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Abstract

Railway interlocking systems are designed to prevent conflicting actions (related to the position of switches and
signals) during everyday railway exploitation. A decision model (independent from the topology of the station)
based on the use of polynomial ideals and Gröbner bases is presented. This decision model can also be used to
check whether a given section is accessible by a train located in another section or not. The fact that trains could
occupy more than one section does not affect the model. ©2000 IMACS/Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Basic railway definitions

Unlike road vehicles, trains can move from one track to another only at certain places, where special
devices (turnouts) are installed.

Let us observe the Fig. 1. The turnout has a mobile part (switch) that sends trains coming from x1 in
one of the two possible directions (direct track, also called straight route: x2/diverted track: x3). In the
figure the switch is in the diverted track position. In such case there would be no problem if a train would
come from x3: it would pass to section x1. But if the train would come from x2 instead, it would ‘trail
through a switch set against it’.
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Fig. 1. Layout with one turnout.

If the turnout has a modern spring switch nothing happens: the train passes to section x1 and the
spring returns the switch to the original position afterwards. That will be the case considered in this
paper. Nothing happens either if the switch is an old-style tramway stub. In other kinds of turnouts the
derailment of the train and/or serious damage for the switch can occur.

Note that in this subsection we are only considering one train and we are not thinking about avoiding
collisions yet.

Except in uncommon low traffic lines operated by radio (and in yards), traffic is controlled by semaphores
and signals. Traditionally the word ‘signal’ is reserved for mechanical devices meanwhile ‘semaphore’
is usually a device with (only) colour-changing lights. Anyway we shall use both words interchangeably
in this paper.

1.2. The decision problem

The station master of a station can give clearance simultaneously to more than one train. This action
should not allow two trains to collide at any point (in the worse case). Observe that this is not a scheduling
problem but a problem of compatibility of permissions.

When there are several trains, signals and turnouts involved, this is not a trivial problem. We shall
consider that all trains are allowed to move at the same time in any direction at any speed, unless there is
a signal forbidding the movement [4].

1.3. Brief notes about the historical development

Very soon after railway networks began to develop, the first interlocking devices were installed (Saxby,
near London, 1859 [11]). Initially they were complicated mechanical equipments, designed to prevent
immediately conflicting actions.

In this century electric relays have been used instead. In fact for simple cases they are still being
used. But this installations are topology-dependant (i.e., dependant on the layout of the tracks), and very
complicated to design.

Since the eighties, high-tech companies, such as Siemens, began to install microcomputer controlled
interlocking systems [10,12–15].

1.4. Our approach

Observe that we shall treat here only the ‘logical’ problem (compatibility). This paper includes an
improvement of the method explained in [9], where the way the safety of the logical problem is treated is
very similar to that developed in [6] to check consistency of KBSs. Here the position of switches, signals
and trains is also translated into an ideal of a polynomial residue class ring. In both cases what has to be
checked is the degeneracy of an ideal into the whole residue class ring (this is done using Gröbner bases
[1]).
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Fig. 2. Reversing loop.

Unlike other more classical approaches like in [2,3,5], there is no translation of the situation into Logic.
In this case the steps are:

railway situation→ graph→ (algebraic) decision model.

2. The associated digraph

Let us remember that trailing through a switch set against is allowed. The digraph will include the
information about switches and semaphores.

2.1. Accessibility to the next sections

Four oriented graphs (GD, GS, G∗, G) will be considered. The vertices of the graph are the sections of
the line.

Graph GD corresponds to the turnouts and the layout. There is an edge connecting section xi and
section xj iff one of the following conditions holds:
• Sections xi and xj are consecutive in the line (i.e., they are two consecutive sections of a block-system).
• There is a turnout connecting sections xi and xj and the switch is in the position that connects sections

xi and xj .
• There is a turnout connecting sections xi and xj and the switch is in the position such that it is possible

to pass from section xi to section xj trailing through this switch set against.
Graph GS corresponds to semaphores. There is an edge connecting section xi with section xj iff there is
a semaphore controlling the pass from section xi to section xj and it forbids such movement.

Therefore, a next section is accessible from another iff the layout and the position of switches makes
it possible and the semaphores do not forbid it, i.e., iff there is an edge connecting them in GD but that
edge is not in GS. Such graph will be denoted by G∗. It is clear that, if considered as sets of edges,
G∗ = GD− GS.

2.2. General accessibility

But the problem is not as simple, as the possibility of any train moving from the section it occupies to
a next one, then to a next one to this second one, to a next one of this third one, etc., has to be taken into
account. Think for instance about shunting in a yard. Obviously the solution is to consider the transitive
closure of the graph G∗ above, to be denoted by G.

Observe that, unlike other approaches, considering directed graphs without considering the direction
of the train allows to deal with situations like reversing loops and reversing triangles without problems
(Figs. 2 and 3).
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Fig. 3. Reversing triangle.

