1) ∈ π(P).

1. If there exist two pairs π1 = (1, pi, r
′
i;λj, pj, 1), π2 = (1, pj, rj;λ

′
k, pk, 1) ∈

π(P) \ {π}, such that lm(pj)|cm(π), then the S-polynomial s(π) of π will
reduce to zero.

2. If there exists a pair π1 = (1, pj, rj;λ
′
k, pk, 1) ∈ π(P)\{π}, such that cm(π1)

divides cm(π) from the right, then the S-polynomial s(π) of π will reduce
to zero.

33

Proof:

1. Because of the assumptions we have lm(fj) = abc, lm(fk) = bctk and
lm(fi) = tiab for some monomials a, b, c, ti, tk. Since P is interreduced, none
of the leading monomials can divide the overlap cofactors. This implies
λk = tia and ri = ctk. Moreover, the existence of π1 and π2 and the form
of the leading monomials imply that there exist pairs π′1 = (1, pi, c; ti, pj, 1)
and π′2 = (1, pj, tk; a, pk, 1). Then

s(π) = pictk − tiapk = tiabctk + tail(pi)ctk − tiabctk − tiatail(pk)

→ −titail(pj)tk + tail(pi)ctk + titail(pj)tk − tiatail(pk)

= −s(π′1)tk − tis(π′s)→ 0.

Note that the reductions used are performed according to the fixed mono-
mial ordering.

2. We first note that lm(pj)rj = lm(pjrj) = lm(λ′kpk) = λ′klm(pk) and
l̃lm(pj)rj = λ̃λ′klm(pk) = λklm(pk) = lm(pi)ri for some monomials l̃, λ̃. This
already implies l̃ = λ̃ and λ̃λ′ = λk. Moreover, l̃lm(pj)rj = lm(pi)ri implies
that one of the following holds:

• l̃lm(pj)|lm(pi). Then the set of polynomials is not interreduced, which
leads to a contradiction.

• There exists r̂i such that rj = r̂iri. This implies the existence of a pair
(1, pi, r̂i; l̃, pj, 1) and the claim follows from the first case. q.e.d.

1.60 Remark. One can apply these criteria in a straightforward way: If the set
of critical pairs during some step of Buchberger’s algorithm has been constructed,
then one can just check the pairs and search for redundant ones. However, to de-
cide if a monomial divides another is not as cheap and easy as in the commutative
case.

In the next chapter we will study a new approach to Gröbner basis theory and
will later on investigate the possibilities this holds to apply the criteria.

1.4 Conclusion

While the aim of this chapter is to introduce Gröbner basis theory over the free
algebra and there are several works which have similar chapters (for example
[Li12] and [Stu10]) the translation of the Gebauer-Möller criteria is rather new.
We like to point out that this was also studied in [Xiu12] and later published
in [KX13] and that this work was developed in parallel to our approach. The
results presented for the implementation in ApCocoa show, similarly to ours,
that those criteria are indeed speeding up the computations by quite a lot.

34

As mentioned before there is a deficit in proper studies of orderings over the free
algebra. While we are not able to give a full classification in the frame of this
work we hope to motivate further studies with this first approach to present more
than one useful ordering.

Since orderings have a huge impact on the complexity of computations it is nec-
essary to get a good insight into the topic. In the next chapter we will discuss
how orderings for the free algebra can be represented over the letterplace ring.
This is done to understand the properties of orderings.

35

2 The Letterplace Ring

In this chapter we present the letterplace correspondence as it was studied in
[LL09] and [SL13] and give a detailed overview on how to present orderings for
the free algebra over the letterplace ring. We then introduce the new approach
to non-graded ideals presented by Roberto La Scala in [Sca12] and show how
this can be used for a new way to compute Gröbner bases using the letterplace
paradigm. The structure of the letterplace ring can be exploited in a very natural
way to get an efficient way to avoid the classical homogenization.

2.1 Letterplace Correspondence for graded Ideals

It is a well known fact that there exists a one to one correspondence between all
ideals J E K[X] and certain ideals I E K〈X〉. The question, if there is an ideal J
in some commutative ring K[Y] for each I E K〈X〉, such that one can construct
a one to one correspondence between those ideals and especially their Gröbner
bases was studied by Roberto La Scala and Viktor Levandovskyy and led to the
introduction of the letterplace ring (cf. [LL09]), which provides a commutative
analogon of the free algebra. The basic idea, going back to Richard Feynman and
Gian-Carlo Rota, is pleasingly simple: one enumerates the variables occurring in
a monomial by their position in the monomial. Then one may commute the
variables. In this section we will introduce this corresponding, following mainly
[LL09] and [Stu10]. We start with the basic definition.

2.1 Definition. We call X and P ⊆ N respectively the set of letters and places.
We write for the elements of the product set X×P : xi(j) := (xi, j). Furthermore
we denote by K[X | P] the polynomial ring in the commuting variables xi(j) and
by [X | P] the set of all monomials in K[X | P].
Let µ = (µk)k∈N, ν = (νk)k∈N be two sequences of non-negative integers with finite
support. We can consider (µ, ν) as a multi-degree for the monomials
m = xi1(j1) . . . xir(jr) ∈ [X | P]. Precisely, we define µk = #{α | xiα = xk},
νk = #{β | jβ = k}.

Often one chooses P = N for theoretical questions and switches to P = d, d ∈ N
for practical computations and we will see later why.

2.2 Remark. If we define K[X | P]µ,ν to be the homogeneous component of
degree (µ, ν) we have K[X | P] =

⊕
µ,ν

K[X | P]µ,ν , so K[X | P] is a multigraded

37

algebra. By putting K[X | P]∗,ν =
⊕
µ

K[X | P]µ,ν and K[X | P]µ,∗ =⊕
ν

K[X | P]µ,ν we obtain that K[X | P] is also multigraded with respect to letter

or place multidegrees only.

2.3 Example. We just want to see a simple example to visualize the letterplace
analogon. So take xyx ∈ K〈x, y〉. Now introducing places we see that xyx
corresponds to x(0)y(1)x(2) = x(2)x(0)y(1) = y(1)x(2)x(0).

Unfortunately, there are some elements we have no use for, because they do not
correspond to any monomial in K〈x, y〉, for example x(3)y(6)y(9) and x(0)y(0).
So in order to get rid of those elements we want to find a subset of K[X | P] that
corresponds to the free algebra. Therefor we introduce the monoid action of N.

2.4 Remark. The monoid N has a natural faithful action on the graded algebra
K[X | P] given by s · xi(j) = xi(j + s) ∀s ∈ N.

2.5 Definition. For each monomial m = xi1(j1) · · ·xir(jr) ∈ [X | P] we define
by shift(m) = min{j1, . . . , jr} the shift of m.
Denote by K[X | P](s) the subspace of K[X | P] generated by all monomials with
shift s.
For each s, r ∈ N we denote by s ·1r the place-multi-degree ν = (νk)k∈N such that

νk =

{
1, if s ≤ k ≤ s+ r − 1.

0, otherwise.

For s = 0 we write simply 1r.
Define V =

⊕
n∈N

K[X | P]∗,1r , which is a subspace of K[X | P](0) and set V ′ =⋃
s∈N

s · V .

2.6 Lemma. ι : K〈X〉 → V : xi1 · · ·xir 7→ xi1(0) · · ·xir(r−1) is an isomorphism
of vector spaces, which preserves letter-multidegrees and hence total degrees of
monomials.

Proof: By the definition of ι it is obvious that ι is a K-linear injective map.
Moreover, we have ι−1 : V → K〈X〉 : xi1(0) · · ·xir(r − 1) 7→ xi1 · · ·xir and
hence ι is bijective. Since ι is K-linear we only have to show that ι preserves
letter-multidegrees of monomials, which is clear by definition of ι. q.e.d.

So we have a vector space correspondence. However, V itself is not a ring.
However, since we have identified the free algebra, it is natural to ask what
happens to ideals under this correspondence.

2.7 Definition. Let J be an ideal of K[X | P]. Then J is called

• place-multigraded, if J =
∑
ν

J∗,ν , where J∗,ν = J ∩K[X | P]∗,ν .

38

• shift-decomposable, if J =
∑
s

J (s), where J (s) = J ∩K[X | P](s).

Clearly a place-multigraded ideal is also graded and shift-decomposable.

2.8 Lemma. Let J ⊂ K[X | P] be an ideal. Then J is shift-decomposable if and
only if J is generated by

⋃
s∈N

J (s).

Proof: The necessary condition is obvious.
Assume now that J = 〈{mf | m ∈ [X | P], f ∈ J (s), s ∈ N}〉. Then, for
t = min{shift(m), s} we have mf ∈ J (t) and hence J =

∑
s

J (s). q.e.d.

2.9 Definition. Let J be a shift-decomposable ideal of K[X | P]. We say that
J is shift-invariant if s · J (t) = J (s+t) for all s, t ∈ N.

2.10 Remark. An ideal J E K[X | P] is shift-invariant if and only if s · J (0) =
J (s) ∀s ∈ N.

2.11 Lemma. Let J ⊂ K[X | P] be an ideal. Then J is shift-invariant if and
only if J =

∑
s∈N

s · J (0).

Proof: Clearly we have the necessary condition. Assume now J =
∑
s

s · J (0).

We have s · J (0) ⊂ J and s · J (0) ⊂ s · K[X | P](0) = K[X | P](s) and hence
s · J (0) ⊂ J (s). Let f ∈ J (s). Since J =

∑
t∈N

t · J (0) we have necessarily f ∈ s · J (0).

We conclude that s · J (0) = J (s) and therefore J =
∑
s∈N

J (s). q.e.d.

2.12 Theorem. Let J be an ideal of K[X | P] an put I = ι−1(J ∩ V) ⊂ K〈X〉.

• If J is a shift-invariant ideal, then I is a left ideal of K〈X〉.

• If J is a place-multigraded ideal, then I is a graded right ideal.

Proof: Assume J is shift-invariant and let f ∈ I, w ∈ 〈X〉. Denote g = ι(f) ∈
J ∩ V and m = ι(w). If tdeg(w) = s, we have ι(wf) = m(s · g) ∈ J ∩ V and
therefore wf ∈ I.
Suppose now that J is place-multigraded and hence graded. Since V is a graded
subspace, it follows that J ∩ V =

∑
d

(Jd ∩ V) and then, setting Id = ι−1(Jd ∩ V)

we obtain I =
∑
d

Id. Let f ∈ Id, that is ι(f) = g ∈ Jd ∩ V . For all w ∈ 〈X〉 we

have that ι(fw) = g(d ·m) ∈ J ∩ V , that is fw ∈ I. q.e.d.

2.13 Theorem. Let I be a left ideal of K〈X〉 and put I ′ = ι(I). Define J =
〈
⋃
s∈N

s · I ′〉 ⊂ K[X | P]. Then J is a shift-invariant ideal. Moreover, if I is graded

then J is place-multigraded.

39

Proof: From s · I ′ ⊂ J (s) it follows that J is generated by
⋃
s∈N

J (s), that is J is

shift-decomposable.
By definition one has J = 〈{m(t · f) | m ∈ [X | P], t ∈ N, f ∈ I ′}〉. Then the vec-
tor space J (s) is spanned by the elements m(t·f) such that min{shift(m), t} = s.
In particular, J (0) is spanned by the elements m(t ·f) where min{shift(m), t} =
0. By acting with s, we obtain that s · J (0) is spanned by elements of the form
s · (m(t · f)) = (s · m)((s + t) · f), where m ∈ [X | P], t ∈ N, f ∈ I ′, such
that min{shift(m), t} = 0 and therefore min{shift(s · m), s + t} = s. Since
s ·K[X | P](0) = K[X | P](s) we conclude that s · J (0) = J (s).
Assume now that I is a graded ideal. Any element f ∈ I can be written as
f =

∑
d

fd, where fd ∈ I∩K〈X〉d. Put g = ι(fd) and gd = ι(fd). Then gd ∈ I ′∩Vd.

For any s ∈ N one has that s · g =
∑
d

s · gd, where s · gd ∈ s · (I ′ ∩ Vd) ⊂ J . Note

that all polynomials s · gd are homogeneous with respect to place-multigrading.
We conclude that J is generated by homogeneous elements and hence it is a
place-multigraded ideal. q.e.d.

2.14 Definition.

• Let I ⊂ K〈X〉 be a graded two-sided ideal. We denote by ι̃(I) the shift-
invariant place-multigraded ideal J ⊂ K[X | P] generated by

⋃
s∈N

s · ι(I),

and call J the letterplace analogon of the ideal I.

• For a shift-invariant place-multigraded ideal J ⊂ K[X | P] we denote by
ι̃−1(J) the graded two-sided ideal I = ι−1(J ∩ V) ⊂ K〈X〉.

• A graded ideal J ⊂ K[X | P] is called a letterplace ideal if J is generated
by

⋃
s,d∈N

s · (Jd∩V). In this case, J is shift-invariant and place-multigraded.

2.15 Remark. The map ι : K〈X〉 → V induces a one-to-one correspondence ι̃
between graded two-sided ideals I of the free associative algebra K〈X〉 and the
letterplace ideals J of the polynomial ring K[X | P].

So now we have finally found the correspondence for an ideal in K〈X〉. We are
now interested in generating sets and especially Gröbner bases. If we find a corre-
spondence we may find a Gröbner basis for a given ideal as follows: Starting with
a generating set for I E K〈X〉 we switch to the corresponding “letterplace gen-
erating set”, compute a “letterplace Gröbner basis” with commutative methods
and use then the correspondence again to get our desired Gröbner basis. In this
work we will only see the correspondence and acknowledge that the letterplace
ring is a polynomial ring, so that commutative Gröbner theory may be applied
to it.

40

2.16 Definition. Let J be a letterplace ideal of K[X | P] and H ⊂ K[X | P].
We say that H is a letterplace basis of J if H ⊂

⋃
d∈N

Jd ∩ V and
⋃
s∈N

s · H is a

generating set of the ideal J .

2.17 Theorem. Let I be a graded two-sided ideal of K〈X〉 and put J = ι̃(I).
Moreover, let G ⊂

⋃
d∈N

Id and define H = ι(G) ⊂
⋃
d∈N

Jd ∩ V . Then G is a

generating set of I as a two-sided ideal if and only if H is a letterplace basis of
J .

Proof: Assume
⋃
s∈N

s ·H is a basis of J , that is, J = 〈m(s · h) | m ∈ [X | P], s ∈

N, h ∈ H〉. Since J is place-multigraded, one has that J ∩ V = 〈m(s · h) ∈ V |
m ∈ [X | P], s ∈ N, h ∈ H〉. If d = tdeg(h) then m(s ·h) = m1(s ·h)((s+d) ·m2),
where m1,m2 ∈ [X | P] ∩ V . By applying ι−1 we obtain that I = 〈w1gw2 |
w1, w2 ∈ 〈X〉, g ∈ G〉, that is G is a generating set of I as a two-sided ideal.
Assume now G generates I. By reversing the above argument, one has that
J ∩ V ⊂ U := 〈m(s · h) | m ∈ [X | P], s ∈ N, h ∈ H〉 ⊂ J . From s · (m(t · h)) =
(s · m)((s + t) · h) ∀s, t ∈ N, it follows that s · (J ∩ V) ⊂ U for any s. We
conclude that J = U , because J is generated by

⋃
s∈N

s · (J ∩ V). This implies the

claim. q.e.d.

So we obtain the correspondence for generating sets. For Gröbner bases however,
we have to do a little more work.

2.18 Definition. Let J be an ideal of K[X | P] and H ⊂ J . Then H is called a
(Gröbner) shift-basis of J if

⋃
s∈N

s ·H is a (Gröbner) basis of J .

2.19 Remark.

1. If J has a shift-basis, then s · J ⊂ J ∀s ∈ N, that is J is shift-invariant.

2. If J is a letterplace ideal, then any letterplace basis of J is a shift-basis,
but not generally a Gröbner shift-basis.

3. Let J ⊂ K[X | P] be an ideal and H ⊂ J . Then H is a Gröbner shift-basis
of J if and only if lm(H) is a shift-basis of L(J).

2.20 Lemma. Let J ⊂ K[X | P] be a shift-invariant ideal. Then J (0) is a
Gröbner shift-basis of the ideal J .

Proof: Clearly J (0) is a shift-basis of J . Let f ∈ J (u) \ {0}, g ∈ J (v) \ {0}, f 6= g
and denote the S-polynomial s(f, g,) = cmf − dng, where c, d ∈ K and m,n ∈
[X | P], such that lcm(lm(f), lm(g)) = mlm(f) = nlm(g). We have to show that
s(f, g) ∈

⋃
s

J (s). If u = v this is trivial. Assume u < v. The variables of m come

from the leading monomial of g which has shift v. Therefore cmf has shift u and
no variable of the leading term of g has shift u. Then the same clearly holds also
for dng and therefore for s(f, g) = cmf − dng. q.e.d.

41

2.21 Remark. Before we can state the main theorem, we need a little clue: We
assume our given ordering is compatible with ι, that is, if we fix the orderings <
on K〈X〉 and ≺ on K[X | P] then v < w holds if and only if ι(v) ≺ ι(w) for any
v, w ∈ 〈X〉. This is no restriction, since most choices of orderings are compatible
with ι.

2.22 Theorem. Let I E K〈X〉 be a graded two-sided ideal and put J = ι̃(I).
Moreover, let H be a Gröbner letterplace basis of J and put G = ι−1(H ∩ V) ⊂⋃
d∈N

Id. Then G is a Gröbner basis of I as a two-sided ideal.

Proof: Let f ∈ Id and put f ′ = ι(f). Then there is m ∈ [X | P], s ∈ N, h ∈ H
such that lm(f ′) = mlm(s · h) = m(s · lm(h)). From f ′ ∈ Jd ∩ V and

√
νh =

1n, n ∈ N, it follows that νh = 1n, that is h ∈ H ∩ V . This implies that
lm(f ′) = m(s · lm(h)) = m1(s · lm(h))((s+ n) ·m2), where m1,m2 ∈ [X | P] ∩ V
and s = tdeg(m1). Since the orderings are compatible with ι, we obtain that
lm(f) = w1lm(g)w2, where g = ι−1 = (H), wi = ι−1(mi). q.e.d.

To conclude the section we present the algorithm. For further notes on termina-
tion and correctness we refer again to [LL09].

2.23 Algorithm.

Input: G0, a homogeneous basis of a graded two-sided ideal I E K〈X〉
Output: G, a homogeneous Gröbner basis of I as two-sided ideal
H := ι(G0 \ {0}
P := {(f, s · g) | f, g ∈ H, s ∈ N, f 6= s · g, gcd(lm(f), lm(s · g)) 6= 1,

lcm(lm(f), lm(s · g)) ∈ V }
while P 6= ∅ do

choose (f, s · g) ∈ P
P := P \ {(f, s · g)}
h := Reduce(s(f, s · g),

⋃
t∈N

t ·H)

if h 6= 0 then
P := P ∪ {(h, s · g) | g ∈ H, s ∈ N, gcd(lm(h), lm(s · g)) 6= 1,

lcm(lm(h), lm(s · g)) ∈ V }
P := P ∪ {(g, s · h) | g ∈ H, s ∈ N, gcd(lm(g), lm(s · h)) 6= 1,

lcm(lm(g), lm(s · h)) ∈ V }
H := H ∪ {h}

end if
end while
G := ι−1(H)
return G

The procedure Reduce mentioned in the algorithm is the classical commutative
reduction. Note that this algorithm is a Buchberger type algorithm and the
well-known criteria to avoid superfluous computations can be applied.

42

2.2 La Scala’s Approach to Extend the Letterplace
Correspondence

In a recent paper Roberto La Scala introduced a way to compute non-homo-
geneous Gröbner bases via homogenization. In this chapter we introduce his
approach briefly, following along the lines of [Sca12].

First let us introduce the notion of homogenization for the free algebra K〈X〉.
As before we consider X = {x1, x2 . . .} and we set X = X ∪ {h} with h being a
new variable. Then we have a natural endomorphism ϕ : K〈X, h〉 → K〈X, h〉 :
xi 7→ xi, h 7→ 1 and it is easy to see that Im(ϕ) = K〈X〉, so ϕ is a projection onto
the free algebra with ker(ϕ) = 〈h− 1〉. We call ϕ the dehomogenization map.

2.24 Proposition. Denote by C the largest graded ideal contained in ker(ϕ)
that is C := {f ∈ K〈X, h〉 | f ∈ ker(ϕ), f homogeneous}. Then C is generated
by the commutators [xi, h] := xih− hxi.

Proof: Clearly we have [xi, h] ∈ C. Set E = {[xi, h] | xi ∈ X} and take
f ∈ C. We need to show that f reduces to zero with respect to E. Obviously
we have f ≡ f ′ = hd

′∑
k

fkh
d−k, where tdeg(f) = d, tdeg(fk) = k, fk ∈ K〈X〉

homogeneous for all k and d′ ≥ 0. Then 0 = ϕ(f) = ϕ(f ′) =
∑
k

fk and hence

fk = 0 ∀k, which implies f ′ = 0. q.e.d.

This proposition allows us to define the homogenization of an ideal as well as the
homogenization of a polynomial.

2.25 Definition. • Let f ∈ K〈X〉 \ {0} with tdeg(f) = d and say f =∑
k

fk is a decomposition of f into homogeneous components. We call fh =∑
k

fkh
d−k the homogenization of f .

• Let I E K〈X〉. We set Ih to be the largest graded ideal contained in ϕ−1(I)
that is Ih is generated by all homogeneous elements in ϕ−1(I). We call Ih

the homogenization of I and we have C ⊆ Ih.

2.26 Remark. For I E K〈X〉 we have Ih = 〈fh | f ∈ I〉+ C and ϕ(Ih) = I.

2.27 Definition. Let J E K〈X, h〉 be a graded ideal containing C. We call
Sat(J) := (ϕ(J))h the saturation of J . We have J ⊆ Sat(J) E K〈X, h〉. We call
J saturated if J = Sat(J).

Note that there are more characterizations for saturations and homogenizations
and we refer the interested reader to [Sca12]. For our purpose we are satisfied
with the basic setup and we study analogues for the letterplace ring.

43

Recall that we have a multigrading on K[X | P] and for any f ∈ K[X | P] we
can build the decomposition f =

∑
µ

fµ into its multi-homogenous elements. This

allows us to translate our methods above to the letterplace ring.

2.28 Definition. Consider the endomorphism K[X, h | N] and
ψ : K[X, h | N] → K[X, h | N] : xi(s) 7→ x1(s), h(s) 7→ 1 ∀s ∈ N. One has
ker(ψ) = 〈{h(s)− 1 | s ∈ N}〉.

• Let f ∈ K[X | P] \ {0} with tdeg(f) = d and say f =
∑
µ

fµ is a

decomposition of f into multi-homogeneous components. We call fh =∑
µ

fµ
d∏

k=|µ|+1

h(k) the multi-homogenization of f .

