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VANISHING CONFIGURATIONS IN NETWORK DYNAMICS

WITH ASYNCHRONOUS UPDATES

IAN H. DINWOODIE

(Communicated by David Levin)

Abstract. We consider Boolean dynamics for biological networks where sto-
chasticity is introduced through asynchronous updates. An exact method is
given for finding states which can reach a steady state with positive probability,
and a method is given for finding states which cannot reach other steady
states. These methods are based on computational commutative algebra. The
algorithms are applied to dynamics of a cell survival network to determine
node assignments that exclude termination in a cancerous state.

1. Introduction

In [14] Saadatpour et al. present a Boolean model of biological dynamics for
cell cancer. In that work, one goal was to find configurations of the system which
cannot lead to certain steady states related to cancer. In this paper we show how
the questions and computations can be formulated exactly in terms of operations
of computational commutative algebra. This is useful for three reasons: first, the
uncertainty in simulation and random search is eliminated; second, the algebraic
methods generalize easily to dynamics with more states than two; and third, existing
commutative algebra software is highly developed so computations can be done
simply by interfacing to existing software. We apply the methods to real and
contrived examples. The algebraic approach will not scale to larger problems as
well as simulation, so it will have limitations and thus we view it as complementary
to other numerical methods.

Biological networks have been modeled as discrete dynamical systems for the
purposes of understanding interactions and determining steady state solutions, and
logical or Boolean models are the most tractable mathematically. Despite their
simplicity, Boolean models have been used successfully for decades ([1], [9], [12],
[17], [18], [19], [20]).

To account for uncertainty and variability in the timing of the interactions in
the network, techniques for introducing randomness in the coordinate functions
that define the dynamics have been of interest. These techniques are sometimes
called “asynchronous” dynamics to distinguish them from the plain deterministic
dynamics where the coordinate maps are simultaneously or synchronously applied
to the present state, mapping it instantly to the next state. The asynchronous
systems are Markovian and bring in probabilistic notions of the basin of attraction
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2992 IAN H. DINWOODIE

that extend the traditional definition. Here we will focus on two notions: a set of
points that can reach a steady state with positive probability and a set of points
that cannot reach any other steady state. We give algorithms for finding these
sets and algorithms for low-dimensional conditions of inclusion and exclusion. We
illustrate with examples of six and eleven nodes in Section 3.

2. Ideals of basins of attraction for asynchronous updates

In this section we show how to construct polynomials that vanish on a basin
of attraction for randomized dynamics. The methods are related to [13], with the
difference that the states of interest or “design points” here are not given explicitly.
The points are studied after the ideal of polynomials is computed.

Consider a state space Ω := {0, 1}d, a d-fold product of logical or ON/OFF
symbols 0 and 1. These will be states or configurations on a network with d nodes.

Let F = (F1, . . . , Fd) be a transition map or transition function or update func-
tion on Ω, where Fj : Ω → {0, 1} and F : Ω → Ω. This map is deterministic;
it is the simplified algebraic or logical model of interactions from one time step
to the next and it is often called the “synchronous” update. Schemes to allow
updates at different rates for different sites are called “asynchronous”. Two com-
mon choices are “random node” (recommended by [14] and [22]), which are called
“general asynchronous” or GA, and “random order” (implemented in [3]).

GA proceeds by choosing a node or coordinate j ∈ {1, 2, . . . , d} with the uni-
form probability distribution, then changing the current state s = (s1, . . . , sj−1, sj ,
sj+1, . . . , sd) to s� = (s1, . . . , sj−1, Fj(s), sj+1, . . . , sd).

Random order chooses a permutation π on the d coordinates uniformly from the
d! choices, then updates the states in that order to get a new state s� after going
through intermediate updates s1, . . . , sd−1 that are discarded after the computation:

s1j =

{
sj , j �= π(1),

Fπ(1)(s), j = π(1),

s2j =

{
s1j , j �= π(2),

Fπ(2)(s
1), j = π(2),

s3j =

{
s2j , j �= π(3),

Fπ(3)(s
2), j = π(3),

· · ·

s�j =

{
sd−1
j , j �= π(d),

Fπ(d)(s
d−1), j = π(d).