3. The algebraic model

3.1. Representing the digraph as an ideal

Let us denote the sections byx1, x2, . . . , xn (polynomial variables). The graph G will be interpreted
as a polynomial ideal:

I ⊆ Q[x1, x2, . . . , xn]

that is initialized as{0}.
That it is possible to move from sectionxi to a (next) sectionxj – according to the position of the

switches and signals – will be represented by including the polynomial:

xi · (xi − xj )

in the idealI .

3.2. Preprocessing the ideal

Preprocessing the idealI is recommended. If it is possible to move both fromxi to xj and fromxj to
xi then we would have bothxi · (xi − xj ) andxj · (xj − xi) in I . Polynomialxi − xj can substitute both
of them for good in this context (see Remark 3).

3.3. Representing the position of trains with a set of polynomials

Trains will be denoted by (different) nonzero integers. If trainα is in sectionxi then the polynomial
xi − α will be included in the set of polynomials corresponding to the position of the trains, PT. Observe
that
• Each sectionxi cannot appear more than once, because a section cannot be occupied by more than one

train.
• An integer value could appear more than once because a long train could occupy more than one section

(for instancexl −α andxm −α could be included inPT ). Checking the position of the switches under
such a train is not considered here (although it was studied with a matrix-based model in [7,8]).

3.4. Checking the situation in the polynomial model

Proposition 1. Accessibility to the next sections: if train numberα is in sectionxi , and it is possible to
pass from sectionxi to a next sectionxj , thenxj − α ∈ Q[x1, x2, . . . , xn]/(I + 〈xi − α〉).
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Proof. If train numberα is in sectionxi , thenxi − α ∈ Q[x1, x2, . . . , xn]/(I + 〈xi − α〉), i.e.,xi = α in
Q[x1, x2, . . . , xn]/(I + 〈xi − α〉) and:
1. If it is possible to pass from sectionxi to xj , but it is not possible to pass from sectionxj to xi , then

xi · (xi − xj ) ∈ I and thereforexj = α in Q[x1, x2, . . . , xn]/(I + 〈xi − α〉).
2. If it is possible to pass both from sectionxi to xj and fromxj to xi , thenxi − xj ∈ I and therefore

xj = α in Q[x1, x2, . . . , xn]/(I + 〈xi − α〉).
�

So, somehow the valueα ‘propagates’ through the (directed) edges of G∗.

Remark 1. Let us observe that this really happens not only through the (directed) edges ofG∗ but through
those edges in the transitive closure ofG∗, i.e, G(it can be proven by finite induction).

Remark 2. Reciprocally, as the polynomials that generate the ideal I are given by the edges ofG∗, the
valueα cannot ‘propagate’ if there is no (directed) edge linking them in G.
The following proposition follows in a straightforward way:

Proposition 2. General accessibility: a train,α, in sectionxi , can reach sectionxj (according to the
position of the switches and signals) iff:

xj − α ∈ I + 〈xi − α〉.
Using the well known radical membership criterion [1] and Gröbner bases (GB), the previous proposition
can be expressed as follows (take into account that the ideals treated here are radical).

Corollary 1. General accessibility: let t be a new variable, and let us consider the polynomial ring
Q[x1, x2, . . . , xn, t ]. A train, α, in sectionxi , can reach sectionxj – according to the position of the
switches and signals – iff:

GB(〈1 − t · (xj − α)〉 + I + 〈xi − α〉) = {1}.
The previous proposition can also be used to check the safety of a proposed situation. A proposed situation
is not safe iff two different trains,α, β (located in sectionsxi andxj , respectively) and a certain section
xk exist such that the two trains can reach sectionxk. That is equivalent toxk − α, xk − β ∈ I + 〈PT〉. As
α, β are different numbers,α − β is an invertible, and therefore the previous statement is equivalent to
the degeneration of the ideal into the whole ring, i.e. toI + 〈PT〉 = 〈1〉.
Theorem 1. Safety: a situation of the switches and signals given by the ideal I and a position of trains
given by the ideal〈PT〉 is safe iff:

I + 〈PT〉 6= 〈1〉.

Corollary 2. Safety: a situation of the switches and signaling given by the ideal I and a position of trains
given by the ideal〈PT〉 is safe iff:

GB(I + 〈PT〉) 6= {1}.

Remark 3. Now the interest of the preprocessing of the ideal I is clear. TheGB corresponding to
{xi · (xi − xj ), xj · (xj − xi)} is something like{xi · xj − x2

j , x
2
i − x2

j }, that although leading to the same
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result asxi−xj (in this particular application), is far more laborious to handle. This is specially important
in case no integer value is ‘propagated’ through those edges because in such case these polynomials are
carried along the subsequent computations.