• Let J E K[X | P]. We set Jh to be the largest graded ideal contained in
ψ−1(J) that is Jh is generated by all homogeneous elements in ψ−1(J). We
call Jh the multi-homogenization of J .

• Let J E K[X, h | N] be a multigraded ideal. Define Sat(J) = (ψ(J))h. We
call Sat(J) the saturation of J .

We will assume that our ordering is compatible with ι as well as shift-compatible
that is m < s ·m ∀m ∈ [X | N], s ∈ N.

2.29 Remark. It is important to note that the elements ι([xi, h]) = xi(1)h(2)−
h(1)xi(2) for i ≥ 1 form a Gröbner shift basis of the ideal D := ι(C). We say
G ⊂ J ∩V h is a Gröbner letterplace basis of J modulo D if G∪{ι([xi, h]) | i ≥ 1}
is a Gröbner letterplace basis of J .
Let I E K〈X〉 be an arbitrary ideal and let G be any Gröbner basis of I. Then
Gh is a Gröbner basis of Ih and lm(G) = lm(Gh). We translate this basic idea
now to the letterplace realm.

2.30 Proposition. • Let J ⊂ K[X, h | N] be a letterplace ideal containing
D. Then a Gröbner letterplace basis of Sat(J) modulo D is given by the
elements (ψ(f))h ∀f ∈ J ∩ V h, where f is in normal form with respect to
D.

• Let J ⊂ K[X, h | N] be a letterplace ideal containing D and set J ′ = Sat(J).
Moreover, let G be a Gröbner letterplace basis of J modulo D. Then
G′ = (ψ(G))h is a Gröbner letterplace basis of J ′ modulo D.

Proof: [Sca12], Proposition 5.8 and 5.9

From those results one immediately obtains an algorithm for computing Gröbner
bases using the correspondence for homogenized generating sets.

44

2.31 Algorithm. Input: H, a generating set of an ideal I E K〈X〉
Output: ϕ(ι−1(G)), a Gröbner basis of I
G := ι(Hh ∪ {[t, xi] | i ≥ 1})
B := {(f, g) | f, g ∈ G}
while B 6= ∅ do

choose (f, g) ∈ B
B := B \ {(f, g)}
for all i > 0 s.t. gcd(lm(f), lm(i · g)) 6= 1, lcm(lm(f), lm(i · g)) ∈ V h do
s := Reduce(s(f, i · g),N ·G)
if s 6= 0 then
s := (ψ(s))h

B := B ∪ {(s, s), (s, k), (k, s) | k ∈ G}
G := G ∪ {h}

end if
end for

end while
return ϕ(ι−1(G))

2.32 Remark. If I has a finite Gröbner basis then the algorithm is able to
compute it in a finite number of steps. However, termination is not guaranteed
and the results of adding a degree bound mentioned earlier apply.

We like to point out that it is possible to optimize the procedure by using a
smallest homogenization in each step, that is no leading monomial of any el-
ement should contain any shift of ι(h), thereby decreasing the total degree of
polynomials. The procedure is introduced and explained in [Sca12].

Notably, Ufnarovskij presented in [Ufn08] a neat method for homogenization of
generators of ideals in K〈X〉 and computations of Gröbner bases of those ide-
als. Those methods are implemented in the computer algebra system Bergman
([B+06]).

2.3 Place Grading

While being algorithmically feasible in the Noetherian case, the computation of a
Gröbner basis of a non-graded ideal in the non-Noetherian case has the following
problem: A non-graded ideal I ∈ K〈X〉 may have a finite Gröbner basis, while a
homogenized set of generators leads to an infinite Gröbner basis.
Our goal is to show that introducing a new variable is superfluous. In fact one
can use the structure given by the letterplace ring quite successfully. Therefore
we present a new way to grade letterplace ideals.

2.33 Definition. We call the place support of m ∈ [X | P] the set of places
occurring in m. A monomial m is called place-multi-linear, if each number from

45

the place support occurs at most once, that is monomials of [X | P], whose place
support is irredundant as a set.

2.34 Definition. • Denote by W ′ ⊂ K[X | P] the vector space, spanned by
all place-multi-linear monomials. Let W ⊂ W ′ be spanned by all place-
multi-linear monomials of shift zero.

• For a monomialm ∈ W , define the place-degree pdeg(m) to be the highest
place occurring in the place-support of m and we set pdeg(m) = 0 for
m ∈ K by convention. For a polynomial p ∈ W \ {0} we set pdeg(p) =
max
i
{pdeg(mi)|p =

∑
aimi, ai ∈ K \ {0}}.

• If there is 1 ≤ k ≤ pdeg(m), such that k is not in the place-support, we
say that m has a hole at place k. The number of holes between the first
occurring variable and the last one is called the place defect of m.

• Let ·lp be the letterplace multiplication on K[X | P], that is m1 ·lp m2 =
m1(pdeg(m1) ·m2) for polynomials m1,m2 ∈ K[X | P].

• Define Wk = {w ∈ W | pdeg(w) = k} ⊆ W .

We start with some easy properties of the place-degree. Recall the definition of
V and V ′ (2.5).

2.35 Proposition. The following holds:

1. W ′ =
⋃
s∈N0

s ·W .

2. pdeg(m1 ·lpm2) = pdeg(m1) + pdeg(m2) = pdeg(m2 ·lpm1) and thus Wl ·lp
Wk ⊆ Wl+k ∀l, k ∈ N0.

3. ∀m ∈ W ′: pdeg(m) = tdeg(m) + shift(m)+ place-defect(m).

4. W =
⊕
k∈N0

Wk is graded with respect to place-degree. The same holds for

W ′.

5. V0 = W0 = K, V1 = W1 = ⊕ni=1Kxi(1) and Vk (Wk ∀k ≥ 2. Thus V (W
and V ′ (W ′.

6. Place grading respects shifts, that is s ·Wk ⊂ Wk+s ∀k, s ∈ N holds.

Proof:

1. Each monomial m ∈ [X | P] with shift(m) = k is the image of some
monomial m̃ ∈ [X | P] with shift(m̃) = 0 under the shift action.

46

2. Obviously we have pdeg(k ·m) = k + pdeg(m) and thus the claim follows
by definition of ·lp.

3. Since m ∈ W ′ we have that tdeg(m) equals the number of places occupied
by a variable.

4. Clearly we have Wk ∩Wl = ∅ ∀k 6= l and if BWk
is a monomial basis for Wk

we have that
⋃
k∈N0

BWk
is a monomial basis for W .

5. Clear by definition.

6. Follows immediately from 2. q.e.d.

2.36 Example. To get a deeper insight into the structure of W a look into the
graded parts is useful. It is easy to see that W0 = K · {1} = V0 and W1 =
K · {xi | 1 ≤ i ≤ n} = V1. According to the definition, W2 = V2 ⊕ (1 · V1).
Further on, we find W3 = V3 ⊕ (1 ·W2) ⊕ (W1 × 2 ·W1), where W1 × 2 ·W1 =
{w(2 · w̃) | w, w̃ ∈ W1}. Substituting previous expressions we obtain W3 =
V3 ⊕ (1 · V2)⊕ (2 · V1)⊕ (V1 × 2 · V1).

It is important to note that W and W ′ are both graded vector spaces using the
place grading. So one can use this to homogenize arbitrary polynomials by places.

2.37 Definition. Let G ⊂ K〈X〉 be a set of polynomials and put G̃ = ι(G) ⊂
K[X | P]. Then for each p̃ =

∑
i

aim̃i ∈ G̃ with ai ∈ K \ {0}, m̃i ∈ [X | P] we set

ph =
∑
i

ai(pdeg(p̃)− pdeg(mi)) ·mi ∈ K[X | P].

Then ph is graded with respect to place-degree or place-homogeneous. We call ph
the place-homogenization of p̃.

The idea behind place-homogenization is to avoid adding a new variable to the
free algebra, since one is able to use places to homogenize polynomials. Let us
consider an easy example.

2.38 Example. Consider K〈x, y〉 and take p = xyx+ xy + y. Then p̃ := ι(p) =
x(1)y(2)x(3) + x(1)y(2) + y(1) ∈ K[x, y | N], which is clearly not homogeneous.
We then have p̃h = x(1)y(2)x(3) + x(2)y(3) + y(3) as the place-homogenization
of p̃.

Sadly p̃h is not even in V ′, which makes it harder to recognize as an element in the
free algebra, since the direct correspondence can not be applied. Things get even
worse when multiplication is applied, even if we use the letterplace multiplication
·lp.

47

2.39 Example. As before we take p̃ := x(1)y(2)x(3) + x(1)y(2) + y(1) ∈
K[x, y | N] and its place-homogenization p̃h. If we post-multiply x(1) we get p̃h ·lp
x(1) = x(1)y(2)x(3)x(4) + x(2)y(3)x(4) + y(3)x(4), which is place-homogeneous
and of a similar shape as p̃h. Now, if we pre-multiply x(1) we get x(1) ·lp p̃h =
x(1)x(2)y(3)x(4) + x(1)x(3)y(4) + x(1)y(4), which is still place-homogeneous.
However, it contains proper holes, that is some monomials have positive place-
defect. On the bright side we have that p̃h ·lp x(1), x(1) ·lp p̃h ∈ W ′. But since
those elements are not necessarily in an orbit with an element of V under the
shift-action, it is hard to recognize the corresponding element in the free algebra,
which should be the goal of the dehomogenization.

2.40 Definition. Define a K-linear map shrink : W ′ → V as follows:
• For m ∈ V , shrink(m) := m.
• For m ∈ W ′ \ V , one has the following:

• 1 ≤ deg(m) = d and pdeg(m) = d′ > d, so sd := d′ − d ≥ 1

• ∃s1, . . . , sd−1 ∈ N0 such that m = (s1 · xi1(1)) · · · (sd · xid(d)).

We set shrink(m) := xi1(1) · · · xid(d) ∈ V .

2.41 Remark. The map shrink is a well-defined homomorphism of vector spaces
and for an element m ∈ W ′ it returns the unique element m̃ ∈ V with shift(m̃) =
0 containing the same word of letters as m. Note that it can be extended to non
place-linear monomials, in which case shrink just closes holes in the monomial
and sets the shift to zero.
To see that it is of good value for our efforts we consider the example from above.

2.42 Example. In the same setup as before we have

shrink(p̃h ·lp x(1)) = x(1)y(2)x(3)x(4) + x(1)y(2)x(3) + y(1)x(2)

and

shrink(x(1) ·lp p̃h) = x(1)x(2)y(3)x(4) + x(1)x(2)y(3) + x(1)y(2).

It is easy to see that px = ι−1(shrink(p̃h·lpx(1))) and xp = ι−1(shrink(x(1)·lpp̃h))
holds.

The example motivates the following definition.

2.43 Definition. Define an equivalence relation on W ′ by m1 ∼ m2 ⇔
shrink(m1) = shrink(m2). Moreover, define a map ? : V × V → W ′/∼:
(v1, v2) 7→ [v1(pdeg(v1) · v2)].

48

2.44 Remark. Since shrink is a homomorphism of vector spaces it is clear
that the relation defined above is an equivalence relation and V ∼= W ′/∼ ∼=
W ′/ ker(shrink).
To see that ? is well-defined one needs to check that it is independent from
the choice of the representative of a residue class. Note that for v, w ∈ V we
have v(pdeg(v) · w) = v ·lp w ∈ W ′ and therefore shrink(v(pdeg(v) · w)) =
ι(ι−1(v)ι−1(w)). Now for v′, w′ ∈ W ′ such that [v] = [v′], [w] = [w′] we get
shrink(v′(pdeg(v′) · w′)) = shrink(shrink(v′)(pdeg(v′) · shrink(w′))) =
shrink(v(pdeg(v′) · w) = shrink(v(pdeg(v′) · w), which proves the claim. To
see that the last equality holds note that shrink(v1(s · v2)) = shrink(v1(s

′ ·
v2)) ∀v1, v2 ∈ V, s, s′ ≥ pdeg(v1).

2.45 Lemma. Define a K-linear map

η : V → W ′/∼, f =
∑
i

aimi 7→ [f].

Then η is an isomorphism of vector spaces with shrink being the inverse map.

Proof: Since V is stable under shrinking, η is injective. Let w ∈ W ′ be place-
multi-linear, then shrink(w) ∈ V belongs to [w] and thus η is surjective. q.e.d.

If we identify a residue class [w] ∈ W ′/∼ with the unique element v ∈ V contained
in this class we can think of ? as a multiplication on V , which respects the total
degree of polynomials, thus giving V a K-algebra structure.

2.46 Lemma.
Define the map ? : V × V → V : (v1, v2) 7→ shrink(v1(pdeg(v1) · v2)).

1. ? is K-bilinear.

2. We have p ? q = 0 ⇔ p = 0 ∨ q = 0.

3. ? is associative.

Proof:

1. Recall that pdeg of a polynomial is the highest occurring place in any
monomial with non-zero coefficient. Again, we have shrink(v1(s · v2)) =
shrink(v1(s

′ · v2)) ∀v1, v2 ∈ V, s, s′ ≥ pdeg(v1). The claim follows by the
linearity of shrink, shift and the multiplication on K[X | P] as a ring.

2. Because we have p ? q = (
D∑
d

pd) ? (
E∑
e

qe) =

D+E∑
k=0

(
k∑
d=0

pdqk−d), where pd, qe are pdeg−graded components of p and q re-

spectively we need to prove the claim for pdeg-graded components
∑
d

pdqk−d

49

only. Because p, q ∈ V we have that
∑
d

pdqk−d is homogeneous and the claim

follows by the fact, that we can use the letterplace multiplication for the
graded case, since we have shrink(p(pdeg(p) · q)) = p(pdeg(p) · q).

3. With the same argument as before we need to show associativity for ho-
mogeneous components only. So take pd, qe, wk ∈ V homogeneous. Then
pd?(qe?wk) = pd(d·(qe(e·wk))) = pd(d·qe)((d+e)·wk) = (pd?qe)?wk. q.e.d.

2.47 Corollary. The map ? induces a multiplication on V , thus (V,+, ?) is a
K-algebra.

Proof: Since we already know that (V,+) is a vector space all we have to do is
to check distributivity and associativity, both following immediately from 2.46.

q.e.d.

Indeed the map ? can be extended to a map K[X | P] × K[X | P] → V , which
enjoys similar properties.

2.48 Theorem. Define a K-linear map ϑ : (K〈X〉, ·) → (V, ?) : p =
∑
j

cjmj 7→∑
j

cjι(mj). Then ϑ is a K-algebra isomorphism.

Proof: By definition ϑ is K-linear and we have ϑ(p + q) = ϑ(p) + ϑ(q) ∀p, q ∈
K〈X〉. We need to show that ϑ(p · q) = ϑ(p) ? ϑ(q) ∀p, q ∈ K〈X〉. We have
ϑ(p)?ϑ(q) = ϑ(

∑
i

aipi)?ϑ(
∑
j

bjqj) =
∑
i,j

aibiϑ(pi)?ϑ(qj). Because ϑ(pi)?ϑ(qj) =

ι(pi) ? ι(qj) = shrink(ι(pi)(tdeg(p) · ι(qj))) = ι(pi)(tdeg(pi) · ι(qj)) = ι(piqj),
where we used the remark given in the proof of 2.46, we have ϑ(p) ? ϑ(q) =∑
i,j

aibiι(piqj) =
∑
i,j

aibiϑ(piqj) = ϑ(p · q) using linearity of ϑ.

Because of 2.46 (2) ϑ is injective. Since V is defined as the image of ι we have
that ϑ is also surjective, which completes the proof. q.e.d.

2.49 Remark. Take an ideal I E K〈X〉. The set J = ϑ(I) is also an ideal in V
with respect to the new multiplication ? and because of the properties of ϑ the
feature of a subset being a generating system or even a Gröbner basis translates.
However, J is not an ideal of K[X | P] with respect to the standard multiplication
of K[X | P]. So the question arises if there is a correspondence similar to the one
in [LL09], which we will discuss further at the end of the next section.

Knowing about the problem behind homogenization mentioned earlier there are
steps one can take in order to avoid it. One has to apply an ordering which allows
one to simplify the homogenization in each step, thereby reducing the maximal
degree of the homogenized truncated Gröbner bases in each step. This is known
as saturation on the fly and is also briefly discussed in [Sca12].

50

By using graded techniques on the homogenized ideal, our aim is not to compute
the trusted homogenized ideal, but to come as directly as possible to the non-
graded Gröbner basis, which is usually obtained via the post-computation of the
saturation.

We like to point out the difference between our new approach and classical ho-
mogenization. As the first step let us recall the homogenization.

2.50 Definition. Consider the free algebra K〈X〉 and let h be a new variable
commuting with all xi ∈ X. Define X = X ∪ {h} and F = K〈X〉. Then each
p ∈ K〈X〉 is the image of some homogeneous element p ∈ K〈X〉 under the algebra
homomorphism Φ defined via Φ(xi) = xi, Φ(h) = 1. More precisely, if we have

f =
d∑

k=0

pk with pk ∈ K〈X〉k, pd 6= 0, then p̃ =
d∑

k=0

pkh
d−k is a homogeneous

polynomial with Φ(p̃) = p.

2.51 Remark. In order to compute a Gröbner basis via classical homogenization
one has to employ an ordering that has the following property: hk | lm(p̃) then
hk divides each term occurring in p̃ with non-zero coefficient. An example for
such an ordering was introduced earlier (see 1.29) and can be found in [Li12] and
in [BB98] as well as in [Mor88] and there is a full introduction to this topic. In
particular, note that for a properly homogenized polynomial p̃ we always have
h - lm(p) with respect to such an ordering.
After one has computed the Gröbner basis of a homogenized ideal, a saturation
of the result with respect to h must be computed. If we introduce the commu-
tators to the homogenized ideal one is always able to move the homogenization
variable to the end of each monomial using reduction if needed. Indeed, for each
computed S-polynomial p, such that hk|lm(p), one can replace p with the poly-
nomial p/hk. This procedure is called saturation on the fly, because p/hk belongs
to the saturated homogenized ideal. This allows one to reduce significantly the
total degree of considered polynomials during the computation. Note that the
somewhat analogous effect in the commutative case can be achieved by using the
notion of ecart (see for example [GP08]).

Recognizing holes as traces of the homogenization, one can apply the method
presented by La Scala rather effectively. The big advantage hereby is that one
does not need to introduce an extra variable and in each step of the algorithm
a sort of saturation-on-the-fly is applied. Also, it is not necessary to choose a
special ordering for the homogenization variable.

Note that the classical operations with polynomials (creation of S-polynomials,
reductions etc.) usually produce holes in the monomials of inhomogeneous input.
Hence we need to introduce a new reduction routine Shrink-Reduce, which
applies shrinking after each elementary reduction step f = f − cimih, where h is
a reductor, ci ∈ K and mi ∈ V .

51

2.52 Algorithm.

Input: f =
d∑
j=1

cjtj ∈ V , {h1, . . . , hk} ⊂ V , k ∈ N

Output: r ∈ V , such that f =
∑
i

cimihi + r and lm(hi) - r ∀1 ≤ i ≤ k

Set f̃ = f .
while ∃s, i, j ∈ N : c(s · lm(hi)) = ti for some c ∈ K[X | P] do
f̃ = f̃ − c(s · hi)
f̃ = shrink(f̃)

end while
return f̃

Equipped with this new procedure we are now able to state a full algorithm that
can compute Gröbner bases.

2.53 Algorithm.

Input: G0, a generating set of an ideal I E K〈X〉
Output: G, a Gröbner basis for I
H := ι(G0 \ {0});
P = {(f, s · g) | f, g ∈ H, s ∈ N, f 6= s · g, gcd(lm(f), lm(s · g)) 6= 1,

lcm(lm(f), lm(s · g)) ∈ V };
while P 6= ∅ do

Choose (f, s · g) ∈ P ;
P = P \ (f, s · g);
h := Shrink-Reduce(shrink(S(f, s · g)), H);
if h 6= 0 then
P := P∪{(h, s·g) | g ∈ H, s ∈ N, gcd(lm(h), lm(s·g)) 6= 1, lcm(lm(h), lm(s·
g)) ∈ V };
P := P∪{(g, s·h) | g ∈ H, s ∈ N, gcd(lm(g), lm(s·h)) 6= 1, lcm(lm(g), lm(s·
h)) ∈ V };
H := H ∪ {h};

end if
end while;
G := ι−1(H);
return G;

2.54 Theorem. If the algorithm above terminates it returns a reduced Gröbner
basis for the ideal I.

Proof: As explained before we can associate I to an ideal Ĩ in (V, ?). Then H
is a generating system for Ĩ. Moreover, ϑ(H) can be viewed as a set of residue
classes and identified with the place homogenization of those elements. Since
leading monomials are not affected by the homogenization P clearly contains all
critical pairs, as shown in the proof for graded ideals in [LL09].
So the only thing to prove is the correctness of the computation of h. Therefore

52

we observe that the computations of shrink(S(f, s · g)) relates to the pre- and
post-multiplication of the cofactors using the ?-multiplication and the same holds
for the procedure Shrink-Reduce. Therefore we can view h as an S-polynomial
of a Gröbner basis computation in (V, ?) and the correctness of the Buchberger
procedure completes the proof. q.e.d.

2.55 Remark. In general, the termination is not guaranteed, however it can
be achieved by adding a degree bound as usual. In the homogeneous case the
output is a subset of the full reduced Gröbner basis, but in the general case this
is not clear. However, it will be part of some (not necessarily reduced) Gröbner
basis and thus the set may have some uses. For a detailed view on partial and
truncated Gröbner bases we refer to [Stu10], but we will see some of the uses in
the next chapter.

As stated before we have a direct correspondence between ideals in K〈X〉 and
ideals in (V, ?), which also gives a direct correspondence between generating sets
and Gröbner bases. Recall that for a graded, two-sided ideal I E K〈X〉 we call
the ideal J E K[X | P] generated by

⋃
s∈N

s · ι(I) the letterplace analogue of I. On

the other hand we have for a graded, shift-invariant ideal J E K[X | P] an ideal
ι−1(J) := I := ι−1(J ∩ V).
Now if we drop the assumption that our ideals are graded we still have I =
ι−1(ι(I)) but in general we only get ι(ι−1(J)) ⊆ J (see [LL09] Proposition 2.9).
For a general ideal J E K[X | P] equality can never be achieved, as the examples
J := 〈x(2)x(4)〉 E K[x | N] shows: Here J ∩ V = {0} and hence ι(ι−1(J)) = {0}.
For generating sets consider x2 + x ∈ K〈x, y〉. Then x2y + xy ∈ 〈x2 + x〉, but
x(1)x(2)y(3) + x(1)y(2) /∈ 〈

⋃
s∈N

s · (x(1)x(2) + x(1))〉 E K[x, y | N]. Even if

we choose x(1)x(2) + x(2) as the representative of ι(x2 + x) and take 〈
⋃
s∈N

s ·

(x(1)x(2) + x(2))〉 and thus considering a place-homogeneous ideal we have a
similar problem with yx2 + yx ∈ 〈x2 + x〉. To avoid this problem the usage
of shrinking is needed, which in turn leads to the ?-multiplication. Therefore,
a classical correspondence of generating sets or even Gröbner bases like in the
graded case can not be achieved by only using the natural multiplication of
K[X | P] or the letterplace multiplication.