Each of these random update methods gives a Markov chain X0, X1, X2, . . .
of sequences of states s ∈ Ω. Suppose the probability measures on trajectories
(elements in Ω∞) are denoted by PGA and P π respectively.

A steady state p = (p1, . . . , pd) ∈ Ω has the defining property that F (p) = p;
that is, it is fixed for the synchronous update. Then it follows that

PGA(Xn = p | X0 = p) = P π(Xn = p | X0 = p) = 1

for all n > 0.
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VANISHING CONFIGURATIONS IN NETWORKS 2993

Define the set of points that may reach a steady state p:

BGA
in,p :=

∞⋃
n=0

{s : PGA(Xn = p | X0 = s) > 0},(1)

Bπ
in,p :=

∞⋃
n=0

{s : P π(Xn = p | X0 = s) > 0}.(2)

Each will be called an inclusive basin of attraction. Note that

Bπ
in,p ⊂ BGA

in,p(3)

since if π1, π2, . . . , πn is a sequence of permutations that connect a point s ∈ Bπ
in,p

to p in P π distribution, then the nd single node updates that comprise the n permu-
tations give a positive probability of connecting s → p under the PGA distribution.

Our computational methods will primarily focus on PGA, but conclusions will
follow about P π based on certain inclusions, and these are summarized in Propo-
sition 3.1.

A way to study BGA
in,p is through the set of polynomials that vanish on all points

in BGA
in,p, that is, its ideal:

I(BGA
in,p) := {f(x) ∈ C[x] : f(BGA

in,p) = 0}.(4)

If I is any ideal of polynomials, then define V(I) :=
⋂

f∈I{s : f(s) = 0}, the
simultaneous roots of all the equations in I. In particular, we can recover BGA

in,p:

BGA
in,p = V(I(BGA

in,p)).

It will be convenient for the algorithms of this section to use twice as many
indeterminates as the number of coordinates d. Define the ring of polynomials R =
C[x1, . . . , xd, y1, . . . , yd] = C[x,y]. The algorithm below constructs the polynomials
that vanish on BGA

in,p without numerically solving for the points in the set.
Define the ideals

I01 = 〈x2
1 − x1, . . . , x

2
d − xd, y

2
1 − y1, . . . , y

2
d − yd〉,

Fjxy = 〈x1 − y1, . . . , xj−1 − yj−1, Fj(x)− yj , xj+1 − yj+1, . . . , xd − yd〉,
Fjyx = 〈y1 − x1, . . . , yj−1 − xj−1, Fj(y)− xj , yj+1 − xj+1, . . . , yd − xd〉,
Iyp = 〈y1 − p1, . . . , yd − pd〉.

Define the ideal I1 by

I1 =

⎛
⎝ d⋂

j=1

Fjxy + Iyp + I01

⎞
⎠ ∩ C[x].

Now define recursively a sequence of ideals I2, I3, I4, . . . by

J =

⎛
⎝ d⋂

j=1

Fjyx + Ii + I01

⎞
⎠ ∩ C[y],(5)

Ii+1 =

⎛
⎝ d⋂

j=1

Fjxy + J + I01

⎞
⎠ ∩ C[x], i = 1, 2, 3, . . . .(6)

Licensed to Johannes Kepler University. Prepared on Wed Sep  9 08:29:50 EDT 2015 for download from IP 193.170.37.5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2994 IAN H. DINWOODIE

Theorem 2.1 says to stop the iteration when dimR/(Ii + I01) repeats in order
to get the polynomials that vanish on the basin of attraction BGA

in,p. The method
above is a variation on the simpler method for synchronous updates in [6].

Theorem 2.1. Let F (p) = p. There exists i� < ∞ such that dimR/(Ii� + I01)=
dimR/(Ii�+1+ I01), and for such an integer

I(BGA
in,p) = Ii�

as an ideal within C[x].

