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Abstract: HFE (Hidden Fields Equations) is a public key cryptosystem using (multi-
variate) polynomial operations over �nite �elds. It has been proposed by Jacques Patarin
following the ideas of Matsumoto and Imai. In this paper we present a new and e�cient
attack of this cryptosystem based on fast algorithms for computing Gröbner basis. The at-
tack consists simply in computing a Gröbner basis of the public key. Of course the e�ciency
of this attack depends strongly on the choice of the algorithm for computing the Gröbner
basis: while the corresponding algebraic systems are completely far beyond the capacity of
any implementation of the Buchberger algorithm, it was was possible to break the �rst HFE
challenge (80 bits) in only two days of CPU time by using the new algorithm F5 implemented
in C. We establish experimentally that the algebraic systems coming from HFE behave not
as �random systems� so that they can be solved in polynomial time when the degree d of
the univariate polynomial is �xed. For practical value of d we can establish precisely the
complexity of this attack: O(n8) (resp. O(n10)) when 16<d<128 (resp. 128<d<513).

Key-words: Hidden Field Equations (HFE), Multivariate polynomial equations, Gröbner
bases, Algebraic Cryptanalysis, Computer Algebra.
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Cryptanalyse algèbrique de HFE par les bases de

Gröbner

Résumé : HFE (Hidden Fields Equations) est un cryptosystème à clé publique basé sur
les polynômes (multivariés) dans les corps �ni. HFE a été proposé par Jacques Patarin
en suivant les idées de Matsumoto et Imai. Dans cet article nous présentons une nouvelle
attaque très e�cace basée sur les nouveaux algorithmes de calcul des bases de Gröbner.
L'attaque consiste simplement à calculer une base de Gröbner de la clé publique. Bien sur
l'e�cacité de cette attaque dépend fortement du choix de l'algorithme utilisé pour calculer
la base de Gröbner: alors que les systèmes algébriques provenant de HFE sont complètement
inaccessibles aux meilleures implantations de l'algorithme de Buchberger, il est possible de
résoudre le premier challenge HFE (80 bits) en seulement deux jours de temps CPU en
utilisant le nouvel algorithme F5 (implanté en C). Nous établissons expérimentalement que
les systèmes algébriques issus de HFE ne se comporte pas comme des systèmes aléatoires et
qu'ils peuvent être résolu en temps polynômial lorsque le degré d du polynôme secret est
�xé Plus exactement, et pour les valeurs admissibles de d, on montre que la complexité de
l'attaque est : O(n8) (resp. O(n10)) quand 16<d<128 (resp. 128<d<513).

Mots-clés : Polynômes multivariés, Bases de Gröbner, Cryptanalyse algébrique, Calcul
Formel.



Algebraic cryptanalysis of HFE 3

1 Introduction

The security of many public key cryptosystems relies on the intractability of some well
known mathematical problem (integer factorization, . . . ). Since solving system of algebraic
equations is a di�cult problem (NP-complete), it is a good candidate for the design of new
public key encryption and signature schemes. HFE (Hidden Fields Equations) is a public
key cryptosystem using (multivariate) polynomial operations over �nite �elds. It has been
proposed by Jacques Patarin [Pat96b] following the ideas of Matsumoto and Imai [MI88]. It
has long been regarded as a very promising cryptosystem because it can be used to produce
signatures as short as 128, 100 and even 80 bits.

In [KS99] a polynomial time attack on HFE was presented; this method is based on
�relinearization� techniques. In [Cou01] the complexity of this attack was estimated to be

at last nlog
2 d where d is the degree of the (secret) univariate polynomial of HFE. The same

attack was improved by Courtois[Cou01] to obtain a theoretical complexity of n3 log2 d+O(1).
In this paper we present a new and e�cient attack of this cryptosystem based on fast

algorithms for computing Gröbner basis [Buc65, Buc70, Buc79]. The public key of HFE is a
list of algebraic equations, and since Gröbner bases is a well known and e�cient method for
solving polynomial system of equations, our attack is very simple: we compute a Gröbner
basis of the public key of HFE. Of course the e�ciency of this attack depends strongly on
the choice of the algorithm for computing the Gröbner basis. With the best implementation
of the Buchberger algorithm [Buc65] only toys examples can be solved (� 20 bits). On the
other hand, by using the new and e�cient F5 ([Fau02]) algorithm for computing Gröbner
we were able to break the �rst HFE challenge (80 bits) in only two days of CPU time on
a single processor (Alpha). The goal of this paper is to present a methodology to study
experimentally a cryptosystem like HFE with algebraic tools. We made a series of computer
simulations on real size HFE problems (up to 160 bits) so that we can establish precisely the
complexity of the Gröbner attack: for all practical values of d (less than 512) the complexity
is at most O(n10).

In [CSPK00], another algorithm (XL) was proposed for solving algebraic systems over �-
nite �elds. It is clearly an interesting point to compare the XL and the Gröbner approaches;
but the evaluation of the theoretical complexity of such algorithms is di�cult. Moreover,
as many other algorithms (LLL, the simplex algorithm for solving linear programs, . . . ),
Gröbner bases algorithms behave much better in practice than in the worst case, so con-
sidering just the worst-case bounds may lead to underestimate their practical utility. A
typical example is precisely the computation of Gröbner bases over F2 , whose asymptotic
worst-case time bound is exponential, while its running time is bounded by a low-degree
polynomial for HFE. No benchmarks or implementation of the algorithm XL are available
so the comparison with XL is out of the scope of this paper and is the subject of another
paper.