2.4 A new Invariant for the Shift-Action

In this section we intend to find a better way to handle monomials and their
shifts over the letterplace ring. For that we investigate the monoid action of N
and especially the orbits of the elements of V .

2.56 Remark. Note that the image of V under the action of N is exactly the
vector space V ′. This follows immediately by the definition of V ′ (2.5).

53

Furthermore, for each m ∈ V we have N · m = {s · m | s ∈ N}, that is an
orbit consists of a monomial and all its shifts. So whenever we need to choose a
representative for one of these orbits we will take the one with shift zero.

Since K[X | P] is a commutative polynomial ring one can introduce the notion
of exponent vectors. However, since K[X | P] is not finitely generated this vector
has infinitely many entries. This problem can be avoided since each monomial
has finite support and we can cut all zeros at the end of the vector.

2.57 Remark. Take m ∈ V ′ ⊂ K[x1, . . . , xn | N] with deg(m) = d and

shift(m) = s. The classical exponent vector α ∈ Nn(d+s)
0 has the property

m = x1(1)α1x2(1)α2 · · ·xn(1)αn · x1(2)αn+1 · · ·xn(2)α2n · · ·

One can write α = (e1, . . . , ed+s) with vectors ei ∈ Nn, such that

• For 1 ≤ i < s, ei is zero vector.

• For i ≥ s, ei contains exactly one 1 (ei[k] = 1⇔ xk(i) divides m).

Note that the position of the 1 in the k-th block is equal to ik. It follows that
the 1 is on position j in the k-th block, if and only if (xj | k)|m. So if one knows
the positioning of all ones, one can reconstruct the monomial.

From now on, we call (e1, . . . , ed+s) the exponent vector of m. For a vector
v = (v1, . . . , vk) we call k the size or length of v, denoted by lg(v).

2.58 Lemma. Let m ∈ V ′, s ∈ N and m′ := s · m. Moreover, let e and e′ be
exponent vectors of m and m′. If deg(m) = d, then by setting ẽ = (e′s, . . . , e

′
s+d)

one obtains ẽ = e.

Proof: Since shift(m′) ≥ s we have e′i = (0, . . . , 0) ∀i < s. It follows that
shift(m̃) = shift(m′) − s and s · m̃ = m′, which already implies m̃ = m and
thus ẽ = e. q.e.d.

2.59 Definition. Let m ∈ V ′ with deg(m) = d, shift(m) = s, exponent vector e
as before and ẽ := (es, . . . , ed+s). Construct the distance vector D of m as follows:
The first entry of D is the position of the 1 occurring in es. For 1 < i ≤ d the
i-th entry equals one plus the number of zeros between the 1 in es+i and the 1 in
es+i−1.

Denote by dv the map that assigns to each monomial m ∈ V ′ its distance vector.

2.60 Proposition. The map dv is an invariant for the shift action, which sepa-
rates the orbits. That is for all m,m′ ∈ V ′ we have: m′ = s ·m or m = s ·m′ for
some s ∈ N if and only if dv(m) = dv(m′).

Proof: “⇒: ” Follows immediately by the previous lemma, because the distance
vector ignores the shift of an monomial, that is leading zero blocks of the exponent

54

vector are cut of.
“ ⇐: ” It is sufficient to show that the restriction of dv to V is injective, which
is clear by Remark 2.57. q.e.d.

This leads to a way to decide whether or not m|m′ for monomials m,m′ ∈ K〈X〉.

2.61 Definition. For two distance vectors d and d′ we say that d is contained
in d′, if lg(d′) ≥ lg(d) and there exists i ∈ {1, . . . , lg(d′)} such that d[1] =

d′[i] + i · n−
i−1∑
j=1

d′[j] and for 1 < j ≤ lg(d) we have d[j] = d′[i+ j − 1].

2.62 Remark. By construction of the distance vectors we have dv(m) is con-
tained in dv(m′) if and only if there exists s ∈ N such that s ·m|m′ ∀m,m′ ∈
K[X|P].

2.63 Corollary. Take two monomials m,m′ ∈ K〈X〉, set n = ι(m), n′ = ι(m′)
and name the distance vectors d and d′ respectively. Then:
m|m′ ⇔ d is contained in d′.

Proof: m|m′ ⇔ ∃s ∈ N : s · n|n′. Since distance vectors ignore the shift
this proves the claim. q.e.d.

2.64 Remark. This leads to a practical way to conclude if m|m′ by just com-
paring the distance vectors. The nice thing about this procedure is that one gets
the shift s directly and can use s · n say for reduction of n′ (or the corresponding
polynomials respectively). Notably by using division for letterplace monomials
one can compute n′/(s ·n) and gets the coefficients for the reduction by applying
commutative methods.

This can be used to improve the letterplace algorithm for computing Gröbner
bases, since one has not to consider and store all of the shifts of n, but only
check the distance vectors if they are contained in one another, thereby finding
obstructions corresponding to overlaps.

2.4.1 Using the shift-invariant representation

Equipped with the knowledge that we can compute Gröbner bases of non-graded
ideals using the letterplace approach without introducing direct homogenization
one can ask if there is a better way, because applying shrinking to each new
S-polynomial can be very costly.

Recall that one can use distance vectors to represent monomials in a shift invari-
ant way. By switching to this new representation one can multiply monomials
more effectively. Now, since distance vectors are independent of shifts, they are
a natural choice to represent the equivalence class of an monomial in W ′/∼. First
we want to see how to multiply two distance vectors correctly.

55

2.65 Proposition. Denote by lg the size of a distance vector.
Take two monomials m1,m2 ∈ K〈X〉 and set m̃1 := ι(m1), m̃2 := ι(m2), dm1 :=
dv(m̃), dm2 := dv(m̃2). Define a new vector d by setting

d[1 . . . lg(dm1)] = dm1,

d[lg(dm1) + 1] = lg(dm1)n− (

lg(dm1)∑
k=1

dm1[k]) + dm2[1],

d[(lg(dm1) + 2) . . . (lg(dm1) + lg(dm2))] = dm2[2 . . . lg(dm2)].

Then dv(ι(m1m2)) = d.

Proof: To see that the claim is correct one only needs to notice that the entry
d[lg(dm1)+1] is exactly the gap in the exponent vector of m̃1lg(dm1)·m̃2 between
the last variable of m̃1 and the first of lg(dm1) · m̃2. q.e.d.

2.66 Remark. Now one can switch to the distance vector representation of
monomials completely for all computations. Since the direct shifting is not needed
either, one has an efficient representation of the orbit under the shift action on a
monomial.
The methods from the previous section can be directly applied and the correct-
ness of those procedures is granted by 2.54. The benefit with this approach is
that homogenization is not needed and the algorithm provides a counterpart to
the usual non-commutative Buchberger algorithm, using commutative methods
whenever possible, thereby increasing efficiency for steps like divisibility tests.
Moreover, we can observe the following: Suppose that monomials of the free al-
gebra are represented as words in an alphabet (say of the type string), then the
divisibility of monomials is equivalent to subword searching. In the representation
via distance vectors the monomials are represented by dense integer vectors with
bounded entries and the divisibility of monomials can be solved via containment
(as in Corollary 2.63)

2.5 Gebauer-Möller for the Letterplace Ring

Our goal now is to translate Gebauer-Möllers’ criteria into the letterplace realm.
Notably, in this criterion there is no distinction between graded and non-graded
cases.

2.67 Theorem. Let P be the set of critical pairs. Suppose it contains a pair
π = (pi, s · pk) for pi, pk ∈ W ⊂ K[X | P] and s ∈ N.

1. If there exist two pairs π1 = (pi, s
′ · pj) and π2 = (pj, s

′′ · pk), such that
lm(s′ ·pj)|lcm(pi, s ·pk), then the S-polynomial s(π) of π will reduce to zero.

56

2. If there exists a pair π1 = (pj, s · pk) 6= π, such that lcm(pj, s · pk) divides
lcm(pi, s · pk), then the S-polynomial s(π) of π will reduce to zero.

Proof: Immediate consequence of 1.59. q.e.d.

2.68 Remark. Ad 1.: We have s′′ = s − s′. This follows immediately from
the non-commutative proof 1.59 and the form of the overlap. In the case, when
the shifts are already known, commutative methods can be used to check the
divisibility. For condition one this is especially easy, since from the concrete pair
we check its shift is known.
Ad 2.: Since we assume that the shift of pk is the same for π and π1, the condition,
that cm(π1) divides cm(π) from the right, is always satisfied.

Although from a theoretical point of view the criteria do not differ much from
the non-commutative case the version for the letterplace ring has some significant
advantages. Since the shift is given by earlier computations in the Gröbner basis
algorithm the divisibility check can be done using purely commutative methods
or applying the methods given by the usage of distance vectors. In a later chapter
we will see that this approach is indeed feasible.

2.6 Representation of Orderings over the
Letterplace Ring

2.69 Definition. Assume we have K[X | P] equipped with an ordering �. Define
a new ordering on K〈X〉 by m ≤ n ⇔ ι(m) � ι(n). We call ≤ the ordering
corresponding to � or simply corresponding ordering.

2.70 Remark. Given an ordering on K〈X〉 it is not as simple to define a related
ordering on K[X | P], since K[X | P] has much more elements.
Robbiano proves in [Rob85] that every monomial ordering for each finitely gen-
erated polynomial ring originates from a matrix ordering. It is not clear that
Robbiano’s classification works in the general setting of letterplace rings because
those are not finitely generated. However, if we add a degree bound d to K〈X〉
we can consider the subring Ld = K[X | {1, . . . , d}], which is a finitely generated
ring, and the theorem is applicable. The question arises if each ordering for K〈X〉
can be viewed as corresponding to some ordering for K[X | P], at least up to a
certain degree.

For a given ordering ≤ on K〈X〉 it is clear that one can order the monomials,
spanning the vector space V correspondingly. If this is viewed as a preordering
one can apply a method similar to the one in the first chapter (see 1.27)and
get an ordering for Ld. However, there are more points to consider than just
multiplicativity. For example we demand that � is shift invariant, so the pre-
ordering should allow m � s · m ∀s ∈ N, s > 1,m ∈ [X | P], as well as

57

s ·m � s · n ∀m,n ∈ [X | P] with m � n.
Moreover, on K〈X〉 we have x ∗ x = x2, while on Ld we have x(1) ∗ x(1) = x(1)2,
where ∗ denotes the standard ring multiplication. But what we need for multi-
plicativity is x(1) ·lp x(1) = x(1)x(2), where ·lp denotes the multiplication as in
2.34. So the question arises whether we always can achieve multiplicativity and
whether the ? multiplicativity is always satisfied as well. Note that those two
properties are not connected to each other.
Indeed we only need to order place-linear monomials of K[X | P] since those are
the interesting ones for our computations. So the exponent vectors we need to
consider are in {0, 1}nd.
Let us consider some examples first. The goal hereby is to find a matrix on
the letterplace ring such that the corresponding ordering is something we desire.
Later we will check out some other properties of those orderings.

2.71 Example. For each of these examples we will consider K〈X〉 with n vari-
ables and the corresponding letterplace ring K[X | P]. Assume the variables of
K[X | P] are ordered in a natural way regarding the places, that is x1(1) > . . . >
xn(1),
x1(2) > . . . > xn(2) >

1. We start by considering the identity matrix, so K[X | P] is equipped with
the lexicographical ordering. By restricting this ordering to the vector space
V one easily sees that this corresponds to the left lexicographical ordering
on K〈X〉. Note that on K[X | P] this respects the standard multiplication,
but not the ? multiplication, since on K〈X〉 the left lexicographical ordering
is not multiplicative.

2. Now consider A =
(

1 1 ...
Id 0

)
, where Id is an infinite identity matrix. This is

easily identified as the graded lexicographical ordering on K[X | P] as well
as on K〈X〉.

3. If we replace the first line in the matrix of the second example with an vector
of (positive) integers we get a (positive) weighted ordering. However, not
every choice holds a corresponding ordering for the free algebra.

a) Assume w ∈ Nn and replace the first line by w,w,w, Then this
corresponds directly to the weighted ordering on the free algebra.

b) For simplicity we take n = 2 and take A =

(
1 2 3...
1 0 0...
0 1 0...
...

...
...

)
, which induces

a shift-invariant weight ordering on the letterplace ring K[x1, x2 | N].
One can check that the corresponding ordering is in fact a multiplica-
tive well-ordering, although the weighting might be a little strange.
This is due to the fact that the difference in the weights scales consis-
tently over the places.

58

c) Again we take n = 2, but this time we set A =

(
1 2 2 1 1...
1 0 0 0 0...
0 1 0 0 0...
...

...
...

)
, which

induces a weighted degree ordering on the letterplace ring K[x1, x2 |
N]. Note that this ordering is not shift-invariant and therefore the
corresponding ordering will not be multiplicative.

2.72 Example. • For this example we rearrange our variables in the follow-
ing way: x1(1), . . . , xn(1), xn(2), . . . , x1(2), x1(3) Again if we take the
identity matrix we get a lexicographical ordering. However, if we now look
upon the corresponding ordering it is no longer the lexicographical ordering,
but a non-multiplicative ordering, which orders monomials depending on
the position of the variables. By reordering the variables to the previous set-

ting one gets another matrix A′ =

(In 0 0 ...
0 Irevn 0 ...
0 0 In ...
...

...
...

...

)
, where Irevn =

(
0 ... 0 1
0 ... 1 0
...

...
...

...
1 0 ... 0

)
,

representing the same ordering on K[X | P].

• This time let us take K〈X〉 together with the right lexicographical ordering
and try to find a matrix for a corresponding ordering on K[X | P]. We fix
a degree bound d. Note that K[X | P]d is a ring in nd variables. With
a little effort one can show that there exists no matrix which induces a
corresponding ordering.
This can be done by solving a system of inequalities: For example take
d = 4 and K〈x, y〉. We assume we have a matrix A = (ai,j)1≤i,j≤4. Since we
know that x2 > yx > x > xy > yy > y should hold we get (by translating
those inequalities to the letterplace ring):

a1,1 + a1,3 ≥ a1,2 + a1,3 ≥ a1,1 ≥ a1,1 + a1,4 ≥ a1,2 + a1,4 ≥ a1,2

a2,1 + a2,3 ≥ a2,2 + a2,3 ≥ a2,1 ≥ a2,1 + a2,4 ≥ a2,2 + a2,4 ≥ a2,2

a3,1 + a3,3 ≥ a3,2 + a3,3 ≥ a3,1 ≥ a3,1 + a3,4 ≥ a3,2 + a3,4 ≥ a3,2

a4,1 + a4,3 ≥ a4,2 + a4,3 ≥ a4,1 ≥ a4,1 + a4,4 ≥ a4,2 + a4,4 ≥ a4,2

The third inequality already holds that a1,4 = a2,4 = a3,4 = a4,4 = 0,
therefore we have a contradiction to the fact that A should be a full rank
matrix.

One can avoid this problem. Let us fix d ∈ N and define a map ι̂ :
〈X〉d → [X | P] : m 7→ (d − tdeg(m)) · ι(m). We will see later that there
also holds a correspondence between all polynomials up to degree d and
some vector space in K[X | P], therefore the choice is reasonable. Choose

A =

(0 0 ... 0 In
0 0 ... In 0
...

...
...

...
...

In 0 ... 0 0

)
. Then it is easy to verify that m ≤ n ⇐⇒ ι̂(m) ≤A

59

ι̂(n) ∀m,n ∈ K〈X〉d. By reordering the variables of K[X | P]d one can see
that A induces again a lexicographical ordering on K[X | P]d.

2.73 Example (Elimination). For these examples we consider K〈X,Y〉, that
is we divide our set of variables in two subsets. We want to study elimination
orderings for X.

• The easiest way to eliminate all variables in X is to apply weights in the
way that all variables in X have weight one and all variables in Y have
weight zero, which is often done in the commutative case. Recall that this
ordering while having the elimination property will not be multiplicative,
as an example similar to the case of the lexicographical ordering shows.
However, one can use a matrix for weighted orderings as in the example
above to realize this ordering, since this is only a special case of a weighted
ordering.

• Note that the left lexicographical ordering is also a (non-multiplicative)
elimination ordering, but only for the first variable and if viewed as a special
case of the first example. With the example above one can create another
matrix inducing the lexicographical ordering by giving the first variable in
each place weight one, thus changing the first row, moving each other row
one down and deleting the last line.

• Let d ∈ N be a fixed degree bound. To realize the ordering Elim over K[X |

1, . . . , d] one can choose the matrix A =

(In In ... In In
In 0 ... 0 0
...

...
...

...
...

0 0 ... In 0

)
with A ∈ Knd×nd.

All those examples motivate the following result.

2.74 Lemma. Suppose K〈X〉 is equipped with a monomial ordering ≤ and a
degree bound d is fixed. Moreover, suppose that the monomials of the vector
space V are ordered accordingly. If this ordering can be extended to a monomial
ordering � on K[X | 1, . . . , d] then there exists a matrix representation for this
ordering and ≤ is the corresponding ordering of �.

Proof: The existence of the matrix is a consequence of Robbiano’s Theorem
[Rob85] applied to K[X | d]. Since we require that � orders the elements of V
according to the ordering of the elements of K〈X〉 the claim follows. q.e.d.

As the number of examples shows it is often possible to extend the given ordering
to a monomial ordering on the letterplace ring, even if sometimes block-wise
repositioning of the variables of K[X | P] is required, as seen in example 2.72.
However, it is unclear in which cases this procedure does not work, since most
orderings can indeed be handled in this way.

60

There is another motivation for our studies of representation of orderings:
In Singular, every ordering presented by a non-degenerate matrix can be re-
alized. So in this regard realizing orderings over the letterplace ring as matrices
becomes even more useful.

As a next step we study the orderings on the letterplace ring itself to see, which
ones have desired properties and how those translate to the free algebra. We
start by noticing that there are two kinds of multiplication we should consider.

2.75 Remark. If we view K[X | P] as a polynomial ring we have the standard
multiplication ∗. However, this means that x(1) ∗ x(1) = x(1)2, which does
not correspond to a monomial in the free algebra. So we recall the definition
of the ? multiplication 2.46: For m1,m2 ∈ K[X | P] we define m1 ? m2 :=
m1 ∗ (pdeg(m1) · m2). We then have x(1) ? x(1) = x(1) ∗ x(2) = x(1)x(2) as
desired.

So achieving multiplicativity for the standard multiplication alone will not be
enough to ensure a monomial ordering on the free algebra. The notion of shift
invariance comes to mind. However, if one does consider the (left) lexicograph-
ical ordering this shows that even then the corresponding ordering, namely the
lexicographical, has nice properties, while ≤llex is not multiplicative. So given a
matrix ordering on K[X | P]d, the question arises which properties the matrix
must have to ensure a corresponding ordering to be a monomial ordering.

We introduce another property which we do require of our ordering.

2.76 Definition. An ordering is called shift compatible if

shift(p) = shift(lm(p)) ∀p ∈ K[X | P] \ {0}.

2.77 Remark. If we have a linear preordering on the variables of K〈X〉 we
can order the variables of K[X | P] for the first place analogously. Requiring
shift invariance this preordering can be extended to all variables of K[X | P]
uniquely. Shift compatibility however ensures that xi(j) > xi(k) whenever j < k.
Moreover, this adds the interesting property that any ordering will become an
elimination ordering for the variables in place one. This is useful for the fact that
we are only interested in elements of the vector space V .

2.78 Example. As we have seen the matrix A =
(

1 1 ...
Id 0

)
corresponds to the

graded lexicographical ordering on the free algebra as well as the same ordering
on K[X | P]. However it is easily seen that it is not shift compatible as an
ordering on K[X | P], as the example x(2)x(3)x(4) + x(1) shows. However, if we
fix a degree bound d, set E = (1, . . . , 1) = 1n and choose

A′ =

(E 0 0 ... 0
0 E 0 ... 0
...

...
...

...
...

0 0 0 ... E
In−1 0 0 ... 0
0 In−1 0 ... 0
0 0 ... In−1 0

)
,

61

then the corresponding ordering will still be the graded lexicographical ordering,
while K[X | P] is equipped with a shift invariant and compatible ordering, which
is a consequence of the structure of the matrix. To see that the correspondence
is correct note that the total degree is compared place-wise.

2.79 Remark. The examples of 2.78 shows that two different matrices may
define the same ordering on K[X | P]d, so one can ask if there is a sort of normal
form for each ordering which should be chosen and which operation are allowed
in order to simplify any given matrix. However, only a few operations are allowed
if one does not want to change the ordering (namely adding upper rows to lower
once and multiplying positive integers to rows) and none of them will transform
A into A′, which is due to the fact that viewed as orderings on K[X | P] A induces
a different ordering than A′.

Considering the matrix A′ from above one can note that it has a special structure:
If we take stripes of n columns the i-th stripe is the first stripe shifted i times
downwards.

2.80 Definition. Take v, v′ ∈ Kn viewed as columns. Then v′ is called received
from v by shifting i times downward if v′[1] = . . . = v′[i] = 0 and v′[i + 1] =
v[1], . . . v′[n] = v[n− i+ 1]. A matrix A is said to contain shifted stripes of length
n if for each 1 6= i ∈ d, where nd is the number of columns of A, the columns
(i−1)n+1 to in are the same as the first n columns shifted i−1 times downward.

2.81 Remark. Arranging columns into stripes of length n resembles to the fact
that one can grade the vector space V ′ by places, that is V ′ = V ⊕1·V ⊕2·V ⊕. . .,
so one sorts the variables (and their order) also by places.
Since a matrix inducing an ordering has to be of full rank, no zero rows are
allowed. So the first row of the first stripe will always be non-zero, because the
first row of all other stripes will be zero. That implies that each ordering induced
by a matrix containing shifted stripes will always eliminate the variables in the
first place.

2.82 Lemma. If an ordering � on K[X | P] is represented by a matrix containing
stripes of length n then � is shift invariant and shift compatible.

Proof: The shift invariance is clear by the structure of the matrix.
For shift compatibility take p ∈ K[X | P] and assume shift(p) 6= shift(lm(p))
that is there is a monomialm in p such that shift(m) < shift(lm(p)). Therefore
there is xi(j) contained in m such that j < shift(lm(p)). This is a contradiction
to the fact that orderings invoked by matrices containing shifted stripes are always
eliminating variables in lower places. q.e.d.