Proof. Write the set BGA
in,p =

⋃∞
i=0{s ∈ Ω : PGA(Xi = p | X0 = s) > 0}. Note

that the sets in this union {s ∈ Ω : PGA(Xi = p | X0 = s) > 0} are increasing by
inclusion, since p is a steady state. Since Ω is finite, there is an index i� when

{s ∈ Ω : PGA(Xi� = p | X0 = s) > 0} = {s ∈ Ω : PGA(Xi�+1 = p | X0 = s) > 0},

and then these sets remain the same for i ≥ i�, as follows. If s satisfies PGA(Xi�+2

= p | X0 = s) > 0, then by the Markov property

0 <
∑
t

PGA(Xi�+1 = p | X0 = t)PGA(X1 = t | X0 = s)

≤ C
∑
t

PGA(Xi� = p | X0 = t)PGA(X1 = t | X0 = s)

= C PGA(Xi�+1 = p | X0 = s)

for some constant C > 0, using the assumption that the two integrands indexed by
i� and i� + 1 are positive at the same values of the argument t. This shows that
s also has a positive probability of reaching p at time i� + 1, and this will be the
case for all times i > i�.

Let Bi := {s ∈ Ω : PGA(Xi = p | X0 = s) > 0}, let Iy,i be the polynomials in
indeterminates y1, . . . , yd that vanish on Bi, and let Ix,i be the same polynomials
in x1, . . . , xd. Now for convenience let fj(s) = (s1, s2, . . . , sj−1, Fj(s), sj+1, . . . , sd)
and write

Bi =
d⋃

j=1

{s ∈ Ω : PGA(Xi−1 = p | X0 = fj(s)) > 0}

=
d⋃

j=1

{s ∈ Ω : t ∈ Bi, t = fj(s)}

=

⎧⎨
⎩s : (s, t) ∈

d⋃
j=1

V(Fjxy + Iy,i−1 + I01)

⎫⎬
⎭

=

⎧⎨
⎩s : s ∈ V

⎛
⎝ d⋂

j=1

(Fjxy + Iy,i−1 + I01) ∩ C[x]

⎞
⎠
⎫⎬
⎭ ,

where we have applied the Extension Theorem ([4], p. 25) to the ideal
⋂d

j=1 Fjxy +
Iy,i−1 + I01 – the univariate polynomials in I01 make all partial solutions in the
elimination ideal extend to complete solutions.
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VANISHING CONFIGURATIONS IN NETWORKS 2995

Now continuing the recursive formula back to i = 0, we have Iy,0 = Iyp. Thus
we have the construction

Ix,i =

⎛
⎝ d⋂

j=1

Fjxy + Iy,i−1 + I01

⎞
⎠ ∩ C[x],

which is more easily implemented by alternating x and y variable elimination. Note
then that the index i in the statement of the theorem is the odd index 2i− 1 in the
proof.

Finally, since I01 contains the univariate polynomials x2
j − xj , y

2
j − yj , the ideal

Ix,i+ I01 is radical and 0-dimensional (Seidenberg’s Lemma [10]), so its size can be
measured as the dimension of the quotient vector space R/(Ix,i + I01). When the
dimensions repeat, the sets are the same and the iteration stops. �

It follows from the above result and the ideal-variety correspondence ([4], p. 21)
that we can get the points BGA

in,p by solving the equations that generate the ideal

I(BGA
in,p).
Note that Ii� is 0-dimensional in C[x] but not in C[x,y]. Since it contains each

x2
j − xj , the formula for counting holds:

|BGA
in,p| = dim

C[x,y]

Ii� + Iyp
= 2−ddim

C[x,y]

Ii� + I01
.

Define the set of points that cannot leave the inclusive basin of attraction of
state p:

BGA
ex,p :=

∞⋂
n=0

{s : PGA(Xn /∈ BGA
in,p | X0 = s) = 0}.(7)

This will be called the exclusive basin of attraction. Observe that

p ∈ BGA
ex,p,(8)

BGA
ex,p ⊂ BGA

in,p.(9)

Also, the exclusive basins are disjoint, as follows.

Proposition 2.1. BGA
ex,p ∩BGA

ex,q = ∅ and q /∈ BGA
in,p if p and q are different steady

states.

Proof. Suppose s ∈ BGA
ex,p ∩ BGA

ex,q. Then s ∈ BGA
in,q so there would be a time step

n when PGA(Xn = q | X0 = s) > 0. But q /∈ BGA
in,p, since q is a steady state

for F , so the Markov chain PGA started at q can never move. Thus we have
PGA(Xn /∈ BGA

in,p | X0 = s) > 0, a contradiction to the definition of BGA
ex,p. �

Now we describe a method to find BGA
ex,p which will be used in Section 3. Intu-

itively the method finds sets of points that enter the complement of BGA
in,p in 1 step,

2 steps, 3 steps, . . . of the Markov chain PGA, and at the end removes these points
from BGA

in,p algebraically with the colon operation.