4. Maple V.5 implementation

4.1. Data introduction and preprocessing

The code is included in a Maple file that has to be loaded (with aread command). It automatically
loads Maple V.5’s newGroebner package.

Then the user has to declare the list of sections. For instance:
LV :=[‘x.i’$i=1 . . . 15];

Procedureinicializa() initializes the other global variables (the sets of polynomials:GD, GS ,
PT ) and has to be executed now. Global variables are used for the sake of brevity.

Procedureturnout(a,b,c,n) is used to introduce where the turnouts are and the position of the
switches. Trains are sent from sectiona to b (through direct track) and toc (through diverted track).0
means direct track and1 means diverted track. It includes inGD the polynomials corresponding to the
new position of the switch and removes those corresponding to the opposite position.

Procedureadjacent(a,b) allows to define sections as adjacent (e.g. this is necessary when a line
is divided in different sections by a block-system). The polynomial corresponding to the new edge of the
graph is included in the setGD .

Proceduresemaphore(a,b,n) is used to introduce where the semaphores (or signals) are and their
colours. Passing from sectiona to b is allowed ifn= 1 (green) and forbidden ifn= 0 (red). It includes or
removes accordingly the corresponding polynomials inGS (let us remember thatGS stores the edges
forbidden by the semaphores).

Proceduretrain(tr,a,n) introduces the positions of the trains. Ifn= 1 (respectively 0), train
numbertr is declared to be (respectively not to be) in sectiona. It includes the polynomiala − tr in the
setPT if n= 1, and removes it ifn= 0.

Finally,simpliGen(W) is a tricky Maple procedure that executes the substitution of the preprocessing
of Section 3.2 to the setW.

4.2. Decision taking procedures

The following boolean procedure applies Corollary 2 in order to check whether the data introduced
with the procedures in Section 4.1 are safe or not.
isSafe :=proc()

global GD , PT , GS , LV ;
evalb (gbasis (simpliGen ((GD union PT ) minus GS ),

tdeg(op (LV )))
<> [1])

end;
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Fig. 4. Track layout of the example.

The following boolean procedure applies Corollary 1 in order to check if train numbertr , located in
sectiona , could reach sectionb (according to the data introduced with the procedures of Section 4.1).
Observe that it begins by checking if traintr is really in sectiona.
isAccessible :=proc(tr,a,b)

global GD , PT , GS , LV ;
local t ; #new variable for the radical membership problem
if not member(a-tr,PT )

then print(‘That train is not there’)
else evalb( gbasis( simpliGen( ( {1-t *(b-tr) } union GD

union {a-tr }) minus GS ),
tdeg(op(LV ), t ))

=[1])
fi;

end;

5. Example

The situation in the Fig. 4 will be studied. Observe that neither the semaphores nor the trains have been
represented. Timing in a standard 400 MHz Pentium II is specified between brackets.
inicializa();
LV :=[‘x.i’ $ i=1 . . . 19];
turnout(x1,x2,x11,0);
turnout(x7,x6,x11,0);
turnout(x7,x8,x17,1);
turnout(x17,x19,x14,0);
turnout(x2,x3,x13,0);
turnout(x13,x15,x16,1);
turnout(x9,x8,x18,0);
turnout(x18,x19,x14,1);
turnout(x4,x3,x16,0);
turnout(x9,x10,x12,0);
turnout(x5,x4,x12,0);
semaphore(x15,x13,1);
semaphore(x16,x13,1);
semaphore(x3,x2,0);



480 E. Roanes-Lozano et al. / Mathematics and Computers in Simulation 51 (2000) 473–481

semaphore(x16,x4,0);
semaphore(x3,x4,0);
semaphore(x8,x7,0);
semaphore(x14,x17,0);
semaphore(x8,x9,1);
semaphore(x14,x18,0);
semaphore(x19,x17,1);
semaphore(x19,x18,0);
train(10,x1,1);
train(7,x3,1);
train(5,x15,1);
train(12,x9,1);
train(9,x14,1);
isSafe();

false
(0.295 seconds)

isAccessible(10,x1,x2);
true
(0.135 seconds)

isAccessible(10,x1,x3);
true
(0.270 seconds)

semaphore(x2,x3,0);
semaphore(x15,x13,0);
isSafe();

true
(0.295 seconds)

isAccessible(10,x1,x3);
false
(0.620 seconds)

6. Conclusions

We think this paper gives a simple but original and ingenious application of Gröbner bases to a non-trivial
engineering decision problem. Moreover, the briefness of the code is remarkable (the whole set of pro-
cedures is less than 80 lines long).

The authors are now in contact with a railway signaling company to check the commercial interest
in a complete environment that would also include trailing detection and have other extensions such
as coordination of advanced signaling for low speed with turnouts, security measures, redundancy of
computer equipment, etc.
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