2.83 Remark. The question arises whether every shift invariant and compatible
ordering is representable by such a matrix. Obviously the best way to represent
a shift compatible ordering is by choosing a matrix that contains shifted stripes,

62

because then one is able to describe the ordering on the infinitely generated
letterplace ring with finite data, namely with the first stripe. It is easy to see
that, with a fixed degree bound d, the first stripe will be a sparse n× nd matrix
and all other stripes can be retrieved from the first one. So in which situations
is one allowed to choose a matrix containing shifted stripes?

2.84 Proposition. Every shift invariant and shift compatible monomial order-
ing on K[X | P], which does not eliminate any of the variables in X, can be
represented by a matrix containing shifted stripes of length n.

Proof: First we note that if the claim holds for K[X | d] with d ∈ N then it
is also true for K[X | P], since one can extend the matrix. So assume we have
a shift invariant and shift compatible monomial ordering on K[X | d] for some
d ∈ N. Since we assume we have a monomial ordering we can present it by a
matrix A, which contains positive entries. We divide it into n × n submatrices
and refer to them by indices Ai,j to differentiate from the entries A[i, j].
Since m < n implies s ·m < s · n ∀m,n ∈ [X | d], s ∈ N such that s ·m, s · n ∈
K[X | d] we have that the matrix A?,j formed by the first j columns of A must
contain the same information as the matrix (A?,j′)s<j′≤s+d′ , where d′ denotes the
highest place occurring in m and n. For s, s′ ∈ N such that s < s′ we have
xi(s) > xi(s

′) ∀i ∈ d and therefore we can conclude that the stripes of columns
must have length n.
Since A must have full rank and xi(s) > xi(s

′) whenever s < s′ there exists i ∈ N
with 1 ≤ i ≤ n such that A[1, i] > 0. Assume A[1, ki] > 0 with ki ≤ d and
1 < k ∈ N. Obviously we have A[1, ki] < A[1, i]. Because each submatrix of
columns must contain the same information as before we get A[1, ki] > 0 ∀1 <
k ≤ d. If A[1, i] < d this leads to a contradiction to A[1, k′i] < A[1, ki] for
k′ > k, so assume A[1, i] ≥ d. But then the total degree of xi(1) exceeds the
degree bound, which either implies a elimination ordering for xi or all the other
variables are also equipped with a weight > 1. Because of the assumptions the
latter case holds, so we can reduce the weights until the minimal weight equals
1, therefore achieving A[1, i] < d, reaching once more a contradiction. Therefore
A[1, ki] = 0 ∀1 ≤ i ≤ n, 1 < k ≤ d.
Iterating this step for submatrices we get the desired form for A. q.e.d.

2.85 Remark. In fact there always exists a good representation as long as we
do not choose a elimination ordering. There are two problems we would like to
answer: Can any given matrix inducing a shift invariant and compatible order-
ing be retrieved from a matrix containing shifted stripes and for which orderings
on K〈X〉 can we achieve shift invariance and compatibility? Both question are
equally hard to answer.
While with the theorem above one can always choose a matrix containing stripes
the relation between two matrices is in no way clear and the application of Rob-
biano’s classification is not helpful either.

63

As for the second question it is easy to see that each ordering which is compatible
with the total degree of a polynomial will be in fact shift compatible. However,
weighted orderings as well as the left lexicographical ordering can be viewed as
corresponding orderings to shift compatible once.

As stated before the ordering Elim is a monomial elimination ordering. However,
by the choice of the matrix we made for an ordering on the letterplace ring it is
not shift compatible. This is due to the fact that the elimination property divides
the set of variables into two parts which are dealt with separately in some way.
Say we have the set {X, Y } as variables and we want to eliminate X with a fixed
degree bound d as usual. We can achieve a matrix with stripes of length d if we
order the variables by places first, that is

x1(1), . . . , x1(d), x2(1), . . . , xk(d), y1(1), . . . , yk′(d).

However, the ordering will not be shift compatible, since the stripes are not of
length n and the choice implies an ordering which considers variables first and
does not prioritize the place.

As one can see finding a good representation for an ordering can be quite com-
plicated. In practice however there are often good representations available, as
the large amount of examples in this section shows.

2.7 Conclusion

The work done in [LL09] and [Sca12] showed that the letterplace approach is
promising and should be investigated further. The implementations done to test
the theoretical approach showed good results. However, they were never intended
to be optimal.

In this work we showed that there is indeed a way to compute Gröbner bases
of arbitrary ideals and that one does not have to rely on homogenization. We
have also revealed that there is no direct correspondence between a non-graded
ideal in the free algebra and some special kind of ideals in the letterplace ring.
However, we can identify the free algebra in the letterplace ring by adding an
additional structure, the ?-multiplication (see 2.46).

The new data structure introduced in this work, the so-called distance vectors,
are not only a fascinating structure to apply the theoretical results, but also
an excellent choice to represent monomials of the free algebra on the computer,
therefore allowing an optimized and efficient implementation of the letterplace
Gröbner basis algorithm.

The new insights we gained by studying representation matrices of orderings
over the letterplace rings are of interest for implementations as well as from a

64

theoretical point of view. Since the computer algebra system Singular allows to
use any ordering presented by a matrix the results presented here are of practical
value. The discussion which properties an ordering needs to be considered good
may lead to a classification of orderings in a future work.

65

3 Gröbner Basics

The most common applications of Gröbner basis computations are sometimes
called Gröbner basics. In this chapter we like to present those methods and state
algorithms which can solve a variety of problems.

At the beginning we should discuss the notion of decidability. Most of the pro-
cedures we present need a Gröbner basis as input or, in some cases, a Gröbner
basis must be computed during the procedure. As mentioned before Gröbner
bases might contain infinitely many elements due to the lack of Noetherianity of
K〈X〉. In those cases the computations may not lead to a result, which is the
reason some of the questions presented here are not decidable in general.

3.1 Truncated Gröbner Bases

While it is sometimes impossible or at least very hard to compute a complete
Gröbner basis, sometimes necessary and valuable information can be retrieved
from the knowledge of a part of a complete Gröbner basis. In this section we
define what a part of a Gröbner basis is, following [Stu10] and try to gather first
information from this part.

3.1 Definition. Let G be a set of polynomials such that tdeg(g) ≤ q ∀g ∈ G and
some q ∈ N. In Algorithm 1.55 discard every obstruction with an S-polynomial
of total degree greater than q. If the algorithm returns the set Gq, we call Gq a
truncated Gröbner basis of degree q.
Let G be a Gröbner basis for 〈G〉 and G̃ ⊂ G. We call G̃ a partial Gröbner basis,
if it is already a Gröbner basis for the ideal Ĩ := 〈G̃〉.

Since 1.55 always computes a reduced Gröbner basis, a truncated Gröbner basis
will also be reduced. Note that a truncated Gröbner basis does not necessarily
need to be a subset of our reduced Gröbner basis. But since the algebra K〈X〉 has
only finitely many variables there are only finitely many monomials of total degree
≤ q (up to scaling), so the “truncated” version of the algorithm will terminate in
any case.

It is clear, that 〈Gq〉 = 〈G〉, since Algorithm 1.55 does not change the generated
ideal. So we may use Gq to get to know more about the Gröbner basis we want
to compute.

67

3.2 Lemma. Let B ⊆ K〈X〉 and Gq be a truncated Gröbner basis of degree q
of 〈B〉. If max{tdeg(g) | g ∈ Gq} ≤ q

2
then Gq is a Gröbner basis of the ideal

generated by B.

Proof: Define m := max{tdeg(g) | g ∈ Gq}. Since 〈B〉 = 〈Gq〉 we only need to
show: Every S-polynomial of obstructions of polynomials in Gq is of degree at
most 2m− 1, which implies the claim.
Take gm ∈ Gq such that tdeg(gm) = m. Take an arbitrary gi ∈ Gq, such
that (l, i, r;λ,m, ρ) is a left, right or central obstruction. Note that tdeg(gi) ≤
tdeg(gm) ∀gi ∈ B, so all obstructions we need to consider are of the form
(l, i, r;λ,m, ρ). Because of 1.49 we may assume that lm(gi) and lm(gm) have
overlap b 6= 1.

1. Assume lm(gi) = ab and lm(gm) = bc with tdeg(b) ≥ 1.
Clearly (1, i, c; a,m, 1) is an obstruction and the induced S-polynomial is of
degree at most 2m− 1, since b is not a constant.
Let (1, i, r;λ,m, ρ) be a right obstruction. Since lm(gir) = lm(λgmρ) ⇔
ablm(r) = lm(λ)bclm(ρ) we get lm(λ) = a and lm(r) and clm(ρ) have overlap
c. So s(1, i, r;λ,m, ρ) = gicr̃ − agmρ̃ for some r̃, ρ̃ ∈ K〈X〉, which is weak
with respect to Gq ∪ {s(1, i, c; a,m, 1)} by the definition of weakness.
Now let (l, i, 1;λ,m, ρ) be a left obstruction.
As before we get s(l, i, 1;λ,m, ρ) = l̃gic− λ̃agm, which is weak with respect
to Gq ∪ {s(1, i, c; a,m, 1)}.
By assumption there will not be any central obstruction.

2. The case gi = ba and gm = cb is completely analogous to part 1.

3. Because the degree of gm is maximal, the last case we have to study is
gm = agib. But this would imply that gm is weak with respect to Gq \ {gm}
which is a contradiction to the assumption that Gq is a truncated Gröbner
basis. q.e.d.

3.3 Corollary. If Gq is a truncated Gröbner basis, then H := {p ∈ Gq |
tdeg(p) ≤ b q

2
c} is a partial Gröbner basis for 〈Gq〉.

Proof: Clear by 3.2. q.e.d.

Provided there exists a finite Gröbner basis, this leads to a way to compute the
whole Gröbner basis starting with a truncated one, by iteratively increasing the
degree bound.

68

3.4 Algorithm.

Input: A (finite) truncated Gröbner basis Gq for I = 〈Gq〉
Output: A reduced Gröbner basis for I

(?) p := max{tdeg(g) | g ∈ Gq}
Apply the truncated version of Algorithm 1.55 to Gq with degree bound 2p−1
and call the result G2p−1
if p = max{tdeg(g) | g ∈ G2p−1} then

return G2p−1
else: go to (?)

end if

3.5 Remark. It is obvious that 3.4 terminates, if there exists a finite Gröbner
basis, and that it will return this Gröbner basis of I.
The proof of Lemma 3.2 states that if we construct an S-polynomial we will lose
at least one degree to the overlap, since it is not trivial. This illustration shows
us that our lemma includes only the worst case. In fact most of the time we will
not have to double our q for the truncated Gröbner basis, as the following lemma
states:

3.6 Lemma. Let B ⊆ K〈X〉 and Gq be a truncated Gröbner basis of de-
gree q of B. Take g1 ∈ Gq of degree m, and g2 ∈ Gq of maximal degree,
say o, such that g2 has a non-trivial and non-central overlap with g1. Define
l := lcm(lm(g1), lm(g2)), where lcm denotes the least common multiple, that
is lcm(lm(g1), lm(g2)) := max

tdeg(b)
{abc ∈ 〈X〉 | a, b, c ∈ 〈X〉, abc = lm(g1)c =

alm(g2), lm(g1) and lm(g2) have overlap b} and set p := tdeg(l). Then m + 1 ≤
p ≤ m+ o− 1.

Proof: Assume lm(g1) = ab and lm(g2) = bc for some a, b, c ∈ 〈X〉, which
corresponds to a right obstruction. Since the overlap is non-trivial, none of the
monomials a, b, c equal one, so they are all of positive degree. Therefore l = abc
is of degree p = tdeg(abc) = tdeg(g1) + tdeg(c) ≥ m+ 1 on the one hand and on
the other p = tdeg(abc) = tdeg(ab) + tdeg(c) ≤ tdeg(ab) + tdeg(bc) = m+ o.
By relabeling g1 and g2 we get the case of a left obstruction as above. q.e.d.

3.7 Proposition. Let B ⊆ K〈X〉 and Gq be a truncated Gröbner basis of degree
q of B. Take g1 ∈ Gq of degree m, and g2 ∈ Gq of maximal total degree, say
o, such that g2 has any non-trivial overlap with g1. The overlap may have total
degree p.
If we can write g1 = lm(g1) + g̃1, tdeg(g̃1) = m̃ ≤ m and g2 = lm(g2) +
g̃2, tdeg(g̃2) = õ ≤ o, then the total degree of the normal form of any S-
polynomial of Gq is at most m′, where m′ = max{m̃(o− p), õ(m− p)}.
Proof: The only two obstructions we need to consider are (1, 2, c; a, 1, 1) and
(c, 2, 1; 1, 1, a), as seen in the proof of Lemma 3.2. In the first case, we have

tdeg(c) = tdeg(g1)− tdeg(b) = m− p, tdeg(a) = tdeg(g2)− tdeg(b) = o− p.

69

Since the leading terms of g1 and g2 cancel each other, we have

tdeg((1, 2, c; a, 1, 1)) ≤ max{m̃(o− p), õ(m− p)}.

For the second case we get analogously:

tdeg((c, 2, 1; 1, 1, a)) ≤ max{m̃(o− p), õ(m− p)}.

q.e.d.

The bound given in Proposition 3.7 is again not strict: It determines the highest
total degree p of all S-polynomials. Therefore, we have to compute a Gröbner
basis at least up to degree p. But if all S-polynomials of total degree p reduce
to zero the degree bound needed is in fact lower. However, 3.7 can be used to
enhance Algorithm 3.4 in an obvious way:

3.8 Algorithm. Input: A truncated Gröbner basis Gq for I = 〈Gq〉
Output: A reduced Gröbner basis for I

(?) Set:

p := max{tdeg(m) | m = lm(S(g, g̃)), (g, g̃) ∈ Gq ×Gq,

g and g̃ have non trivial overlap}

for g ∈ {g̃ ∈ Gq | tdeg(g̃) = p} do

pg := max{p+ dg̃ − pg,g̃ | dg̃ = tdeg(g̃),

pg,g̃ = min{o | g and g̃ have overlap of total degree o},
g̃ ∈ Gq}

end for
Set p = max{pg | g ∈ {g̃ ∈ Gq | tdeg(g̃) = p}}
if p ≤ q then

return Gq

else: Apply the truncated version of Algorithm 1.55 to Gq with degree bound
p and call the result Gp

if Gp = Gq then
return Gp

else: Set Gq = Gp and go to (?)
end if

end if

3.9 Remark. Algorithm 3.8 will be of great use in the setup of the letterplace
analogon. Here one always has a degree bound, at least in practice (cf. [LL09]).

70

So one always computes a truncated Gröbner basis. Therefore, the adaptive
algorithm is the only way to get to a complete Gröbner basis.
It is in no way clear, whether this algorithm will terminate. In fact the question
for termination is the question for finiteness of the Gröbner basis. In general, if
the Gröbner basis is infinite, we do not have any possibility to determine that,
whereas if the Gröbner basis is finite the Algorithm 3.8 will terminate.
However, there are some situations, when we can decide whether the Gröbner
basis will be finite or not, as we will see in a later section.

3.2 Elimination

In 1.24 the notion of elimination ordering was introduced. Here we study appli-
cations of those orderings. This was also done by Nordbeck in [Nor98] and can
also be found in [Xiu12].

We first introduce the notion of elimination ideal.

3.10 Definition. Assume we have a subset Y ⊂ X and an ideal I E K〈X〉. Set
X̃ = X \ Y. Then the ideal I ∩ K〈X̃〉 is called the elimination ideal of I with
respect to Y.

3.11 Lemma. Take an ideal I E K〈X〉 and a subset Y ⊂ X. Let < be a
elimination ordering for Y and set X̃ = X \Y. Assume G is a Gröbner basis for
I with respect to <. Then G∩K〈X̃〉 is a Gröbner basis for the elimination ideal
I ∩K〈X̃〉.
Proof: Because of the elimination property we have G∩K〈X̃〉 ⊂ I ∩K〈X̃〉. Let
p ∈ I ∩ K〈X̃〉 \ {0} be a polynomial. Since G is a Gröbner basis of I there are
λ, ρ ∈ 〈X〉 and g ∈ G such that lt(p) = λlt(g)ρ. Now since p ∈ I ∩ K〈X̃〉 we
have in particular lt(p) ∈ I ∩K〈X̃〉 and therefore λ, lt(g), ρ ∈ I ∩K〈X̃〉. Since
we have chosen a elimination ordering this also implies g ∈ I ∩ K〈X̃〉 showing
that g ∈ G ∩K〈X̃〉. q.e.d.

One important application for elimination ideals is the computation of intersec-
tion of ideals.

3.12 Proposition. Consider two sets of polynomials G1 and G2 and assume
I1 = 〈G1〉, I2 = 〈G2〉 E K〈X〉. Consider the free algebra K〈y,X〉 in n + 1
variables and set C := 〈yxi − xiy | 1 ≤ i ≤ n〉. Moreover, set N := {yf | f ∈
I1}∪{(1−y)g | g ∈ I2} consider the ideal J = 〈N ∪C〉. Then I1∩I2 = J ∩K〈X〉.
Proof: Assume p ∈ I1∩ I2. Then there are g1,1, . . . , gk,1 ∈ G1 and g1,2, . . . , gk′,2 ∈

G2 such that p =
k∑
i=1

li,1gi,1ri,1 =
k′∑
i=1

li,2gi,2ri,2 for some li,1, li,2, ri,1, ri,2 ∈ K〈X〉.

Now we can write p = yp + (1 − y)p =
k∑
i=1

yli,1gi,1ri,1 +
k′∑
i=1

(1 − y)li,2gi,2ri,2 =

71

k∑
i=1

li,1ygi,1ri,1 +
k′∑
i=1

li,2(1− y)gi,2ri,2 + pC , with pC ∈ C. Obviously
k∑
i=1

li,1ygi,1ri,1 +

k′∑
i=1

li,2(1− y)gi,2ri,2 shows that p ∈ J ∩K〈X〉.

Now assume p ∈ J ∩ K〈X〉 that is p =
k∑
i=1

li,1ygi,1ri,1 +
k′∑
i=1

li,2(1 − y)gi,2ri,2 + pC

for some gi,1 ∈ G1, gi,2 ∈ G2, li,1, li,2, ri,1, ri,2 ∈ K〈y,X〉 and pC ∈ C. Now since
p ∈ K〈X〉 the representation is independent of the choice of y, so we can substitute

y 7→ 1 and get p =
k∑
i=1

l′i,1gi,1r
′
i,1 ∈ I with l′i,1 = li,1(0,X), r′i,1 = ri,1(0,X) ∈ K〈X〉.

On the other hand if we set y 7→ 0 we get p =
k′∑
i=1

l′i,2gi,2r
′
i,2 ∈ J , where l′i,2 =

li,2(0,X), r′i,2 = ri,2(0,X) ∈ K〈X〉, showing that p ∈ I1 ∩ I2. q.e.d.

As a result we get the following algorithm to compute intersection of two ideals.

3.13 Algorithm.

Input: G1, G2, two generating sets for ideals I1 and I2
Output: G, a Gröbner basis for I1 ∩ I2

Consider K〈y,X〉 and choose an elimination ordering for y.
Compute a Gröbner basis of {yf, (1− y)g, yxi−xiy | 1 ≤ i ≤ n, f ∈ I1, g ∈ I2}
and call it G̃.
return G = G̃ ∩K〈X〉

3.14 Remark. While in general the termination of this algorithm is not guar-
anteed unless a degree bound is added, the correctness is given by Proposition
3.12. Note that this algorithm can be generalized to the case of the intersec-
tion of s ideals I1, . . . , Is, s ∈ N generated by the sets Gi. Then one needs to
introduce s − 1 new variables {y1, . . . , ys−1} and computes a Gröbner basis of

(
s−1⋃
i=1

{yigij | gij ∈ Gi}∪ {(1− y1− . . .− ys−1)gsj | gsj ∈ Gs})∪C, where C denotes

the set of all commutators between xi and yj.

As an application of this algorithm we study homomorphisms of algebras. More
precisely we want to compute the kernel of such a homomorphism. We set Y =
{y1, . . . , ym}.

3.15 Proposition. Assume we have two finitely presented algebras A = K〈Y〉/J
and B = K〈X〉/I and an algebra homomorphism

ϕ : A→ B : [yi] 7→ [gi], i = 1, . . . ,m,

for some gi ∈ K〈X〉. Set D := 〈y1 − g1, . . . , ym − gm〉 E K〈X,Y〉. Then we have
ker(ϕ) = ((D + I) ∩K〈Y〉) + J .

72

Proof: Take p ∈ ker(ϕ) ⊆ K〈Y〉/J and set φ(p) = q ∈ I E K〈X〉. Then we
have q = p(g1, . . . , gm). By using yi = (yi − gi) + gi ∀1 ≤ i ≤ m we can write
p(y1, . . . , ym) = p̃ + p(g1, . . . , gm) for some p̃ ∈ D. Now since q ∈ I we have
p ∈ D + I E K〈X,Y〉 and since p ∈ K〈Y〉 we have p ∈ D + I ∩ K〈Y〉, which
implies p+ J ∈ D + I ∩K〈Y〉+ J .
Now assume p ∈ K〈Y〉 such that p + J ∈ ((D + I) ∩ K〈Y〉) + J . By definition

we get p =
m∑
i=1

li(yji − gji)ri + pI + J for some li, ri ∈ K〈X,Y〉, pI ∈ I. Now

p(g1, . . . , gm) = pI ∈ I showing that p+ J ∈ ker(ϕ). q.e.d.

3.16 Remark. This proposition can be applied as follows: Suppose we have
I = 〈GI〉 and J = 〈GJ〉. Set H = {y1 − g1, . . . , ym − gm} ∪ GI and choose an
elimination ordering for X. Now compute a Gröbner basis G̃ of H and set G =
G̃∩K〈Y〉. Since G generates (D+I)∩K〈Y〉 by 3.11 we have ker(ϕ) = 〈G∪GJ〉.
As a consequence we are able to introduce another useful application.

3.17 Corollary. Say we have an elimination ordering for X on K〈X,Y〉. In the
setup of 3.15 we have [f] ∈ Im(ϕ) if and only if NF(f,D + I) ∈ K〈Y〉.
Proof: Take f ∈ K〈X〉 such that [f] ∈ Im(ϕ) that is there is p ∈ K〈Y〉/J such
that ϕ(p) = [f] that is p(g1, . . . , gm) + I = f + I. We rewrite gi = yi − (yi − gi)
and get p(g1, . . . , gm) = p(y1, . . . , ym)+ p̃ with p̃ ∈ D and therefore NF(f,D+I) =
NF(p,D + I), since NF(p̃, D + I) = 0. Now since we have chosen a elimination
ordering for Xand p ∈ K〈Y〉 we also have NF(p,D + I) ∈ K〈Y〉 showing that
NF(f,D + I) ∈ K〈Y〉.
Now take f ∈ K〈X〉 such that NF(f,D+I) ∈ K〈Y〉. Then f−NF(f,D+I) ∈ D+I
by the properties of normalforms. This implies a representation f−NF(f,D+I) =
m∑
i=1

li(yji−gji)ri+pI with li, ri ∈ K〈X,Y〉, pI ∈ I. Therefore ϕ(f−NF(f,D+I)) ∈

I which implies f + I = ϕ(NF(f,D + I)) that is f + I ∈ Im(ϕ). q.e.d.