Let Ix(B
GA
in,p) be the ideal of polynomials that vanish on BGA

in,p in terms of inde-

terminates x1, . . . , xd, and let Iy(B
GA
in,p) be the same polynomials using y1, . . . , yd.
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2996 IAN H. DINWOODIE

Define

F0xy = F0yx = 〈x1 − y1, . . . , xd − yd〉,

E1 =

⎛
⎝ d⋂

j=0

Fjxy + I01 : Iy(B
GA
in,p)

⎞
⎠ ∩ C[x]

and then define recursively

J =

⎛
⎝ d⋂

j=0

Fjyx + Ei + I01

⎞
⎠ ∩ C[y],(10)

Ei+1 =

⎛
⎝ d⋂

j=0

Fjxy + J + I01

⎞
⎠ ∩ C[x], i = 1, 2, 3, . . . .(11)

Theorem 2.2. There exists i� such that Ei�+1 = Ei� , and then

I(BGA
ex,p) = (I01 : Ei�) ∩ C[x]

as an ideal in C[x].

Proof. Define a new Markov chain PGA,0 to be like the GA process but where each
coordinate is chosen for update with probability 1

d+1 , and the possibility to hold at

the current state has probability 1
d+1 as well. Then

i⋃
n=0

{s : PGA(Xn /∈ BGA
in,p | X0 = s) > 0}

= {s : PGA,0(Xi /∈ BGA
in,p | X0 = s) > 0},

and these sets are increasing in the index i by inclusion. Then the proof closely
follows the proof of Theorem 2.1 with Iyp replaced by I01 : Iy(B

GA
in,p). We get

Ei� = I

( ∞⋃
n=0

{s ∈ Ω : PGA(Xn /∈ BGA
in,p | X0 = s) > 0}

)
= I(B̄GA

ex,p)

in C[x], and so

V(I01 : Ei� ∩ C[x]) = {s ∈ Ω : (s, t) ∈ (Ω \ B̄GA
ex,p)× Ω} = BGA

ex,p. �
Now we consider a contrived example. We will use a simplified notation:

IGA
in,p = I(BGA

in,p),

IGA
ex,p = I(BGA

ex,p).

Example 2.1. For illustration consider a map F on binary triples described by

001 → 010 → 011 → 111,

with all other points including 111 fixed for F . The map F can be written with
polynomial coordinates (F1, F2, F3), where for example

F1(x) = −x1x2x3 + x2x3 + x1,

F2(x) = x1x2x3 − x1x3 − x2x3 + x2 + x3,

F3(x) = −x1x2x3 + x1x3 + x2x3

on Ω.
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VANISHING CONFIGURATIONS IN NETWORKS 2997

Then BGA
in,1 = Bπ

in,1 = {001, 010, 011, 111} but BGA
ex,1 = {010, 011, 111} and 001 ∈

BGA
in,1 ∩BGA

in,0. The state 001 can reach 111 in the GA scheme by coordinate choices
2, then 1, and it can also reach steady state 000 by a single choice of coordinate
3. The standard Gröbner basis for IGA

in,1 with graded reverse lex order is given by

Singular [7] as {x2
3 − x3, x2x3 − x2 − x3 +1, x1x3 − x1, x

2
2 − x2, x1x2 − x1, x

2
1 − x1}.

3. Vanishing configurations

In this section we are concerned with answering questions about the nature of
points in and out of the basins of attraction, in order to determine simple conditions
for inclusion and exclusion. Here the polynomials will be C[x], so the ideals from
Section 2 will be mapped over the obvious way (xj → xj , yj → 0). Now IGA

in,p and

IGA
ex,p are ideals of polynomials in x1, . . . , xd, and I01 = 〈x2

j − xj , j = 1, . . . , d〉.
Theorem 2.1 gives a way to find states that are not in an undesirable basin of

attraction: solve the equations in I01 : IGA
in,p. However, for applications it is useful

to have low-dimensional characterizations of exclusion. Are there values at one
or two coordinates that imply exclusion? The sets of nodes and particular values
for these nodes that guarantee exclusion from a basin of attraction will be called
vanishing configurations. These would be interpreted as nodes where values could
be fixed to force exclusion. We will also treat the question of inclusion, where the
goal is to make sure a state belongs to a desirable basin of attraction.