3.18 Corollary. In the setup of 3.16 we have ϕ is surjective if and only if G̃
contains elements xi − hi where hi ∈ K〈Y〉 ∀1 ≤ i ≤ n.

Proof: Consequence of 3.17. q.e.d.

Proposition 3.15 can be used to find a practical way to decide whether or not an
element of K〈X〉/I is algebraic.

3.19 Definition. Consider a finitely presented algebra A and take an element
g ∈ A. We call g algebraic if there is 0 6= p ∈ K[y] such that p(g) = 0. We call
min
tdeg(p)

{p ∈ K[y] | p(g) = 0, lc(p) = 1} the minimal polynomial of g.

3.20 Lemma. Consider the algebra homomorphism ϕ : K[y]→ K〈X〉/I : y 7→
[g]. We have [g] is algebraic if and only if ker(ϕ) 6= {0}. Moreover ker(ϕ) is
generated by the minimal polynomial of [g].

73

Proof: If [g] is algebraic the exists p ∈ K[y] such that p([g]) = [0] and therefore
p ∈ ker(ϕ). On the other hand we have p([g]) = [0] ∀p ∈ ker(ϕ) which proves the
first claim.
Since K[y] is a principal ideal domain ker(ϕ) is generated by one element p and
we have for all elements in tdeg(p) ≤ tdeg(p̃) ∀p̃ ∈ ker(ϕ). If we choose p to be
normalized the second statement follows. q.e.d.

The proof shows that the minimum of the set {p ∈ K[y] | p(g) = 0, lc(p) = 1} in
Definition 3.19 exists and that it is unique.

Another important application for these methods is the generalized word problem.
Given a set of generators X and a finitely presented monoid M = 〈X | R〉, where
R is a set of relations, we want to decide whether or not a given m ∈ M is
contained in a submonoid S = 〈s1, . . . , sr〉 ⊆ M . In general this problem is not
decidable. However, under the assumption that each Gröbner basis is finite we
can state a method which solves the problem.

3.21 Lemma. Let M = 〈X | R〉 be a finitely presented monoid and take S =
〈s1, . . . , sr〉 ⊆ M . Say KM ∼= K〈X〉/I that is I = 〈{r1 − r2 | (r1, r2) ∈ R}〉 and
take m ∈ 〈X〉 and denote by m the corresponding element in M . Then m ∈ S if
and only if [m− 1] ∈ K〈s1 − 1, . . . , sr − 1〉 ⊆ K〈X〉/I.

Proof: If we identify KM with its monoid ring K〈X〉/I it is obvious that S
corresponds to the subalgebra K〈s1 − 1, . . . , sr − 1〉. q.e.d.

3.22 Remark. In the setup of 3.21 we consider the homomorphism of algebras
ϕ : K〈X〉/I → K〈X〉/I : [xi] 7→ [si−1]. If [m−1] is in Im(ϕ) then m is contained
in S, which solves the problem.
Note that we can generalize this to the setup of arbitrary subalgebras, thereby
solving the analogous subalgebra membership problem in the case that the Gröbner
basis is finite.

3.3 Syzygies

In this section we define the bi-module of syzygies for a Gröbner basis of an ideal
I E K〈X〉 and present a way to compute it. We are motivated by [KB07], where
an algorithm to compute syzygies of elements of a free two-sided module over
K〈X〉 was presented and we like to show how the letterplace setup can be used
as an easy way to implement this method.

We start with the definition of syzygies.

3.23 Definition. Assume we have a two-sided ideal I E K〈X〉 given by a (finite)
generating set G = {g1, . . . , gs} and denote by Fs the free two-sided K〈X〉-module
generated by {e1, . . . , es}. The (two-sided) syzygy module of G is defined as the
kernel of the homomorphism of bimodules λ : Fs → K〈X〉 : ei 7→ gi. We will
denote it by Syz(G).

74

3.24 Remark. Another way to define a syzygy is by using the relation
s∑
i=1

∑
j

li,jgiri,j = 0. It is essential that we distinguish the elements which are

multiplied from the right and those which are multiplied from the left, so when
we say Syz(G) is a two-sided K〈X〉-module we view it as an (K〈X〉-K〈X〉opp)-
bimodule (cf. 1.8).

Note that this definition can be extended for tuples of vectors of the free K〈X〉-
module Fr, but for our purpose we restrict ourself to the case r = 1.
The computation of a syzygy-module is based on the following theoretical layout.

3.25 Proposition. Denote by Fs+1 the free K〈X〉-module generated by
{e1, . . . , es+1}. Take a subset G = {g1, . . . , gs} ⊂ K〈X〉 and set U = 〈g1 · e1 −
e2, g2 ·e1−e3, . . . , gs ·e1−es+1〉 ⊂ Fs+1. Then we have U∩〈e2, . . . , es+1〉 ∼= Syz(G).

Proof: We set F̂r+s = 〈er+1, . . . , er+s〉, gi = gi·e1 and consider the homomorphism
Ψ : F̂1+s → Fs : e1+i 7→ ei. The restriction ψ of Ψ to U ∩ 〈e2, . . . , es+1〉
is then an injective homomorphism to Fs. So we need to show that Im(ψ) =

Syz(G). Let s =
s∑
i=1

∑
j

ci,jli,jeiri,j ∈ Syz(G), where ci,j ∈ K, li,j, ri,j ∈ 〈X〉.

Then ŝ =
s∑
i=1

∑
j

ci,jli,je1+iri,j =
s∑
i=1

∑
j

ci,jli,jgiri,j +
s∑
i=1

∑
j

ci,jli,j(e1+i − gi)ri,j is

an element in U ∩ F̂1+s and obviously we have φ(ŝ) = s. On the other hand

take ŝ =
s∑
i=1

∑
j

ci,jli,je1+iri,j ∈ U ∩ F̂1+s. Then λ(φ(ŝ)) =
s∑
i=1

∑
j

ci,jli,jgiri,j =

s∑
i=1

∑
j

ci,jli,j(gi − e1+i)ri,j +
s∑
i=1

∑
j

ci,jli,je1+iri,j ∈ U .

Now since λ(φ(ŝ)) =
s∑
i=1

∑
j

ci,jli,jgiri,j is a representation of λ(φ(ŝ)) without the

generators {e2, . . . , es+1} this implies λ(φ(ŝ)) = 0, since U = 〈g1 · e1− e2, g2 · e1−
e3, . . . , gs · e1 − es+1〉, so φ(ŝ) ∈ Syz(G). q.e.d.

With this result we are able to formulate a procedure to compute the syzygies of
G. Again we set F̂r+s = 〈er+1, . . . , er+s〉.

3.26 Algorithm.

Input: G := {g1, . . . , gs} ⊂ K〈X〉
Output: G̃, a Gröbner basis for the two-sided syzygy module Syz(G)

Define ϕ : F̂1+s → Fs : ei+1 7→ ei ∀1 ≤ i ≤ s
Set gi := gi · e1 ∀1 ≤ i ≤ s and choose an ordering on Fs+1 which eliminates
the first component
Compute a Gröbner basis for {g1 − e2, g2 − e3, . . . , gs − es+1} and call it U
Compute Û = U ∩ F̂1+s

return ϕ(Û)

75

If Syz(G) has a finite Gröbner basis this algorithm terminates and returns a
Gröbner basis for the two-sided syzygy module Syz(G).

Proof: By 3.25 we know that ϕ(〈Û〉) ∼= Syz(G). That Û forms a Gröbner basis
is a consequence of 3.11. q.e.d.

3.27 Remark. With the methods of the previous section we can now compute the
syzygy module. Note that this algorithm is similar to the commutative algorithm
(see for example [GP08] or [Lev05]). There one can visualize the method using
matrices. Assume we have I = 〈g1, . . . , gs〉 E K[X] and set

F :=


g1 g2 · · · gs
1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 .

We put the result of the Gröbner basis computation of the matrix F with respect
of a position-over-term monomial module ordering in the matrix M , sorting the
columns in such a way, that the elements which are zero in their first component
are moved to the left. Then

M =

(
0 · · · 0

S

∣∣∣∣h1 · · · hk
T

)
,

where we have

• The set {h1, . . . , hk} is a Gröbner basis for I.

• The columns of S generate Syz({g1, . . . , gs}).

• The matrix T is a transformation matrix between G = {g1, . . . , gs} and
H = {h1, . . . , hk}.

We refer to [Lev05] for details about this procedure.

Notably, this approach does not work for two-sided ideals and bimodules. One
way to apply this algorithm in the commutative case is to introduce new variables
{e2, . . . , es+1} and idealize the module structure. Those variables satisfy the
condition eiej = 0 ∀1 ≤ i, j ≤ s+ 1 and those are added to the relations as well.

Because of the bimodule structure the non-commutative case is more complicated.
Usually one wants to add commutators for the new variables as well, but since
one needs to distinguish left from right multiplication the position of the ei inside
a monomial is essential. Note that the letterplace ring is again a natural choice
for the computations, because the notion of position of a variable is part of the
structure.

76

Without adding relations however our computations may hold elements we have
no use for, namely those polynomials containing words in more than one ei. So
one has to discard those superfluous elements.

We now state an algorithm which uses idealization.

3.28 Algorithm.

Input: G = {g1, . . . , gs}, a set of polynomials
Output: H̃, a set of polynomials in K[X, e2, . . . , es+1 | P]

Set G̃ = {g1 − e2, . . . , gs − es+1} and choose an elimination
ordering for {ei | i = 2, . . . , s+ 1}

Compute H, a Gröbner basis of G̃
Take H̃ = {p ∈ H | p =

∑
i

aimi, ∀i ∃! k : ek|mi} ⊆ H

return H̃

3.29 Lemma. Assume we have a set of polynomials G = {g1, . . . , gs} ⊂ K〈X〉
and a Gröbner basis S for Syz(G) ⊂ Fs. Define a ring homomorphism

σ : K〈X, e2, . . . , es+1〉 → K〈X〉 : xi 7→ xi, ei 7→ gi−1

and a map

ς : Syz(G)→ K〈X, e2, . . . , es+1〉 :∑
j

(lj,1εj,1rj,1, . . . ,lj,sεj,srj,s) 7→
∑
j

s∑
i=1

lj,iei+1rj,i.

Then:

• The set H in Algorithm 3.28 is a Gröbner basis for ker(σ).

• We have ς(S) = H̃, where H̃ is the set returned by Algorithm 3.28.

Proof:

• It is clear that H is indeed a Gröbner basis. By 3.25 we have 〈H〉 = ker(σ).

• Consequence of the correctness of 3.26. q.e.d.

3.30 Remark. It is worth to mention that the letterplace structure can be used
very efficiently. Since all the variables are equipped with places we get a natural
order of left and right coefficients, namely if ei appears in place k, all variables up
to place k are left coefficients, all with place greater than k are right coefficients.

One application for the computation of syzygies is the so called conjugator search
problem. In [KB07] there is an algorithm proposed which is able to solve the

77

problem. We present this method here as well and apply it in the next chapter
to some examples.

For now we will assume that G is a finitely presented group, that is we have a
finite alphabet X and an equivalence relation ∼W which is the normal closure of
finitely many relations w1 ∼ w′1, . . . , wt ∼ w′t such that G ≡ 〈X〉/ ∼W . Moreover,
we assume we have a monomial ordering on 〈X〉 such that wi > w′i ∀1 ≤ i ≤ t
and that the word rewriting system wi → w′i is terminating and confluent that is
the normal form of words with respect to ∼W can be computed.

The conjugator search problem can be stated as follows: Given a group G and
two elements g, h ∈ G which are conjugated to each other, find a conjugator or
in other words find a ∈ G such that ag = ha.

The assumptions we made are necessary to solve the word problem in G and
therefore we have ensured that our computations will terminate. The method we
present can be applied to a more general setup, however it is not guaranteed that
the computation will finish.

3.31 Remark. In order to present the group G we choose the group ring KG
as introduced in 1.16. Therefore we choose the ideal I = 〈w1 − w′1, . . . , wt − w′t〉.
Then we have KG ∼= K〈X〉/I. To guarantee the correctness of our computations
we require a Gröbner basis of I. Since the set W = {w1 − w′1, . . . , wt − w′t}
contains only binomials the Gröbner basis will also contain only binomials and
without loss of generality we will assume that W already forms a Gröbner basis.

3.32 Algorithm ([KB07]).

Input: g, h ∈ G, where G is a group given by generators X = {x1, . . . , xn} and
relations {w1 − w′1, . . . , wt − w′t}

Output: False, if g and h are not conjugated or
a ∈ G such that ag = ha otherwise.

Take K〈x1, . . . , xn, e1, . . . , e6〉
Choose an ordering ≺ such that for any t1, t

′
1, t2, t

′
2 ∈ 〈X〉 :

t1eit
′
1 � t2ejt

′
2 ⇔ i < j or

i = j and t′1 > t′2 or

i = j and t′1 = t′2 and t1 > t2.

Set U = {e1g − e3, e1h− e4, e2 − e3 − e5, e2 + e4 + e6, e1(w1 − w′1), . . . , e1(wt −
w′t), e2(w1 −w′1), . . . , e2(wt −w′t), x1e1 − e1x1, . . . , xne1 − e1xn, x1e2 − e2x1, . . . ,
xne2 − e2xn} and compute a Gröbner basis Ũ for U .
If there is an element of the form te5 in Ũ return: t
else return: False

78

3.33 Remark. If the ideal I in Remark 3.31 has a finite Gröbner basis then
Algorithm 3.32 solves the conjugator search problem in G. Note that the ordering
≺ is an elimination ordering for {e1, e2, e3, e4}. For details we refer to [KB07].

Assume g and h are conjugated elements of a group G. It is easy to see that
the solutions of the conjugator search problem correspond to syzygies of (g, h) ∈
K〈X〉2 of the form ae1− e2a, where (e1, e2) denotes the standard basis of the free
two-sided KG-module. Since we are only able to compute syzygies of elements of
K〈X〉-modules and not K〈X〉/I-modules one needs to add extra relations, which
explains the complicated structure of the set U .

3.4 Factor Algebras

For a given ideal I we can consider the factor algebra K〈X〉/I := {f + I | f ∈
K〈X〉}, which is again a K-algebra via [f]·[g] = [fg] and [f]+[g] = [f+g] f, g ∈
K〈X〉, where [f] = f + I. We will drop the brackets and identify [f] ≡ NF(f, I),
whenever it is possible.

Our first goal here is to find a K-basis which is suitable for our needs.

3.34 Lemma. Let G be a reduced Gröbner basis with respect to a monomial
ordering <. Then the set of all irreducible monomials with respect to G forms
a K-basis of K〈X〉/〈G〉 and it is called the (monomial) basis of K〈X〉/〈G〉. In
particular the monomial basis of K〈X〉/〈G〉 is also a K-basis of K〈X〉/L(〈G〉) and
we have dimK(K〈X〉/L(I)) = dimK(K〈X〉/I).

3.35 Remark. This statement is part of the famous Diamond Lemma [Ber78].
In order to compute a K-basis for a factor algebra given by a Gröbner basis one
needs to check all monomials for irreducibility. A detailed analysis including a
better way to store a K-basis by using so-called mistletoes was done in [Stu10].
For our purpose here we only need to know that there is an effective way to
compute and use the monomial basis for K〈X〉/I provided one has a Gröbner
basis for I.

It is worth noting that if only a truncated Gröbner basis for I is known the
resulting set of monomials might contain superfluous elements which only form
a fake basis for K〈X〉/I [Stu10].

3.4.1 Dimension computations

Before one starts with the computation of the monomial basis the question arises
if it will be finite. In other words: is dimK(A) <∞? Therefore one builds up the
Ufnarovskij graph.

79

Note that a word w over an alphabet X does not need to have finite length, while
a monomial is of finite length by definition. However, keep in mind that we want
to apply the results to monomials in the free algebra.

Let G be a set of words over the alphabet X. We call a word w standard with
respect to G if there is no g ∈ G which is contained in w as a subword. For a
finite word w this implies that w is normal with respect to G.

3.36 Definition. Given an alphabet X and a set of finite words G, we can
define the Ufnarovskij graph GU . Its vertex set V consists of all standard words
w ∈ XlG = {m ∈ X | m = xi1 · · ·xilG}, where lG := −1 + max

m∈G
lg(m). For each

v, w ∈ V there is a directed edge (v, w) if and only if there exists a, b ∈ X such
that va = bw and G - va.

The graph is named after Victor Ufnarovskij, who introduced it in his work
[Ufn89] and discussed it further in [Ufn95].

3.37 Remark. 1. There is a one-to-one correspondence between paths of
length l in GU and standard words of length l + lG. This implies that
each infinite standard word corresponds to an infinite path in GU , which
must contain a cycle, because GU has a finite vertex set due to the finiteness
of X and G. Therefore we have dimK(K〈X〉/〈G〉) = ∞ if and only if GU

contains a cycle.

2. If there exists an infinite word that is standard with respect toG, then either
it is cyclic or it gives rise to a cyclic infinite word that is also standard with
respect to G.

3.38 Lemma. If there exists an infinite word w′ ∈ X that is standard with
respect to G, then there also exists a cyclic infinite word w ∈ X that is standard
with respect to G such that

∀r, s ≥ 1 : w[1 . . . s] ≤ w[r . . . r + s− 1], (3.1)

where w[p . . . q] is the subword of w obtained by removing the first up to the
(p− 1)-th and the (q + 1)-th up to the last letter.

Proof: We will use u E v to denote that u is a prefix of v, respectively u / v,
if it is a proper prefix. Further we denote with ut the word consisting of the
concatenation of t copies of the word u.
Let w′ ∈ X be infinite and standard with respect to G. Then w′ gives rise to a
cyclic infinite word w′′ = v′∞, where v′ ∈ Xp for some finite p > 0. Assume that
v is the lexicographically smallest shift of v′. Then there is a u E v′ such that
v′∞ = uv∞. Now define w := v∞ and the claim follows. q.e.d.

3.39 Remark. The lemma states that in order to find an infinite word, it suffices
to use only words satisfying (3.1). So we will proceed as follows: For a given

80

Gröbner basis G we build up the Ufnarovskij graph. If K〈X〉/〈G〉 has infinite
K-dimension, the graph will contain a cycle; if it is finite, the graph will be a
tree.
Note that the Ufnarovskij graph is only defined for finite Gröbner bases, since in
an infinite one has no upper degree bound.

Again we refer to [Stu10] for more details as well as an effective algorithm to
decide whether or not dimK(A) < ∞ holds. Again one can also use a truncated
Gröbner basis as input for the algorithm. If it returns that the K-dimension is
in fact finite than this will also be true for the case of a complete Gröbner basis.
This relates to the fact that the fake dimension as introduced in [Stu10] is an
upper bound for the K-dimension.

In many cases algebras of interest do not possess a finite K-basis. To have a
measurement of how fast an algebra grows one introduces the so-called Gel’fand-
Kirillov dimension.

To understand the basic concept we first define the Hilbert series of an algebra.

3.40 Definition. Consider a finitely generated graded algebra A =
⊕
d∈N

Ad. We

call the formal series
∑
d∈N0

dimK(Ad)t
d ∈ K[t] the Hilbert series of A. The Hilbert

function of A is defined as H(A) : N0 → N0 : d 7→ dimK(Ad).

If A is generated by the elements in A1 then H(A) = P (t)
(1−t)δ for some δ > 0 and

P (t) a polynomial with coefficients in N0. If there is a polynomial P (A) ∈ K[t]
which is equal to H(A) we call it the Hilbert polynomial.

In [Stu10] a straightforward way to compute the Hilbert series is presented. Here
we need the notion to understand the concept of growth of an algebra which is
related to the growth of the Hilbert function.

3.41 Definition. Let A be a finitely generated K-algebra. Then there exists a
K-subspace V ⊂ A such that A is generated by V as a K-algebra. V induces a
standard finite dimensional filtration {Ai|i ∈ Z} on A by setting Ai := {0} for

i < 0, A0 := V 0 := K and Ai :=
i∑

j=1

V j for i > 0, where V j = 〈{
j∏

k=1

vk | vk ∈ V }〉.

• Consider the function f(n) = dimK(
n∑
i=0

V i). We say A has polynomial

growth of degree d if there is a polynomial p ∈ R[x] with tdeg(p) = d
such that f(n) ≤ p(n) for n� 0. If there is a real number ε > 0 such that
f(n) ≥ εn for n� 0 we say A has exponential growth.

• The Gel’fand-Kirillov dimension is defined as

dimGK(A) := lim sup
i→∞

logi(dimK(Ai)).

81

3.42 Remark. Note that we have dimGK(A) = lim sup
i→∞

log(f(n))
log(n)

as an alternative

way to define the Gel’fand-Kirillov dimension. Therefore we have that if A has
polynomial growth of degree d then dimGK(A) = d and if A has exponential growth
then dimGK(A) =∞. It is important to note that the Gel’fand-Kirillov dimension
does not depend on the choice of the filtration. For details we refer to [MR87].

In [Ufn95] Victor Ufnarovskij introduces a method to measure the growth of an
algebra. Therefore we introduce the graph of normal words.

3.43 Definition. Consider an alphabet X and a set of monomials G ⊂ 〈X〉.
Define a set V as the union of all elements of X and the set

⋃
g∈G

suff(g) where

suff(g) is the set of all proper suffices of g. Moreover, define E := {(u, v) ∈
V × V | @g ∈ G : g|uv, ∀w ∈ V : w E uv ⇒ w E u}. Then the graph GN

defined by (V,E) is called the graph of normal words.

The following theorem was proven in [Ufn95] and lays down the connection be-
tween the graph of normal words and the growth of an algebra.

3.44 Theorem. Given an alphabet X and a finite set of interreduced monomials
G ⊂ 〈X〉, let GN be the graph of normal words. If vertices are considered to be
paths of length 0, then there is a bijection between paths in GN and (non-empty)
normal words with respect to G.