The following proposition summarizes conclusions about the meaning of a state
s not being in an inclusive basin of attraction and of being in an exclusive basin
of attraction. For motivation, p may be an undesirable steady state, and we will
want to find conditons on states that prevent them from reaching p.

Proposition 3.1. The quotient ideal I01 : IGA
in,p has variety V(I01 : IGA

in,p) =

{s ∈ Ω : s /∈ BGA
in,p}. If s /∈ BGA

in,p, then s cannot reach p under PGA nor P π.

Also, if s ∈ BGA
ex,q, then s cannot reach a steady state p �= q under PGA nor P π.

Proof. The ideal I01 is radical, so V(I01 : IGA
in,p) is the smallest variety containing

the difference Ω \ BGA
in,p ([4], p. 23). But this set difference is a variety, so the two

are equal.
If s /∈ BGA

in,p, then s cannot reach p under PGA by definition; then nor by P π by

(3). Clearly s ∈ BGA
ex,q cannot reach p under PGA because p /∈ BGA

in,q. If s could

reach p under P π, then it could do so under PGA as well, so this is impossible. �
Proposition 3.2. For b ∈ {0, 1}, the condition

〈xj − b〉+ IGA
in,p = 〈1〉

implies that every state s ∈ Ω with sj = b does not belong to BGA
in,p.

Proof. If there were s ∈ BGA
in,p with sj = b, then all the polynomials in IGA

in,p would
vanish on s, as well as all of them in 〈xj − b〉 (being multiples of the generator
xj − b), as well as all of them in I01. Thus s ∈ V(〈xj − b〉+ IGA

in,p + I01), but there
could be no solutions if this ideal were 〈1〉 = C[x]. �

Finding a b to satisfy the above algebraic condition would involve a search and
computation over 2d node-value pairs. If one is searching only for nodes where
b = 0, this would correspond intuitively to a situation where the steady state p
characterizes a disease condition and the value at node j satisfies sj = 1 for all

Licensed to Johannes Kepler University. Prepared on Wed Sep  9 08:29:50 EDT 2015 for download from IP 193.170.37.5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2998 IAN H. DINWOODIE

states in the inclusive basin of attraction; that is, node j is “stuck-at-ON” (see [14]
for terminology). Then setting sj = 0 would guarantee exclusion from the basin of
attraction of the disease condition. To find joint states guaranteeing exclusion, the
algebraic condition

〈1− (1− b1 − xi) · (1− b2 − xj)〉+ IGA
in,p = 〈1〉(12)

implies that any state s with (si, sj) = (b1, b2) is not in BGA
in,p; here the search

is over 4 ·
(
d
2

)
pairs and values. We also mention that another tool for finding

vanishing configurations is the Monte Carlo sampling on BGA
in,p, and then randomly

sampled states s can be studied with pairwise scatterplots over all coordinate choices
(i, j) in 1, . . . , d. Pairs of states (b1, b2) that do not show up are likely vanishing
configurations if the sampling is done well. The sampling may be difficult; see [5] for
methods based on sequential importance sampling. Also, a universal Gröbner basis
[2] would be useful, as all the elimination ideals would be available simultaneously,
and this would make it possible to find variables and particular values that cannot
solve the equations. However, computational methods are not widely implemented.

Insight into how many nodes need to be considered jointly for a vanishing con-
figuration can be obtained with the Hilbert function for the ideal IGA

in,p as we see
in Theorem 3.1 below. A vanishing configuration of size k for an inclusive basin of
attraction BGA

in,p is a k-tuple of indices i = (i1, . . . , ik) (1 ≤ i1 < i2 < · · · < ik ≤ d)
and binary values b1, . . . , bk such that

{s ∈ Ω : si = (b1, . . . , bk)} ∩BGA
in,p = ∅,

or, in other words, a state s with binary values b1, . . . , bk at sites i does not belong to
BGA

in,p. The condition analogous to (12) would involve 2k
(
d
k

)
possible configurations

to examine.
The Hilbert function is easy to compute compared to searching over size k =

1, 2, 3, . . . together with the corresponding 2k states to satisfy condition (12). The
affine Hilbert function for the ideal I is the function HI(t), t = 0, 1, 2, . . . , given by

HI(t) = dimC[x]≤t/I≤t, t = 0, 1, 2, . . . ,(13)

where C[x]≤t is the vector space of polynomials of total degree at most t and
similarly for I≤t.