Proof: Since G is an interreduced set of monomials the edges of GN consist of
normal words. For an arbitrary normal word n we use induction over the length l.
If l = 1 then n = xi and therefore we have a path of length 0. Now assume l > 1.
Since each proper subword of n is again normal of length < l and are therefore
represented as paths in GN . Now if there is a vertex v ∈ GN such that n = vw,
then w is normal and therefore represented by a path p. Since vw is normal and
the set is interreduced there is a path between v and a prefix of w and we can
extend p by chosing v as a new starting point. If there is no prefix of n occuring
as eh vertex we choose the suffix of n of length l − 1 which is again normal and
call the corresponding path p̃ and the starting vertex v and we assume the first
variable in n is xi. Then, with the same argument as before, we can extend p by
choosing xi as new starting point. q.e.d.

3.45 Corollary. Consider K〈X〉 equipped with a monomial ordering and say
G is a finite and reduced Gröbner basis for I E K〈X〉. Construct the graph of
normal words GN with respect to L(G). Then there is a bijection between paths
in GN and the K-basis of K〈X〉/I.

Proof: The set L(G) is a finite set of interreduced monomial, therefore 3.44 is
applicable. q.e.d.

In order to state an algorithm which can evaluate the graph of normal words we
need to introduce the concept of an incidence matrix.

82

3.46 Definition. Given a finite graph Γ = (V,E) with V = {v1, . . . , vn} we
define a matrix T ∈ Nn×n

0 as follows: We set T (i, j) = k if there are exactly k
edges going from vi to vj. We call T the incidence matrix of Γ.

Since for the graph of normal words there is at most one edge leading from one
vertex to another we have T ∈ {0, 1}n×n.
The following algorithm was introduced in [Ufn95] and it computes the growth
of an algebra presented as a factor of K〈X〉.
We denote by T (i, ∗) the ith row of T and by T (∗, i) the ith column.

3.47 Algorithm.

Input: G, a Gröbner basis for I E K〈X〉
Output: d ∈ N0 or ∞, the Gel’fand-Kirillov dimension of K〈X〉/I

Construct the graph of normal words GN with respect to L(G).
Let T be the incidence matrix of GN and set D = 0 ∈ N1×n.
†
if T = 0 then

return max{D(i) | 1 ≤ 1 ≤ n}
end if
for i = 0, . . . , n do

if T (i, i) 6= 0 then
if T (i, i) > 1 or (T (i, i) = 1 and D(i) > 0) then

return ∞
end if
if T (i, i) = 1 and D(i) = 0 then
T (i, i) := 0, D(i) := 1, go to †

end if
end if

end for
for i = 0, . . . , n do

if T (i, ∗) 6= 0 and T 2(i, ∗) = 0 then
T (i, ∗) := 0, D(i) := D(i) + max

j,T (i,j) 6=0
(D(j)), go to †

end if
end for
Find a cycle vi1 → . . .→ vik → vi1 .

A(i1, ∗) :=
ik∑
j=i1

A(j, ∗), A(ij, ∗) := 0 ∀2 ≤ j ≤ n

A(∗, i1) :=
ik∑
j=i1

A(∗, j), A(∗, ij) := 0 ∀2 ≤ j ≤ n

A(ij, ij) := A(ij, ij)− k + 1

D(il) :=
ik∑
j=i1

A(∗, j) ∀1 ≤ l ≤ n

Go to †

83

3.48 Remark. To see that the algorithm is correct we have to note that T (i, ∗) 6=
0 and T 2(i, ∗) = 0 implies that vi is the-last-but-one vertex on a path (see
[Ufn95]). In each step a loop is removed, a cycle is removed or a vertex is re-
placed by a terminal one. Because the number of vertices is finite this guarantees
termination of the algorithm.

To find a cycle one can apply a classical deep-first search algorithm (see for
example [CSRL01]). There are some obvious improvements to the algorithm,
for example it is more effective to look for a cycle and handling along the way
the-last-but-one vertices.

While the Gel’fand-Kirillov dimension is a good tool to measure the growth of
an algebra it is not the only important notion of dimension. The notion of global
dimension holds interesting informations about the algebra as well.

3.49 Definition. Let R be a ring and M and R (left) module.

• A projective resolution of M is an infinite exact sequence of modules . . .→
Pn → . . . P2 → P2 → P1 →M → 0 such that all Pi are projective modules.
A resolution is called finite, if there exists N ∈ N such that Pk = 0 ∀k > N
and PN 6= 0. The number N is called the length of the resolution.

• The projective dimension dimproj(M) of M is the minimal length among
all finite projective resolutions of M .

• The (left) global dimension is defined to be the supremum of the set of all
projective dimensions of all (left) R-modules. We write gldim(R).

3.50 Remark. One can also define the right global dimension by considering
right modules of R. Note that those dimension usually do not coincide. However,
if R is a Noetherian ring, both of these dimensions turn out to be equal to the
weak global dimension, whose definition is left-right symmetric (cf. [MR87]).

Before trying to compute the global dimension for ideals in K〈X〉 we give two
examples why it is of interest.

3.51 Theorem (Anick). Let G ⊂ 〈X〉 be an interreduced subset with G∩X = ∅.
Suppose gldim(K〈X〉/〈G〉) = m ∈ N. If K〈X〉/〈G〉 does not contain a free
subalgebra of two generators, then the following statements hold:

1. K〈X〉/〈G〉 is finitely presented, that is, 〈G〉 is finitely generated.

2. dimGK(K〈X〉/〈G〉) = m.

3. The Hilbert series of K〈X〉/〈G〉 is of the form HK〈X〉/〈G〉(t) =
m∏
i=1

(1− tei)−1,

where ei ∈ N ∀1 ≤ i ≤ m.

84

Proof: [Ani86]

3.52 Theorem (Gatea-Ivanova). Let I E K〈X〉 be a N-graded ideal and sup-
pose that L(I) ∩ X = ∅, where L(I) is chosen with respect to a N-graded
monomial ordering. Moreover, assume that dimGK(K〈X〉/L(I)) = m ∈ N and
gldim(K〈X〉/L(I)) <∞. Then the following statements hold:

1. gldim(K〈X〉/L(I)) = gldim(K〈X〉/I) = m.

2. The ideal I has a finite Gröbner basis.

3. The Hilbert series of K〈X〉/〈G〉 is of the form HK〈X〉/〈G〉(t) =
m∏
i=1

(1− tei)−1,

where ei ∈ N ∀1 ≤ i ≤ m.

Proof: [GI89]

We want to state an algorithm which can give an upper bound for the global di-
mension. Therefore we define yet another graph introduced by Victor Ufnarovskij.

3.53 Definition. Given an alphabet X and a set of interreduced monomials G ⊂
〈X〉. Denote by suff(g) the set of all proper suffices of the monomial g. We define
the graph of n-chains Γn(G) := (V,E), where V := {1}∪X∪{suff(g) | g ∈ G} is
the set of vertices and and we have (u, v) ∈ E ⊂ V ×V if either u = 1 and v = xi
for some 1 ≤ i ≤ n or u, v ∈ V \ {1} and there exists w = xi1 · · ·xim ∈ 〈X〉 such
that uv = w ∈ G or uv = sw with s ∈ 〈X〉 such that sxi1 · · ·xim−1 ∈ 〈X〉 \ 〈G〉.
An d-chain is a monomial v ∈ 〈X〉 such that there is a route 1 → v1 → . . . →
vd → vd+1 of length d+ 1 and v = v1 · · · vdvd+1.

3.54 Theorem (Anick). Say we have a Gröbner basis G for an ideal I. Then
gldim(K〈X〉/〈G〉) ≤ d if and only if Γn(G) contains no d-chains.

Proof: [Ani85]

In [Ufn95] a way is presented to build up the graph of n-chains. Since we are
only interested in d-chains it suffices to build about the connected component
of the vertex 1. To do this there is an algorithm, which is used in [Kro03] to
compute the Hilbert series. However, it can be used to compute the longest d-
chain occurring in the graph. To show an alternative way to [Stu10] to compute
the Hilbert series we state the algorithm in its original form. Since we already
know that {1},X ⊂ V and (1, xi) ∈ E ∀1 ≤ i ≤ n we can start the graph in the
generators. We define the length of a vertex to be the length of the monomial
seen as a word of the alphabet X. We write lg(w) for the length of the word w.
For a list L and l ∈ L we denote by pos(l, L) the position of l in L.

85

3.55 Algorithm.

Input: G ⊂ 〈X〉, a finite set of interreduced monomials
Output: (V,E), the subgraph of Γn(G) only containing the connected compo-

nent of the vertex 1, L, a set containing the length of each vertex
Set V = X, E = ∅ and L[i] = 1 for 1 ≤ i ≤ n
for v ∈ V and g ∈ G do

Determine S := {r ∈ 〈X〉 | g is a suffix of vr}
if S 6= ∅ then

Set s = min
<
{r ∈ S}

Let s′ be the largest proper prefix of s
if vs′ is normal with respect to G then

if s /∈ V † then
V = V, s; L = L, lg(s);
Add pos(s, V) to E[pos(v, V)]

end if
end if

end if
end for
return (V,E), L

3.56 Remark. Although elements can be added to V , the algorithm will termi-
nate, since G is finite and there are only finitely many different suffices of elements
of G. The reason to keep track of the length of vertices is to construct the Hilbert
series, which can be expressed asH :=

∑
i

(number of n-chains of length i)ti. This

approach was used in [Kro03]. If one is only interested in computing an upper
bound for the global dimension one does not need to keep track of those lengths.

To utilize Theorem 3.54 one can either build up the graph and search for the
longest d-chain, or check for the longest d-chain while the graph is constructed.
Obviously the latter one is slightly more efficient, especially in the case that that
there is no upper bound. In that case Γn(G) will contain a cycle, which implies
that the condition s /∈ V (see †) will not be satisfied and we can immediately
return ∞ at that point.

3.4.2 Left ideals in factor algebras

We assume we have K〈X〉 equipped with an arbitrary monomial ordering and we
take an ideal I with a finite Gröbner basis G. If we consider an ideal J of the
algebra A := K〈X〉/I we know that there is a one-to-one correspondence to all
ideals J ′ E K〈X〉 which contain I as a subset. If J is a two-sided ideal generated
by a set E it is easy to see that that in order to get a Gröbner basis for J we only
need to compute a Gröbner basis of the set E ∪ G and then reduce the result
with respect to the Gröbner basis G. However, if we consider J as a left ideal

86

things get a little more complicated. Recall that we have J = A〈E〉 := {
∑
ciei |

ci ∈ A, ei ∈ E}. We identify elements of A with their normal forms modulo I.

Note that the whole theory can also be done for right ideals. This was for example
done in [Xiu12].

3.57 Definition. Let J E K〈X〉 be a left ideal containing the two sided ideal I,
and let G ⊂ J be a set of non-zero polynomials, normal with respect to I. We
call G a (left) Gröbner basis of the ideal J/I E K〈X〉/I if for every polynomial
p ∈ J/I there exists a polynomial g ∈ G such that lt(g) is a suffix of lt(p). In
other words lt(g) is a right divisor of lt(p), that is lt(p) = mlt(g) for some
m ∈ 〈X〉/I.

Our first goal is to give an algorithm which allows us to do reduction with respect
to J/I.

3.58 Algorithm. Input: p ∈ K〈X〉, G = {g1, . . . , gs} ⊂ K〈X〉 \ {0}, gi normal
with respect to I = 〈G〉 E K〈X〉

Output: (v, q1, . . . , qs) ∈ K〈X〉s+1

Set q1 = . . . = qs = 0 and v = NFI(p).
while ∃j ∈ s : lt(v) ≡ mlt(gj) for some m ∈ 〈X〉 do

qj = qj + lc(v)
lc(gj)

m

v = v − lc(v)
lc(gj)

m

end while
return (v, q1, . . . , qs)

3.59 Theorem. Algorithm 3.58 returns a tuple (v, q1, . . . , qs) such that

• p− (
s∑
j1

qjgj + v) ∈ I.

• The polynomial v is in normal form with respect to I.

• For all j ∈ {1, . . . , s}, qj is in normal form with respect to I. If qj 6= 0 for
some j ∈ {1, . . . , s}, then lt(p) ≥ lt(qjgj).

• If v 6= 0, then lt(p) ≥ lt(v) and there is no j ∈ {1, . . . , s} such that lt(gj)
is a suffix of lt(v).

Proof: To see that Algorithm 3.58 terminates we note that in each step the
leading term of v strictly decreases. Since we have chosen a monomial ordering
the procedure will stop after finitely many steps.
Since we have qjgj + v = (qj + lc(v)

lc(gj)
m)gj + (v − lc(v)

lc(gj)
mgj) in each step we get

p − (
s∑
j1

qjgj + v) ∈ I. Since v is set to be normal with respect to I we also get

that v − lc(v)
lc(gj)

m is normal with respect to I, therefore the second statement is

87

true. Since lt(v) = mlt(gj) is normal we also have that m must be a normal
monomial, showing that each qj contains only normal monomials and therefore is
itself normal with respect to I. The latter statement of item (3) is a consequence
of the fact that we have chosen a monomial ordering. The last statement is clear
by the construction of v in the algorithm. q.e.d.

Note that Algorithm 3.58 only reduces the leading term of p. For a complete
reduction we have to iterate over all terms of p after the leading term is completely
reduced, that is restart the procedure with p− lt(p).

3.60 Definition. The polynomial v obtained in Algorithm 3.58 is called a left
normal form of p. If we iterate the procedure for all terms we get the reduced left
normal form or simply the left normal form, which we denote by lNF(p).

3.61 Proposition. Let J ⊆ K〈X〉 be a left ideal containing I and let G ⊂ J be
a set of polynomials in normal form with respect to I. The following conditions
are equivalent:

• The set G is a Gröbner basis of J/I E K〈X〉/I.

• Every normal polynomial p ∈ J/I has a representation p =
s∑
j=1

qjgj + h

with qi ∈ K〈X〉 \ {0}, h ∈ I such that lt(p) ≥ lt(qigi) ∀i ∈ {1, . . . , s}
and lt(p) > lt(h).

• A polynomial p ∈ K〈X〉 satisfies p ∈ J if and only if lNF(p) = 0.

Proof: The equivalence of the first two items is clear by definition of left Gröbner
basis, while the latter equivalence is a consequence of Theorem 3.59. q.e.d.

3.62 Remark. Taking a generating set E for J/I and a Gröbner basis GI for I,

each polynomial p ∈ J/I can be represented as p =
s∑
j=1

qjej +
∑
i

ciligiri, where

ek ∈ E, qk ∈ K〈X〉 \ {0}, ck ∈ K, gk ∈ GI , lk, rk ∈ 〈X〉. It is easy to see that this
representation is not necessarily a representation like 3.61 (2), since there might
be an index j such that lt(qj)lt(ej) ≥ lt(p) or ljlt(gj)rj ≥ lt(p). There are
three cases in which these terms may occur:

1. There exist j, j′ ∈ {1, . . . , s}, j 6= j′ such that lt(qj)lt(ej) ≡ lt(qj′)lt(gj′)
> lt(p), that is ej and gj′ have an left overlap.

2. There exist j, j′ ∈ {1, . . . , s}, j 6= j′ such that ljlt(gj)rj ≡ l′j′lt(gj′)rj′ >
lt(p), that is gj and gj′ have an overlap.

3. There j ∈ {1, . . . , s}, j′ ∈ N such that lt(qj)lt(ej) ≡ lj′lt(gj′)rj′ . Since ej
is normal with respect to I and GI is a Gröbner basis this implies there is
w ∈ 〈X〉 \ {1} such that lt(qj)lt(ej) ≡ lt(gj′)w.

88

Since GI is a Gröbner basis for I one does not need to consider the second case,
because one can simply use the Gröbner representation given by GI .

3.63 Proposition. Let G ⊂ J be a set of polynomials in normal form with
respect to I and let J/I E K〈X〉/I be the left ideal generated by G. Suppose we
have a finite Gröbner basis GI for I. Define two sets as follows:

OG = { 1

lc(g)
g − 1

lc(g′)
wg′ | g, g′ ∈ G, g 6= g′, w ∈ 〈X〉, lt(g) ≡ wlt(g′)}

and

OGGI = { 1

lc(g)
wg − 1

lc(g′)
g′r′ | g ∈ G, g′ ∈ GI , w, r

′ ∈ 〈X〉, wlt(g) ≡ lt(g′)r′}.

Then G is a left Gröbner basis of J/I if and only if lnf(p) = 0 for all p ∈
OG ∪OGGI .

Proof: If G is a left Gröbner basis then by 3.61 we have lnf(p) = 0 for any
p ∈ J/I. Suppose now lnf(p) = 0 for all p ∈ OG ∪ OGGI and take q ∈ J/I.
Since J/I = 〈G〉/I we have a representation q =

∑
g∈G

∑
i

lig +
∑

gI∈GI

∑
i

λigIρi for a

Gröbner basis GI of I. Now using Buchbergers criterion 1.46 we have that there
is g ∈ G such that lt(q) = wlt(g) for some w ∈ 〈X〉, showing that any q ∈ J/I
reduces to zero. By 3.61 G is a Gröbner basis. q.e.d.

3.64 Algorithm.

Input: E ⊆ K〈X〉 \ {0}, a generating set for J , normal with respect to I, GI , a
Gröbner basis for I

Output: G, a Gröbner basis for J
Start with G = E
Set S = { 1

lc(g)
g − 1

lc(g′)
wg′ | g, g′ ∈ G, g 6= g′, w ∈ 〈X〉, lt(g) ≡ wlt(g′)} ∪

{ 1
lc(g)

wg − 1
lc(g′)

g′r′ | g ∈ G, g′ ∈ GI , w, r
′ ∈ 〈X〉, wlt(g) ≡ lt(g′)r′}

while S 6= ∅ do
Take s ∈ S and set S = S \ {s}
Compute s = lnf(s).
if s 6= 0 then
S = S ∪ { 1

lc(g)
g − 1

lc(s)
ws | g ∈ G,w ∈ 〈X〉, lt(g) ≡ wlt(s)} ∪ { 1

lc(s)
ws−

1
lc(g′)

g′r′ | g′ ∈ GI , w, r
′ ∈ 〈X〉, wlt(s) ≡ lt(g′)r′}

G = G ∪ {s}
end if

end while
return G

3.65 Lemma. If J/I has a finite left Gröbner basis Algorithm 3.64 terminates
after finitely many steps and returns a reduced Gröbner basis of J/I.

89

Proof: The correctness follows directly from Proposition 3.63, while termination
is ensured by the assumption that there is a finite left Gröbner basis. q.e.d.

3.66 Remark. Since K〈X〉/I is not necessarily Noetherian the condition that
a finite left Gröbner basis exists is not always satisfied, even if we have a finite
generating system. The natural choice to guarantee termination is to apply an
degree bound, which will return a truncated Gröbner basis as before.
Moreover, note that Algorithm 3.64 is of Buchberger type, meaning we compute
S-polynomials from critical pairs. This allows us to apply the Gebauer-Möller
criteria in a similar fashion as before, one has just to take the special forms of
obstructions into account.

3.67 Remark. Recall 2.66: Our new method for computing Gröbner bases is a
direct counterpart to the non-commutative version of the Buchberger algorithm,
that is we search for critical pairs and compute S-polynomials. Since the method
to compute left Gröbner bases is also of this type we can use the methods pre-
sented in 2.63 to find any of the critical pairs of Remark 3.62, therefore using the
letterplace methods to compute left Gröbner bases as well.

We end this section with an application of left Gröbner bases. Assume I E K〈X〉
is a proper ideal. We want to know if f ∈ K〈X〉/I is left invertible that is there
is g ∈ K〈X〉/I such that gf = 1 ∈ K〈X〉/I.

3.68 Lemma. Take f ∈ K〈X〉/I. Then f is left invertible in K〈X〉/I if and only
if any Gröbner basis of 〈f〉/I contains a non-zero constant.

Proof: Assume 〈f〉/I contains a non-zero constant c ∈ K. Since f is a generator
we have gf = c ∈ K〈X〉/I for some g ∈ K〈X〉/I that is f is invertible with
inverse 1

c
g. On the other hand if f is invertible we have 1 = gf ∈ 〈f〉/I for some

g ∈ K〈X〉/I. So any Gröbner basis G of 〈f〉/I must contain a g ∈ G such that
g is a suffix of 1, that is g ∈ K \ {0}.q.e.d.

3.69 Corollary. If 〈f〉/I E K〈X〉/I has an infinite Gröbner basis then f is not
invertible.

Proof: Assume f is invertible that is any Gröbner basis contains a non-zero
constant. Therefore 1 ∈ 〈f〉/I is a finite Gröbner basis showing that each Gröbner
basis is indeed finite. q.e.d.

Assuming NF(f, I) 6= 0 one can use Lemma 3.68 to obtain an inverse of f by
keeping track of the computations in Algorithm 3.64, therefore identifying the
element in OGGI that leads to 1. The coefficient w of f in 1

lc(g)
wg− 1

lc(g′)
g′r′ will

then be a left inverse of f .

3.5 Conclusion

Since it is rather common to work with degree bounds to guarantee termination
of the non-commutative Gröbner basis procedure truncated Gröbner basis are

90

commonly used. In [Stu10] the utility of those truncated bases for computation
of the K-dimension and especially for answering the question whether or not the
dimension is finite was presented.

Also the notion of elimination orderings and the applications are established in
commutative as well as in non-commutative computer algebra. The method to
compute syzygies of modules over non-commutative rings and especially the free
algebra was introduced in [KB07], as mentioned before. Moreover, the computa-
tion of dimension in finitely presented factors of the free algebra was presented
in [Stu10] and the methods used go back to [Ufn95], [Ani85] and [GI89].

We like to point out that there was a parallel development for computations of
right ideals in factors of the free algebra in [Xiu12], which in theory can also be
applied for left ideals (for example by using the opposite algebra).

It is important to note that most computer algebra systems are not able to handle
applications of the Gröbner basics. Noteworthy, there is a implementation in
ApCoCoA [ApC13] done by Xingqiang Xiu.
It is our intention to use the computer algebra system Singular to implement
the methods presented here, thereby creating an efficient subsystem which is able
to handle many problems and applications which rely on Gröbner bases. In the
next chapter we will give an introduction to the implementation of these methods
and demonstrate these methods on interesting examples.

91

4 Implementation, Applications and
Examples

In this chapter we present the implementation and the procedures briefly. Note
that there is a section about letterplace in the online manual [DGPS12b] of Sin-
gular, which will include our procedures as soon as they are released.
We then present some interesting problems which we tried to solve. We do this
not only to present our implementation, but to also stimulate further studies of
those cases.

4.1 Overview on the Implementation

Singular is a computer algebra system for polynomial computations, with spe-
cial emphasis on commutative and non-commutative algebra, algebraic geometry,
and singularity theory (see [DGPS12a]).

Singular provides a kernel with highly efficient core algorithms as well as ad-
vanced algorithms, contained in currently more than 90 libraries.

To use the structure of Singular the implementation of our methods is divided
into two parts:

1. The main algorithm for computations of Gröbner bases of ideals of the
free algebra as well as left Gröbner bases of factors of the free algebra are
parts of the Singular kernel. This allows the user to use the internal data
structure and makes the computations faster and more efficient. The imple-
mentation will allow to use the graded lexicographical ordering, weighted
degree orderings and the ordering Elim introduced in 1.27, as well as any
ordering given by a matrix.

2. The algorithms for methods that rely on Gröbner basis computation are
implemented in the libraries freegb.lib and fpadim.lib and the user has
to call those in order to use our methods.

In the following we give a small overview over those functions. For a detailed de-
scription we refer again to the online manual [DGPS12b] and we like to point out
that Singular will always print a small example for the function functionname

if the user types

93

example functionname;

into the shell.

4.1.1 freegb.lib

The library freegb.lib allows the user to create letterplace rings and use most
of the algorithms related to the free algebra. A complete introduction is given in
[LL09] and in the online-manual [DGPS12b].

Here is a short list of of the newest functions:

• makeletterplaceRing [Elim, WO, MO](d):
Depending on the basering this function creates a letterplace ring with a
degree bound d, which has to be specified. The names of the variables
are taken from the basering. If none of the extension is set the degree
lexicographical ordering is chosen, while Elim sets the elimination ordering
<Elim, WP a weighted degree ordering and MO a matrix ordering.
If the created ring is set as the new basering the user is able to do basic
arithmetics over the letterplace ring.

• lpGroebner(I):
Given a letterplace ideal I via generators the function lpGroebner com-
putes a Gröbner basis of the ideal up to the degree bound specified by the
letterplace ring.

• lpLeftGB(J, I):
Given a set of polynomials J and a Gröbner basis for an ideal I this function
computes a left Gröbner basis of the left ideal 〈J〉 E K〈X〉/I up to the
degree bound specified by the letterplace ring.

• lpNF(p, I):
This function computes a normal form of a polynomial p with respect to a
set of polynomials I. Note that I does not necessarily need to be a Gröbner
basis. Then p will be reduced with respect to the set I.

• lpLeftNF(p, J, I):
For a polynomial p and a set of generators J of a left ideal lpLeftNF

computes a left normal form of p with respect to 〈J〉.

• lpSyzygies(I):
The function lpSyzygies computes the syzygy module for I, a given set of
polynomials. Only syzygies which respect the specified degree bound are
returned. Again the polynomials of I do not need to form a Gröbner basis.

94

• lpIntersection(I, J):
For two generating sets of ideals I and J this function returns a Gröbner
basis for the intersection of those ideals.

• lpHomKernel(I):
This function computes the kernel of a homomorphism between two finitely
presented algebras. Therefore one needs to specify two letterplace rings,
both containing a set of polynomials which generate the ideal one likes to
factor out. Moreover, a set of polynomials I building the image of the
homomorphism is needed.

• lpConjugatorSearch(p, q, I):
Given two elements p and q of a finitely presented group isomorphic to
K〈X〉/I this algorithm determines whether or not those elements are con-
jugated and if so it returns a conjugator. If the elements are not conjugated
zero will be returned.

4.1.2 fpadim.lib

The fpadim.lib contains all procedures regarding dimension computations for
finitely presented algebras. A full description of the older routines can be found
in [Stu10]. Again we give a short overview on the new procedures.

• lpGKDim(I):
For a given set of generators I this function computes the Gel’fand-Kirillov
dimension of K〈X〉/〈I〉. If the dimension is infinite −1 is returned. For
this procedure I is supposed to be a Gröbner basis for 〈I〉. However, if a
truncated Gröbner basis is given as input, the returned value is an upper
bound for the Gel’fand-Kirillov dimension.

• lpGlDBound:
This procedure computes an upper bound for the global dimension of K〈X〉/I.
It can be called with a complete or a truncated Gröbner basis, with the
bound being more accurate if a full Gröbner basis is known.

4.1.3 Other computer algebra systems

Among the large variety of computer algebra systems we like to mention three of
them which are also able to deal with the free algebra.

• Magma:
The well-known computer algebra system Magma [BCP97] is able to con-
struct free algebras over arbitrary fields, do basic arithemtics, compute
Gröbner bases and normal forms. Moreover, the user can define mappings
into other associative algebras.

95

• GAP:
The library GBNP ([Coh07]) of the computer algebra system GAP [GAP13]
also allows the user to handle free algebras. Besides the computations of
Gröbner bases there are procedures to compute the K-dimension as well as
the growth of an algebra K〈X〉/I.

• ApCoCoA:
The package gbmr for ApCoCoA contains several functions for basic com-
putations and Groebner basis computations in non-commutative algebras,
such as finitely generated free monoid rings over the field of rational num-
bers Q or over finite fields. The development of this package is very recent
and a large functionality is provided. We refer to [ApC13] for details.

Of course there are more computer algebra systems and some of them offer func-
tionality for the free algebra. Not all of them are still further developed and
alongside Singular the three systems mentioned above offer the reachest func-
tionality for the free algebra.

A special mentioning should be made for Sage [S+13] which is a system that
combines many existing open-source packages into a common Python-based in-
terface. For most polynomial computations Sage uses the routines of Singular
and in line with our cooperation they intend to use our procedures for computa-
tions over the free algebra. Already there is an experimental interface which uses
the old letterplace routines for computation of homogeneous Gröbner bases.

4.2 Examples and Applications

The goal of this section is to present problems which are challenging to solve. In
fact we could not solve many of the examples and at least from a computational
point of view those problems are still open. We like to initiate further studies as
it is our belief that our approach is promising and with the development of faster
and better computers more problems will become solvable.

In order to make the tests reproducible, we used the new SDEvalv2 framework
([HLN13]), created by Albert Heinle of the SymbolicData project ([BG00])
for our benchmarking. It means that the input polynomials have been put into
the system SymbolicData. Then, for each computer algebra system the files
to be executed were generated by the SymbolicData using scripts, written
by ourselves for this purpose. With the help of SDEvalv2 the computing task
was formed, put to the compute server, executed and evaluated. The functions of
SymbolicData as well as the data are free to use. In such a way our comparison
is easily and trustfully reproducible by any other person. Note, that among other
the function, which is used to measure the time, can be customized within this
approach.

96

The examples we present here are all available at the SymbolicData database.
All tests were performed on a PC equipped with two Intel Core i7 Quadcore
Processor (8× 2933 MHz) with 16GB RAM running Linux.

4.2.1 Generalized tetrahedron groups

A generalized tetrahedron groups is defined to be a group admitting a presen-
tation 〈x, y, z | xl = ym = zn = W p

1 (x, y) = W q
2 (y, z) = W r

3 (x, z) = 1〉, where
l,m, n, p, q, r ≥ 2 and each Wi(a, b) is a cyclically reduced word involving both a
and b. These groups appear in many contexts, not least as fundamental groups
of certain hyperbolic orbifolds or as subgroups of generalized triangle groups.

Those groups are well studied, for example the results of [EHRT02], [ERST00],
[HMT95] and [RS02] show that up to equivalence there are only generalized
tetrahedron groups which have a presentation of the form 〈x, y, z | xl = ym =
zn = W 2

1 (x, y) = (yγzδ)2 = (xα, zβ)2 = 1〉 with W1(x, y) = xα1yβ1 · · ·xαkyβk , k ≥
1, l,m, n ≥ 2, 1 ≤ α1, . . . , αk, α < l, 1 ≤ β1, . . . , βk, γ < m and 1 ≤ δ, β < n.

Tsaranov classified in [Tsa89] the finite generalized tetrahedron groups with k = 1
and showed that there are 5 equivalence classes. Numerical calculations can also
be found in [Run98].

In [FHH+08] Rosenberger e.a. presented a classification of all finite generalized
tetrahedron groups. The list contains 32 equivalence classes and the order of
the largest group is 849346560. The methods used there involve group theory to
identify sub- and factor groups. By obtaining their index in the group considered
and knowing the order of the identified group one gets the order of the whole
group.

We like to apply our methods to reconstruct those examples and verify the results
by using our methods.

In table 4.1 we present the relations as well as our results. Note that the relations
presented in the table are all equal to one. The timings presented is the time we
needed to compute a Gröbner basis only.

The table shows that we managed to solve more than half of the problems. The
problems marked with † ran out of memory after some time, while the compu-
tation for the two examples marked with ? were canceled after three days of run
time. While none of the truncated Gröbner bases had a large number of ele-
ments, meaning the number of elements is below 1000, the degree bound we set
was never enough to proof finiteness and at some point the computation exceeded
the memory of our computer.

97

Example Relations GB Order Timing
1 x2, y3, z2, (xyxy2)2, (yz)2, (xz)2 19 48 0.59
2 x2, y3, z3, (xyxy2)2, (yz)2, (xz)2 45 120 0.61
3 x2, y3, z4, (xyxy2)2, (yz)2, (xz)2 110 384 3.65
4 x2, y3, z5, (xyxy2)2, (yz)2, (xz)2 807 14400 0.14
5 x2, y3, z2, (xyxyxy2)2, (yz)2, (xz)2 31 96 0.39
6 x2, y3, z3, (xyxyxy2)2, (yz)2, (xz)2 100 384 3.07
7 x2, y3, z2, (xyxyxyxy2)2, (yz)2, (xz)2 40 240 1.14
8 x2, y3, z3, (xyxyxyxy2)2, (yz)2, (xz)2 † 14400
9 x2, y3, z2, (xyxyxy2xy2)2, (yz)2, (xz)2 122 1152 2.89
10 x2, y3, z3, (xyxyxy2xy2)2, (yz)2, (xz)2 † 23040
11 x2, y3, z2, (xyxyxy2xyxy2)2, (yz)2, (xz)2 † 1440
12 x2, y3, z3, (xyxyxy2xyxy2)2, (yz)2, (xz)2 † 345600
13 x2, y3, z2, (xyxyxyxyxy2xy2)2, (yz)2, (xz)2 ? 5760
14 x2, y3, z3, (xyxyxyxyxy2xy2)2, (yz)2, (xz)2 † 2764800
15 x2, y3, z2, (xyxyxy2xy2xyxy2)2, (yz)2, (xz)2 492 5760 53.41
16 x2, y3, z2, (xyxyxyxy2xyxy2xy2)2, (yz)2, (xz)2 † 11520
17 x2, y3, z2, (xyxyxyxy2xy2xyxy2xy2)2, (yz)2, (xz)2 † 849346560
18 x2, y4, z2, (xyxyxy3)2, (yz)2, (xz)2 ? 384
19 x2, y4, z3, (xyxyxy3)2, (yz)2, (xz)2 † 9216
20 x2, y5, z2, (xyxy2)2, (yz)2, (xz)2 59 240 1.38
21 x2, y5, z3, (xyxy2)2, (y2z)2, (xz)2 59 14400 1.50
22 x2, y5, z2, (xyxyxy4)2, (yz)2, (xz)2 249 2400 81.91
23 x2, y5, z2, (xyxy2xy3)2, (yz)2, (xz)2 462 2400 868.44
24 x2, y5, z3, (xyxy2xy3)2, (y2z)2, (xz)2 † 1728000
25 x2, y5, z3, (xyxyxy4)2, (yz)2, (xz)2 † 1728000
26 x3, y3, z2, (xyx2y2)2, (yz)2, (xz)2 116 576 11.97
27 x3, y3, z2, (xyxy2)2, (yz)2, (xz)2 97 360 3.23
28 x3, y3, z3, (xyx2y2)2, (yz)2, (xz)2 † 11520
29 x3, y3, z3, (xyxy2)2, (yz)2, (xz)2 684 7200 2225.95
30 x3, y3, z2, (xyxyx2y2)2, (yz)2, (xz)2 456 2880 308.55
31 x3, y5, z2, (xyx2y2)2, (y2z)2, (xz)2 † 43200
32 x3, y5, z2, (x2yxy4xy4)2, (yz)2, (xz)2 † 1728000

Table 4.1: All finite Tetrahedron groups

98

4.3 Moore-Penrose Inverse and Drazin
Pseudo-Inverse

In [Dra11] the notion of different pseudo-inverses for elements of a semi-group S
is discussed. We like to present a method to investigate those inverses. Therefore
we introduce the notion first.

4.1 Definition. Let S be any multiplicative semi-group.

• Given any specified involution of S, that is a map ? : S → S which satisfies
?(ab) = ?(b) ? (a) and ?(?(a)) = a for any a, b ∈ S, then y ∈ S is called
a Moore-Penrose inverse of a ∈ S if yay = y, aya = a, ?(ay) = ay and
?(ya) = ya. We write a† for the Moore-Penrose inverse of a.

• We call y ∈ S a Drazin pseudo-inverse of a ∈ S if yay = y, ay = ya and
aj+1y = aj for some j ∈ N. We write a′ for the Drazin pseudo-inverse of a.

The problem communicated to us by Drazin is the following: One is interested
in finding pairs of trinomials, that is a pair of polynomials (t1, t2) of the form
ti = ai,1mi,1 + ai,2mi,2 + ai,3mi,3 with ai,j ∈ Kmi,j ∈ 〈X〉, such that t1t2 = 1.
Thereby the monomials of t1 and t2 have to satisfy certain conditions.

For the Moore-Penrose situation we consider the algebra A = K〈x, z, a, y〉/I,
where I = 〈yay − y, aya − a, xzx − x, zxz − z, xz − ya, zx − ay〉. Then we
have y = a†, x = z = ?(a). We are looking for p, q, r, s ∈ 〈a, y, x, z〉 such that
(1 − p + q)(1 − r + s) = 1 in A. It is easy to see that the set {yay − y, aya −
a, xzx− x, zxz − z, xz − ya, zx− ay} does not form a Gröbner basis, however a
straightforward computations shows that G = {xz − ya, zx− ay, yay − y, yax−
x, aya− a, ayz − z, zya− z, xay − x} forms a Gröbner basis for I.

We assume that lm(1 − p + q) = q and lm(1 − r + s) = s. In order to fulfill the
condition (1 − p + q)(1 − r + s) = 1 we have that NF(qs,G) 6= qs which implies
certain conditions on q and s:

1. The monomials q and s must involve an overlap o.

2. There is d ∈ {yay, yax, aya, ayz, zya, xay, xz, zx} such that d|qs. Since we
consider q and s as elements of A, that is q and s are normal with respect
to I, this implies that d|o.

This allows to consider specific leading monomials only, since one can derive
which overlaps may occur. Given an integer j ∈ N we can generate a list of
all possible q and s of degree j. For example given a natural number n ∈ N
with n > 2, the pairs of trinomials (yn−1a − yn−2 + 1, yn−1a − yn−2 − 1) and
(ayn−1 − yn−2 + 1, ayn−1 − yn−2 − 1) will always multiply to one modulo yay − y
(this can easily be computed using two reduction steps).

99

It is easy to see that, in general, more relations lead to more possible overlaps
which have to be considered, thus extending the list of possible pairs. However,
there are only finitely many choices for a fixed degree d and one can study low
degree cases to get a general idea. After a series of intensive computer algebra
supported computations, performed by us, a new class of pseudo-inverses was
derived by Drazin in the paper [Dra11].

4.4 Quotients of the Modular Group

The modular group is isomorphic to the free product of the cyclic groups C2 and
C3, which gives its natural and shortest presentation: {x, y|x2, y3}. One-relator
quotients of this group, that is one adds another relation w(x, y) to the given
presentation, are especially interesting, since many groups have been identified
to be such a one-relator quotient, as works of Hamilton [Ham56] and Miller [Mil01]
show.

In [CHN11] those groups were studied, based on the work of Conders [Con86]
and the authors tried quite succesfully to find the order of those groups. Again
using our methods we try to reproduce those results.

The work [CHN11] presents 48 relations which are called the hard cases, meaning
the question whether or not the group is finite is not easy to answer. Except for
5 the authors can solve these problem by investigating subgroups and quotients.

To study those examples one changes the presentation of the group to
{u, v|(vu1v)2, (u1v)3} by using the transformation u = xy and v = xy−1. The
additional relators are presented in table 4.2.

Since the relations do not reveal a direct inverse of the generator one has to add
extra variables for the inverses. This can be done by adding relations to the
generating set. Of course this makes the computations even harder.

The studies in [CHN11] leaves the examples 31, 33, 37, 40 and 43 unsolved, but
the authors managed to establish lower bounds for the order of those groups with
the smallest one being example 33 with an lower bound of 124488.

Our methods were applied to this example. A straightforward approach, as ex-
pected, was not succesfull.

A better way to start the computation is to choose a different presentation of
the generating system. Since we have inverses of the generators we can multiply
to get terms of at least nearly equal total degree. For example the relation
u4v2u2v4u2vuv2 − 1 translates to u4v2u2v − V 2UV U2V 3, where U denotes the
inverse of u and V of v.

Our final effort was to try pattern matching: Assume we have found a truncated
Gröbner basis Gt. If a word w ∈ 〈X〉 appears with a certain frequency as a

100

Example Additional Relator
1 (u3vuv2)2

2 (u2vuv)3

3 (u5vuv)2

4 (u5v3)2

5 (u4vu2v)2

6 u3vu3vu3v2uv2

7 u3vu3vu2v3u2v
8 u3vu3v2uv3uv2

9 (u3vu2v2)2

10 (u3v2uv2)2

11 (u2vu2vuv)2

12 u10uv2uvuv2

13 u8v2uvuvuv2

14 u8vuvuv2u2v2

15 (u6vuv)2

16 u6vuv6u2v2

17 (u5vu2v)2

18 u5vu2v2uv5uv
19 u5vuvuvuv5uv
20 u5vuvuv5uvuv
21 u5v2u2v5u2v2

22 u4vu3v3uv4uv
23 u4vu2vuvuv2uv4

24 u4vu2vuv2uv4uv

Example Additional Relator
25 u4vu2vuv4uv2uv
26 u4vu2v2uv4uvuv
27 u4vuvu2v2uvuv4

28 u4vuvuvuv4u2v2

29 u4vuvuv4u3v3

30 u4vuv2u2vuv4uv
31 u4vuv4u3vuv3

32 u4vuv4uvu4v2

33 u4v2u2v4u2vuv2

34 (u4v2uv2)2

35 u4v2uv2u2vu2v4

36 u4v3uvuvu3v4

37 u3vu2vu2v2uv2uv3

38 u3vu2vuv2uv3u2v2

39 u3vu2vuv2uv3uvuv
40 u3vu2v2uv3u2vuv2

41 u3vu2v3u3v2uv3

42 u3vuvu3v3uvuv3

43 u3vuvuv3u2vuvuv2

44 u3vuv3u2vuvuvuv2

45 u3vuv3u2v3u3v2

46 u3v2u2vuvuv2u2v3

47 u3v2uvu2v3u2vuv2

48 (u2vuvu2v2)2

Table 4.2: Additional Relators for one-relator quotients

101

subword of terms of elements of Gt then we add a new variable y and the relation
w − y. If the choice of w was good the new variable reduces the total degree
needed for the computation. Of course there is no way to know a priori how good
the choice will be and the procedure is a try-and-error method.

It turned out, that each Gröbner basis computation ran out of memory after some
time, even if the dimension is known to be finite (and hence also the Gröbner
basis). To investigate these problems we computed truncated Gröbner bases and
it turned out that the size of the Gröbner bases just grew very large. While
the trick of substitution helped to keep the degree down at the cost of adding a
new variable, the size of a truncated Gröbner bases was already bigger at lower
degree.

Despite the fact that at the time being no solution could have been found, it
should be possible to compute a Gröbner basis at least for the groups known
to be finite. With a faster computer the methods mentioned here should allow
the computation of those and therefore allowing to compute the order of those
groups. In our opinion, the questions, raised in this section, can be answered by
combining group-theoretic insights with computer algebra approach.

4.5 Fibonacci Groups

In [BV03] the class of cyclically presented groups which contain Fibonacci groups
and Sieradski groups is studied. Those groups can be presented as Gn(m, k) =
〈x1, . . . , xn | xixi+m = xi+k, 1 ≤ i ≤ n〉, where 0 < m < k < n and all indices are
taken modulo n and take up their values from the set {1, . . . , n}.
Using group-theoretic algorithms implemented in GAP the authors studied the
question of the order of those groups. We like to verify those computations using
our methods.

Since the relations do not allow to determine a inverse for the generators one has
to add extra generators for the inverses, as explained before. This leads to the
problem that one gets many generators even for small values of n.

In table 4.3 we present the examples and our findings, which confirm the ones
in [BV03]. According to [BV03] the group G6(1, 2) has infinite order and our
data suggests that the representation most likely holds an infinite Gröbner basis.
However, we were not successful in proving this conjecture. Moreover, we tried
to find the order of G7(1, 3), which was not found by the authors. With an
degree bound of 8 the truncated Gröbner basis for this examples contains 108577
elements and it contains also polynomials of degree 8. Thus one has to increase
the degree bound to 15 which is beyond our capacities at the moment.

In 4.3 we present our findings which confirm the results in [BV03]. Note that we
have sorted the list such that the isomorphic groups are next to each other.

102

Example Order Size of GB
G5(1, 2) 11 100
G5(1, 4) 11 100
G5(2, 3) 11 100
G5(2, 4) 11 100
G5(1, 3) 120 180
G5(3, 4) 120 180
G6(1, 3) 7 18
G6(1, 4) 7 18
G6(2, 3) 9 178
G6(2, 5) 9 178
G6(3, 4) 56 178
G6(3, 5) 56 178
G7(1, 2) 29 192
G7(1, 6) 29 192
G7(2, 4) 29 192
G7(2, 5) 29 192
G7(3, 4) 29 192
G7(3, 6) 29 192
G8(1, 4) 17 65
G8(1, 5) 17 65
G8(3, 4) 17 65
G8(3, 7) 17 65

Table 4.3: Some Examples of Fibonacci Groups

103

As 4.3 shows many of the groups have a relatively small order, even in 8 genera-
tors. We have to mention that G8(1, 3) has order 295245 which is again beyond
our capacities. But it would be worth investigating larger numbers of generators
provided there exists a conjecture that one of those groups will be of small order
again. However, a first investigation for the groups with n = 9 revealed no such
phenomenon.

4.6 Comparison to other Systems

We will now present some important examples and compare our timings with
those given by the implementation of letterplace Gröbner bases by Viktor Levan-
dovskyy in the current distribution of Singular, as well as with the implemen-
tations in GAP and Magma. We must mention that the older implementation
in Singular as presented in [LL09] has only been released for graded ideals; its
functionality with non-graded ideals is experimental.

Note that the implementation of the letterplace:DVec algorithm is not yet
distributed with Singular. The merge of our development branch with the main
branch of Singular will be done soon.

All tests were performed on a PC equipped with two Intel Core i7 Quadcore
Processor (8 × 2933 MHz) with 16GB RAM running Linux. We used Magma
V2.18-12 [BCP97], GAP Version 4.5.6 [GAP13] with the package GBNP, version
1.0.1 and Singular version 3-1-6.