Theorem 3.1. Let I = IGA
in,p, and let t� be the first positive integer where HI(t

�) <∑t�

i=0

(
d
i

)
, if one exists. Then there is no vanishing configuration of size k < t�.

Proof. The Hilbert function for I01 is given by H01(t) =
∑t

i=0

(
d
i

)
, because the

dimension of C[x]≤t =
(
d+t
t

)
and the dimension of I01,≤t is the number of integer

solutions to n0 +n1 + . . .+nd = t with one of the ni at least 2, for inclusion in the
ideal I01. These solutions number

(
d+t
t

)
−

∑t
i=0

(
d
i

)
, the total number of solutions

minus the number with all values nj ≤ 1. Now assume HI(t) = H01(t), t < t�,
and suppose there is a vanishing configuration of size k < t�. Then I≤t would be
spanned by I01,≤t as vector spaces over C since I01,≤t ⊂ I≤t and they have the
same dimension, and in particular every polynomial in I≤t is in the ideal I01. If
there were a vanishing configuration of size k < t�, then there would be a square-
free polynomial of total degree at most k that vanishes on BGA

in,p, namely p(x) =∏k
j=1(1 − bj − xij ) for vanishing configuration (i, (b1, . . . , bk)), and then p ∈ I≤k.
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VANISHING CONFIGURATIONS IN NETWORKS 2999

But no square-free polynomial can be in the ideal I01, by the division algorithm,
which contradicts the existence of the vanishing configuration. �

While we have just treated ways to find configurations that guarantee exclusion
from a basin of attraction, one may also be interested in characterizing states in a
way that guarantees inclusion in the exclusive basin of attraction. These should be
called sufficient configurations. The idea is related to identifying favorable “stuck-
at-ON/OFF” configurations. Here we have the following analog of Proposition 3.2.

Proposition 3.3. For b ∈ {0, 1}, the condition

〈xj − b〉+ I01 : IGA
ex,p = 〈1〉

implies that every state s ∈ Ω with sj = b does belong to BGA
ex,p.

Proof. The condition implies that there can be no binary solutions s with sj = b
to the equations that vanish on Ω \ B̄GA

ex,p. �

The condition for joint states (b1, b2) such that s(i,j) = (b1, b2) implies member-

ship in BGA
ex,p is

〈1− (1− b1 − xi) · (1− b2 − xj)〉+ I01 : IGA
ex,p = 〈1〉.(14)

The application would be where p is a steady state related to some favorable
condition, and the property si = (b1, b2) guarantees membership in the basin of
attraction that can only lead to steady state p.

In our examples, all computations were done with Singular [7], including its
elim.lib library for variable elimination. Hilbert functions were computed with
hilb, and counting 0-dimensional sets were done with vdim.

Example 3.1. In Example 2.1, one sees that the smallest vanishing configuration in
BGA

in,1 is of size k = 2 and involves indices i = (1, 2) and values (b1, b2) = (1, 0). One

can check condition (11) quickly. The Hilbert function drops down from
∑t

i=0

(
3
i

)
at t� = 2, consistent with Theorem 3.1. (For BGA

ex,1, b = 0 in the second coordinate

is vanishing and Proposition 3.2 can be applied to IGA
ex,1.) Furthermore, i = (1, 2)

and (b1, b2) = (0, 1) is a sufficient configuration for inclusion in BGA
ex,1, and condition

(14) applies.

Example 3.2. Here we consider an example from [14]. An update x1 or x2 is
written as a polynomial in the form x1 + x2 − x1 · x2, and x1 and x2 is written
x1 · x2. The polynomial defined at (1) is fK(x) = x2 + x. In the table below
we describe a map F on d = 6 dimensions taken from Table 1 of [14], where the
“update” indicates the next time step.

node update indeterminate

S1P S1P* = NOT (Ceramide OR Apoptosis) x1

FLIP FLIP* = NOT (DISC OR Apoptosis) x2

Fas Fas* = NOT (S1P OR Apoptosis) x3

Ceramide Ceramide* = Fas AND NOT (S1P OR Apoptosis) x4

DISC DISC* = (Ceramide OR (Fas AND NOT FLIP))
AND NOT Apoptosis x5

Apoptosis Apoptosis* = DISC OR Apoptosis x6
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This dynamic model has two steady states: a disease steady state pD=1 1 0 0 0 0,
and a normal steady state pN= 0 0 0 0 0 1.

Calculations in Singular based on Theorems 2.1 and 2.2 show that the sizes of the
inclusive basins of attraction are 61 and 28 for normal and disease respectively. The
exclusive basins of attraction have sizes 36 and 3, and a Gröbner basis for IGA

ex,pD

with graded reverse lex order is given by {x6, x5, x4, x1−1, x2
3−x3, x2x3−x3, x

2
2−x2}.

The intersection of the inclusive basins of attraction counts 25 points (this is com-
puted with vdim for the vector space dimension of the quotient C[x]/
(IGA

in,pN
+ IGA

in,pD
)). These numbers agree with Figure 4 of [14].

The Hilbert function on the ideal I(BGA
in,pD

) shows t� = 1, and a vanishing con-
figuration is found to be s6 = 1 using Proposition 3.2. Thus any state s with s6 = 1
cannot converge to the disease steady state pD. An application of Proposition 3.3
shows that this condition also forces s to be in the exclusive basin of attraction for
the normal state BGA

ex,pN
. These conclusions are consistent with Figure 4 of [14].

Example 3.3. Consider an 11-node T cell signalling model relevant to the network
of [15]. The signalling logical model described below has four steady states:

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1.

The dynamics for this model are defined precisely by

node logical update polynomial
raf=x1 PKA or PKC x8 + x9 − x8x9

mek=x2 raf or PKA or PKC 1− (1− x1)(1− x8)(1− x9)
plcg=x3 plcg x3

PIP2=x4 plcg or PIP3 x3 + x5 − x3x5

PIP3=x5 PIP3 x5

erk=x6 mek or PKA x2 + x8 − x2x8

akts=x7 PIP3 or erk or PKA 1− (1− x8)(1− x6)(1− x5)
PKA=x8 PKC x9

PKC=x9 plcg or PIP2 x3 + x4 − x3x4

P38=x10 PKA or PKC x8 + x9 − x8x9

JNK=x11 PKA or PKC x8 + x9 − x8x9

These maps are derived from the interaction diagram Figure 2 of [21], where incom-
ing directed nodes are combined by logical disjunction, that is, the or operation.
Other dynamics are also compatible with known interactions in this network, and
the algebraic method presented here applies to all.

For the two nonconstant steady states, the inclusive and exclusive basins of
attraction are the same, and both count 512 states.

A basis for the ideal of the first steady state 1 1 1 1 0 1 1 1 1 1 1 is given by
{x5, x3−1, x2

11−x11, x
2
10−x10, x

2
9−x9, x

2
8−x8, x

2
7−x7, x

2
6−x6, x

2
4−x4, x

2
2−x2, x

2
1−x1},

and one can see a vanishing configuration of s5 = 1. The Hilbert function drops
down from

∑t
i=0

(
11
i

)
at t� = 1 consistent with Theorem 3.1.
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The ideal for the second steady state 1 1 0 1 1 1 1 1 1 1 1 is generated by
{x5−1, x3, x

2
11−x11, x

2
10−x10, x

2
9−x9, x

2
8−x8, x

2
7−x7, x

2
6−x6, x

2
4−x4, x

2
2−x2, x

2
1−x1}

and shows vanishing configuration s5 = 0, again located at size k = 1 by the Hilbert
function.

4. Conclusions

Many properties of biological networks with both deterministic and stochastic
dynamics can be expressed in the language of commutative algebra, and compu-
tations can also be done exactly in this framework with existing algorithms and
software. We have illustrated the translation and computations in examples show-
ing that the algebra is computationally feasible on real problems.
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