In [LL09] the authors used external time measuring for the whole computation via
/usr/bin/time command. This included the initializing of a computer algebra
system as well as the loading of standard libraries. Here we use IEEE standard
for measuring (POSIX.2) and present the timings from the system record of the
time output.

In the following tables selected resulting timings are presented. Sing 1 refers to
the implementation by Viktor Levandovskyy, currently distributed with Singu-
lar, while Sing 2 is the new implementation using distance vectors. Results are
presented in seconds. By † we denote the situation when the computation run
out of memory after the indicated time.

4.6.1 Examples

Many of the examples are explained in detail in [LL09] or [Stu10] and we use the
same notation. In the following we explain only the new ones.

One-relator quotients
All the examples presented in 4.2 are part of the SymbolicData database. The
enumeration is chosen according to the paper and the examples are denoted by

104

H i. We have chosen a few ones for comparison and added a degree bound such
that all the system were able to solve the problem and return a truncated Gröbner
basis.

LS
The examples LS 5d9 and LS 6d10 were presented to us during discussions with
Roberto La Scala and are connected to Clifford algebras. Infinite Gröbner bases
are expected from this generating sets, therefore degree bounds are employed.
The first number denotes the number of generators, while the number following
the d denotes the degree bound.

The results show that our implementation is a big improvement to the older
letterplace implementation. However, the other systems are similarly efficient.
We like to point out that Magma is not available as free software and a license
has to be acquired.
In the next section we will discuss possibilities for improvements to our methods.

All these examples are easily reproducible using the SymbolicData database.
We have entered over 70 examples and the database will

4.7 Future Work and Conclusion

Our primary goal for the near future is of course the release of our implementation
within one of the next updates of Singular and allowing the user to apply our
methods to whatever example he or she might consider interesting.

We like to mention that there are many ways to improve our implementation.
Of course, our procedures will benefit from any improvement to the Singular
kernel and the internal data structure. Besides that we have some ideas which
will allow us to optimize memory usage as well as handling of stored polynomi-
als. For example the multiplication of polynomials and the need to save shifted
monomials can be optimized further and these updates are currently under de-
velopment by Benjamin Schnitzler. Our goal regarding orderings is to allow a
fast implementation of as many orderings as possible, since the usage of matri-
ces to represent orderings is not as efficient as the implementation of a strategy
optimized for a given ordering.

There are some methods we could not investigate in the frame of this work, for
example the computation of Gröbner bases for modules or free resolutions of
finitely presented modules. But it is possible to adapt our methods to work in
the setup of modules and allow new applications to be studied.

Recent studies have investigated the question if the letterplace approach can be
applied to other fields of interest. In the very recent bachelor thesis of Bastian
Haase ([Haa13]) multi-letterplace rings and the application of Gröbner bases the-
ory to these rings are studied. It turned out, that the letterplace ring is the

105

Example Sing 1 Sing 2 Magma GAP
2tri 4v7d 4.10 1.75 1.40 31.67
3nilp d6 0.41 0.29 0.96 4.76
3nilp d10 2410.15† 36.65 2.89 31.08
4nilp d8 380.23† 747.95 10.25 1133.82
Braid3 11 273.40† 15.73 1.52 185.39
Braid4 11 51.82 3.10 1.14 31.97
plBraid3d 6 0.18 0.08 0.91 926.80

lp1 10 31.31 2.33 1.00 11.10
lv2d10 0.23 0.15 0.78 3.29
s e6d10 10.56 1.84 1.12 12.45
s e6d13 976.32 44.74 7.81 274.63

s eha112d10 1.12 0.26 0.96 6.20
s eha112d12 462.36 4.19 1.40 62.40
s f4 d10 4.35 0.58 0.97 5.35
s f4 d15 1103.33 † 147.31 13.54 2241.62
s ha11 d10 2.18 0.32 0.81 3.51
LS 5d9 23.46 2.49 0.79 2.90
LS 6d10 411.33 † 704.97 16.86 372.06
C 4 1 7a 576.44 59.47 7.61 2491.09
C 4 1 7W 3.23 1.19 0.91 5.76
C 4 1 7X 7.44 2.20 6.64 51.95
C 4 1 7Y 0.09 0.09 0.91 2.91
C 4 1 7Z 66.92 11.86 4.82 173.44
H 5 0.62 0.24 0.62 2.90
H 8 0.67 0.28 3.07 2.94
H 19 0.88 0.32 0.62 2.99
H 26 0.91 0.33 2.30 2.96
H 33 0.92 0.35 2.27 3.00
H 37 0.86 0.32 0.68 2.89
H 40 0.98 0.29 0.62 2.89
H 48 0.88 0.31 0.62 2.91

106

natural ring for studying systems of nonlinear difference equations with constant
coefficients for instance, with the help of Gröbner bases. Moreover, the rich
structure of the letterplace ring which can be exploited for many applications.
We like to point out that our methods here use only a small part of the huge
letterplace ring. We believe, that further studies will lead to new applications of
the letterplace approach in different fields of science.

107

Bibliography

[AAG99] Iris Anshel, Michael Anshel, and Dorian Goldfeld. An algebraic
method for public key cryptography. Math. Res. Lett., 6:287–291,
1999.

[AL88] Joachim Apel and Wolfgang Lassner. An extension of Buchberger’s
algorithm and calculations in enveloping fields of Lie algebras. J.
Symbolic Compututation, 6(2-3):361–370, 1988. Computational as-
pects of commutative algebra.

[Ani85] David J. Anick. On monomial algebras of finite global dimen-
sion. Transactions of The American Mathematical Society, 291, 1985.
http://dx.doi.org/10.2307/1999910.

[Ani86] David J. Anick. On the homology of associative algebras. Trans-
actions of The American Mathematical Society, 296:641–641, 1986.
http://dx.doi.org/10.2307/2000383.

[ApC13] ApCoCoATeam. Applied Computations in Commutative Algebra,
2013. www.apcocoa.org.

[Ape00] Joachim Apel. Computational ideal theory in finitely generated ex-
tension rings. Theoret. Comput. Sci., 244(1-2):1–33, 2000.

[B+06] Jörgen Backelin et al. The Gröbner basis calculator Bergman, 2006.

[BB98] Miguel Angel Borges and Mijail Borges. Gröbner bases property on
elimination ideal in the non-commutative case. In B. Buchberger and
F. Winkler, editors, Gröbner bases and applications, pages 323–337.
Cambridge University Press, 1998.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma
algebra system. I. The user language. J. Symbolic Computation,
24(3-4):235–265, 1997. Computational algebra and number theory
(London, 1993).

[Ber78] George Bergman. The Diamond Lemma for ring theory. Adv. Math.,
29:178–218, 1978.

108

http://dx.doi.org/10.2307/1999910
http://dx.doi.org/10.2307/2000383
www.apcocoa.org

[BG00] Olaf Bachmann and Hans-Gert Gräbe. The symbolicdata project.
In Reports on Computer Algebra, volume 27. Centre for Computer Al-
gebra, University of Kaiserslautern, 2000. http://www.mathematik.
uni-kl.de/~zca.

[BV03] Valerij Bardakov and Andrei Vesnin. A generalization of Fibonacci
groups. Algebra and Logic, 42(2):73–91, 2003. http://dx.doi.org/
10.1023/A%3A1023346206070.

[CHN11] Marston Conder, George Havas, and Michael Frederick Newman.
On one-relator quotients of the modular group., 2011. Cambridge
University Press. London Mathematical Society Lecture Note Series
387, 183-197.

[Coh07] Arjeh M. Cohen. Non-commutative polynomial computations. http:
//www.win.tue.nl/~amc/pub/grobner/gbnp.pdf, 2007. TU Eind-
hoven. Technical Report.

[Con86] Marston Conder. Three-relator Quotients of the Modular Group.
Report series. University of Auckland, Department of Mathematics
and Statistics, 1986.

[CPU99] Svetlana Cojocaru, Alexander Podoplelov, and Viktor Ufnarovskij.
Non-commutative Gröbner bases and Anick’s resolution. In
P. Dräxler, editor, Computational methods for representations of
groups and algebras. Proc. of the Euroconference in Essen, Germany,
April 1997, pages 29–60. Birkhäuser, 1999.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2nd edition, 2001.

[DGPS12a] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans
Schönemann. Singular 3-1-6 — A computer algebra system for
polynomial computations. 2012. http://www.singular.uni-kl.de.

[DGPS12b] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans
Schönemann. Singular online manual. 2012. http://www.

singular.uni-kl.de/index.php/singular-manual.html.

[Dra11] Michael P. Drazin. A class of outer generalized inverses. Linear Al-
gebra and its Applications, 436, 2011. http://www.sciencedirect.
com/science/article/pii/S0024379511006367.

[EHRT02] Martin Edjvet, James Howie, Gerhard Rosenberger, and Richard M.
Thomas. Finite generalized tetrahedron groups with a high-power
relator. Geometriae Dedicata, 94:111139, 2002.

109

http://www.mathematik.uni-kl.de/~zca
http://www.mathematik.uni-kl.de/~zca
http://dx.doi.org/10.1023/A%3A1023346206070
http://dx.doi.org/10.1023/A%3A1023346206070
http://www.win.tue.nl/~amc/pub/grobner/gbnp.pdf
http://www.win.tue.nl/~amc/pub/grobner/gbnp.pdf
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de/index.php/singular-manual.html
http://www.singular.uni-kl.de/index.php/singular-manual.html
http://www.sciencedirect.com/science/article/pii/S0024379511006367
http://www.sciencedirect.com/science/article/pii/S0024379511006367

[ERST00] Martin Edjvet, Gerhard Rosenberger, Michael Stille, and Richard M.
Thomas. On certain finite generalized tetrahedron groups. Compu-
tational and Geometric Aspects of Modern Algebra, 275:5465, 2000.
http://dx.doi.org/10.1017/CBO9780511600609.005.

[EW07] Gareth A. Evans and Christopher D. Wensley. Complete involutive
rewriting systems. J. Symbolic Computation, 42(11-12):1034–1051,
2007. http://dx.doi.org/10.1016/j.jsc.2007.07.005.

[FHH+08] Benjamin Fine, Miriam Hahn, Alexander Hulpke, Volker große
Rebel, Gerhard Rosenberger, and Martin Scheer. All finite gener-
alized tetrahedron groups. Mathematical Preprints, 2008. http:

//hdl.handle.net/2003/25188.

[GAP13] The GAP Group. GAP – Groups, Algorithms, and Programming,
Version 4.6.4, 2013. http://www.gap-system.org.

[Gar07] David Garber. Braid group cryptography. CoRR, abs/0711.3941,
2007. http://arxiv.org/abs/0711.3941.

[GGK+06] Lothar Gerritzen, Dorian Goldfeld, Martin Kreuzer, Gerhard Rosen-
berger, and Vladimir Shpilrain. Algebraic methods in cryptography.
Contemp. Math. 418. Amer. Math. Soc., Providence, RI, 2006.

[GI89] Tatiana Gateva-Ivanova. Global dimension of associative algebras. In
Teo Mora, editor, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, volume 357 of Lecture Notes in Computer Science,
pages 213–229. Springer Berlin Heidelberg, 1989. http://dx.doi.

org/10.1007/3-540-51083-4_61.

[GM88] Rüdiger Gebauer and H. Michael Möller. On an installation of
Buchberger’s algorithm. J. Symbolic Computation, 6(2-3):275–286,
December 1988. http://dx.doi.org/10.1016/S0747-7171(88)

80048-8.

[GP08] Gert-Martin Greuel and Gerhard Pfister. A Singular introduction
to commutative algebra. Springer-Verlag, Berlin, 2008. With contri-
butions by Olaf Bachmann, Christoph Lossen and Hans Schönemann.

[Gre93] Edward L. Green. An introduction to non-commutative Gröbner
bases. In K. Fischer, editor, Computational algebra. Papers from
the Mid-Atlantic Algebra Conference, pages 167–190. Dekker. Lect.
Notes Pure Appl. Math. 151, 1993.

[Gre96] Edward L. Green. Non-commutative Gröbner bases: A computa-
tional and theoretical tool, 1996. Lecture Notes, Holiday Mathemat-
ics Symposium, New Mexico State University.

110

http://dx.doi.org/10.1017/CBO9780511600609.005
http://dx.doi.org/10.1016/j.jsc.2007.07.005
http://hdl.handle.net/2003/25188
http://hdl.handle.net/2003/25188
http://www.gap-system.org
http://arxiv.org/abs/0711.3941
http://dx.doi.org/10.1007/3-540-51083-4_61
http://dx.doi.org/10.1007/3-540-51083-4_61
http://dx.doi.org/10.1016/S0747-7171(88)80048-8
http://dx.doi.org/10.1016/S0747-7171(88)80048-8

[Gre00] Edward L. Green. Multiplicative Bases, Gröbner Bases, and Right
Gröbner Bases. J. Symbolic Computation, 29(4/5), 2000.

[Gre03] David J. Green. Gröbner bases and the computation of group coho-
mology. Lecture Notes in Mathematics 1828. Springer, 2003.

[Haa13] Bastian Haase. Multi-letterplace ring, multi-gradings and
applications. http://mira.math.rwth-aachen.de/~Viktor.

Levandovskyy/filez/BachelorThesisHaase.pdf, 2013. Bachelor
thesis, RWTH Aachen University.

[Ham56] William Rowan Hamilton. Memorandum respecting a new system of
roots of unity. Phil. Mag. (Ser. 4), 12:446, 1856.

[HLN13] Albert Heinle, Viktor Levandovskyy, and Andreas Nareike. Symbol-
icdata:sdeval - benchmarking for everyone. 2013. submitted.

[HMT95] James Howie, Vassilis Metaftsis, and Richard M. Thomas. Finite
generalized triangle groups. Trans. AMS, 347:36133623, 1995.

[KB07] Martin Kreuzer and Holger Bluhm. Computation of two-sided
syzygies over non-commutative rings. Contemporary Mathematics,
421:45–64, 2007. http://staff.fim.uni-passau.de/~kreuzer/

papers/ncsyz.pdf.

[KLC+00] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju sung
Kang, and Choonsik Park. New public key cryptosystems using braid
groups. In J. Bellare, editor, Advances in cryptology – CRYPTO
2000, pages 166–183, Berlin, 2000. Springer. LNCS 1880.

[KR00] Martin Kreuzer and Lorenzo Robbiano. Computational commutative
algebra. 1. Springer-Verlag, Berlin, 2000.

[KR05] Martin Kreuzer and Lorenzo Robbiano. Computational commutative
algebra. 2. Springer-Verlag, Berlin, 2005.

[Kro03] Chris Krook. Dimensionality of quotient algebras, 2003. Technical
Report.

[KRW90] Abdelilah Kandri-Rody and Volker Weispfenning. Non-commutative
Gröbner bases in algebras of solvable type. J. Symbolic Computa-
tion, 9(1):1 – 26, 1990. http://www.sciencedirect.com/science/
article/pii/S074771710880003X.

[KX13] Martin Kreuzer and Xingqiang Xiu. Non-Commutative Gebauer-
Moeller Criteria. ArXiv e-prints, 2013. http://adsabs.harvard.

edu/abs/2013arXiv1302.3805K.

111

http://mira.math.rwth-aachen.de/~Viktor.Levandovskyy/filez/BachelorThesisHaase.pdf
http://mira.math.rwth-aachen.de/~Viktor.Levandovskyy/filez/BachelorThesisHaase.pdf
http://staff.fim.uni-passau.de/~kreuzer/papers/ncsyz.pdf
http://staff.fim.uni-passau.de/~kreuzer/papers/ncsyz.pdf
http://www.sciencedirect.com/science/article/pii/S074771710880003X
http://www.sciencedirect.com/science/article/pii/S074771710880003X
http://adsabs.harvard.edu/abs/2013arXiv1302.3805K
http://adsabs.harvard.edu/abs/2013arXiv1302.3805K

[Lev05] Viktor Levandovskyy. Non-commutative Computer Algebra for poly-
nomial algebras: Gröbner bases, applications and implementation.
PhD thesis, Technische Universität Kaiserslautern, 2005. https:

//kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1670.

[Li12] Huishi Li. Gröbner Bases in Ring Theory. World Scientific Publish-
ing Co. Pte. Ltd., 2012.

[LL09] Roberto La Scala and Viktor Levandovskyy. Letterplace ide-
als and non-commutative Gröbner bases. J. Symbolic Computa-
tion, 44(10):1374–1393, 2009. http://www.sciencedirect.com/

science/article/pii/S0747717109000637.

[Mil01] George Abram Miller. On the groups generated by two opera-
tors. Bulletin of the American Mathematical Society, 7:424–426,
1901. http://projecteuclid.org/DPubS?service=UI&version=

1.0&verb=Display&handle=euclid.bams/1183416688.

[MK02] Viktor D. Mazurov and Evgenii I. Khukhro. Open problems in group
theory: the Kourovka notebook. Institute of Mathematics, Novosi-
birsk University, Novosibirsk, 2002.

[Mor86] Teo Mora. Gröbner bases for non-commutative polynomial rings.
Proc. AAECC 3 Lect. N. Comp. Sci, 229:353–362, 1986.

[Mor88] Teo Mora. Gröbner bases in non-commutative algebras. In Proceed-
ings of ISSAC conference, volume 358 of Lecture Notes in Computer
Science, pages 150–161. Springer, 1988.

[Mor94] Teo Mora. An introduction to commutative and non-commutative
Gröbner bases. Theor. Comp. Sci., 134:131–173, 1994.

[MR87] John C. McConnell and J. Chris Robson. Non-commutative Noethe-
rian Rings. Pure and Applied Mathematics. John Wiley & Sons,
1987.

[Nor98] Patrik Nordbeck. On some basic applications of Gröbner bases in
non-commutative polynomial rings. In Gröbner Bases and Applica-
tions, pages 463–472. University Press, 1998.

[Rob85] Lorenzo Robbiano. Term orderings on the polynomial ring. In Lecture
Notes in Comput. Sci., 204, pages 513–517. Springer, 1985.

[RS02] Gerhard Rosenberger and Martin Scheer. Classification of the finite
generalized tetrahedron groups. Contemporary Math., 296:207229,
2002.

112

https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1670
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1670
http://www.sciencedirect.com/science/article/pii/S0747717109000637
http://www.sciencedirect.com/science/article/pii/S0747717109000637
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183416688
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183416688

[Run98] C. Runge. Endliche Tetraedergruppen Der Tsaranov Fall. Diploma
thesis, TU Dortmund University, 1998.

[S+13] William A. Stein et al. Sage Mathematics Software (Version 5.10).
The Sage Development Team, 2013. http://www.sagemath.org.

[Sca12] Roberto La Scala. Extended letterplace correspondence for non-
graded non-commutative ideals and related algorithms. 2012. http:
//arXiv.org/abs/1206.6027.

[Sim94] Charles C. Sims. Computation with finitely presented groups. Ency-
clopedia of mathematics and its applications. Cambridge University
Press, 1994. http://opac.inria.fr/record=b1082972.

[SL13] Roberto La Scala and Viktor Levandovskyy. Skew polynomial rings,
Gröbner bases and the letterplace embedding of the free associative
algebra. J. Symbolic Computation, 48(0):110 – 131, 2013. http:

//dl.acm.org/citation.cfm?id=2381639.

[Stu10] Grischa Studzinski. Algorithmic computations for factor alge-
bras. Diploma thesis, RWTH Aachen, 2010. http://www.math.

rwth-aachen.de/~Grischa.Studzinski/DA.pdf.

[Tra07] Quoc-Nam Tran. A new class of term orders for elimination.
J. Symbolic Computation, 42(5):533 – 548, 2007. http://www.

sciencedirect.com/science/article/pii/S0747717107000314.

[Tsa89] Sergei V. Tsaranov. Finite generalized Coxeter groups. Algebras,
Groups and Geometries, 6(4):421–452, 1989.

[Ufn89] Victor Ufnarovskij. On the use of graphs for calculating the basis,
growth and Hilbert series of associative algebras. (Russian). Mat.
Sb., 180:1548–1560, 1989. translation in Math. USSR-Sb., 68:417–
428, 1991.

[Ufn95] Victor Ufnarovskij. Combinatorial and asymptotic methods in al-
gebra. Itogi Nauki i Tekhniki. Akad. Nauk SSSR Vsesoyuz. Inst.
Nauchn. i Tekhn. Inform., Moscow, 1995.

[Ufn98] Victor Ufnarovskij. Introduction to non-commutative Gröbner bases
theory. In B. Buchberger and F. Winkler, editors, Gröbner bases and
applications, pages 259–280. Cambridge University Press, 1998.

[Ufn08] Victor Ufnarovskij. On the cancellation rule in the homogenization.
Computer Science Journal of Moldova, 16(1(46)):133–145, 2008.

113

http://www.sagemath.org
http://arXiv.org/abs/1206.6027
http://arXiv.org/abs/1206.6027
http://opac.inria.fr/record=b1082972
http://dl.acm.org/citation.cfm?id=2381639
http://dl.acm.org/citation.cfm?id=2381639
http://www.math.rwth-aachen.de/~Grischa.Studzinski/DA.pdf
http://www.math.rwth-aachen.de/~Grischa.Studzinski/DA.pdf
http://www.sciencedirect.com/science/article/pii/S0747717107000314
http://www.sciencedirect.com/science/article/pii/S0747717107000314

[Xiu12] Xingqiang Xiu. Non-Commutative Gröbner Bases and Applications.
PhD thesis, University of Passau, 2012. http://www.opus-bayern.
de/uni-passau/volltexte/2012/2682/.

114

http://www.opus-bayern.de/uni-passau/volltexte/2012/2682/
http://www.opus-bayern.de/uni-passau/volltexte/2012/2682/

	Basic Structures
	Monoids, Groups and Rings
	The free associative algebra

	Orderings
	An overview on orderings

	Gröbner Bases
	The Gröbner basis algorithm
	Improvement to the algorithm

	Conclusion

	The Letterplace Ring
	Letterplace Correspondence for graded Ideals
	La Scala's Approach to Extend the Letterplace Correspondence
	Place Grading
	A new Invariant for the Shift-Action
	Using the shift-invariant representation

	Gebauer-Möller for the Letterplace Ring
	Representation of Orderings over the Letterplace Ring
	Conclusion

	Gröbner Basics
	Truncated Gröbner Bases
	Elimination
	Syzygies
	Factor Algebras
	Dimension computations
	Left ideals in factor algebras

	Conclusion

	Implementation, Applications and Examples
	Overview on the Implementation
	freegb.lib
	fpadim.lib
	Other computer algebra systems

	Examples and Applications
	Generalized tetrahedron groups

	Moore-Penrose Inverse and Drazin Pseudo-Inverse
	Quotients of the Modular Group
	Fibonacci Groups
	Comparison to other Systems
	Examples

	Future Work and Conclusion