RR n° 4738



4 JC Faugère

2 Description of HFE

We refer to [Pat96b] for a complete description of HFE and we describe �the basic HFE�
(HFE without variations). We denote by F2 (resp. F2n ), the �nite �eld of cardinality (2)
(resp. 2n) and characteristic 2. Let

f(x) =
X

�i;jx
2�i;j+2'i;j +

X
k

�kx
2�k + �

be a polynomial in x over F2n of degree d, for integers �i;j ; 'i;j ; �k � 0. In the rest of
this paper d is always the degree of the univariate polynomial f .

Since F2n is isomorphic to F2 [z]=(g(z)) where g(z) 2 F2 [z] is irreducible of degree n,
elements of F2n may be represented as n-tuples over F2 , and f may be represented as a
polynomial in n variables x1; : : : ; xn over F2 :

f(x1; : : : ; xn) = (q1(x1; : : : ; xn); � � � ; qn(x1; : : : ; xn))

with qi(x1; : : : ; xn) 2 F2 [x1; : : : ; xn] for i = 1; 2; : : : ; n. The qi are polynomials of total
degree 2 due to the choice of f and the fact that x 7! x2 is a linear function of F2n �! F2n .

Let S and T be two n� n non singular matrices then we can compose S, f and T :

S(f(TX)) = (p1(x1; : : : ; xn); � � � ; pn(x1; : : : ; xn))

where Fn2 is regarded as an n-dimensional vector space over F2 and X is the vector
(x1; : : : ; xn). Obviously pi are again quadratic polynomials.

We can now describe the HFE (Hidden Field Equations) public key encryption scheme:
Secret key. The function f , two a�ne bijections S and T as above.
Public key. Some way of representing F2n over F2 . Polynomials pi for i = 1; 2; : : : ; n as

above, computed using the secret key f , S, T .
Encryption. To encrypt the n-tuple x = (x1; : : : ; xn) 2 (F2 )

n(representing the message),
compute the ciphertext

y = (p1(x1; : : : ; xn); � � � ; pn(x1; : : : ; xn))

Decryption. To decrypt the ciphertext y, �rst �nd all solutions z to the univariate
equation f(z) = T�1y, next compute S�1z.

When the polynomial f is a monomial the HFE reduces to cryptosystem of Matsumoto
and Imai [MI88] broken by Patarin in [Pat95a]. In the following we consider only random
quadratic polynomial (�i;j , �k, � random in F2n ).

Find the roots of a polynomial of degree dwith coe�cients in F2n can be done (see [vzGG99]
for instance) in O(M(d) log(d)) operations if F2n whereM(d) is the cost of polynomial multi-
plication. We report the time to �nd one solution of univariate polynomial with NTL[Sho03]
(PC PIII 1000 Mhz):

(n; d) (80,129) (80,257) (80,513) (128,129) (128,257) (128,513)
NTL (CPU time) 0.6 sec 2.5 sec 6.4 sec 1.25 sec 3.1 sec 9.05 sec

INRIA



Algebraic cryptanalysis of HFE 5

From these experimental results we conclude that, in practice, we cannot take arbitrarily
big value for the degree of the univariate polynomial (say d � 512). The recommended
values [Pat96b, Pat96c] for n are n � 32 and n = 80, d = 96 for the �rst HFE Challenge.

3 Gröbner basis

3.1 Mathematical de�nition of Gröbner bases

We refer to [Bec93, CLO92] for basic de�nitions. Let k be a �eld (Fq a �nite �eld for instance)
and R = k[x1; : : : ; xn] the ring of multivariate polynomials. To a system of equations

f1(x1; : : : ; xn) = � � � = fm(x1; : : : ; xn) = 0

we associate the ideal I generated by f1; : : : ; fm. A monomial in x1; : : : ; xn is a term in
x1; : : : ; xn and a coe�cient. We choose < an admissible ordering on the monomials in
x1; : : : ; xn. For instance the lexicographical ordering is such that x�11 � � �x�nn < x�11 � � �x�nn
i� �i = �i for i = 1; : : : ; k and �k < �k for some k. Next for each polynomial f in R we can
de�ne its leading term LT(f) (resp. its leading monomial LM(f)) to be the biggest term
(resp. monomial) with respect to <.

De�nition 1 G a �nite set of elements of I is a Gröbner basis of (f1; : : : ; fm) wrt < if for
all f 2 I there exists g 2 G such that LT (g) divides LT (f).

Let K be a �eld containing k, we can de�ne the set of solutions in K which is the
algebraic variety:

VK = f(z1; : : : ; zn) 2 K jfi(z1; : : : ; zn) = 0 i = 1; : : : ;mg

which is in fact the set of roots of the system of equations. Gröbner bases can be used
in various situation (for instance when the number of solution is in�nite of for computing
real solutions). In the case of HFE we want to compute solutions of algebraic systems in
F2 . The following proposition tell us how to use Gröbner bases in order to solve a system
over F2 :

Proposition 1 The Gröbner basis of [f1; : : : ; fm; x
2
1 � x1; : : : ; x

2
n � xn], in F2 [x1; : : : ; xn],

describe all the solutions of VF2 . Particular useful cases are:

i) VF2 = ; (no solution) i� G = [1].

2) VF2 has exactly one solution i� G = [x1 � a1; : : : ; xn � an] where ai 2 F2 . Then
(a1; : : : ; an) is the solution in F2 of the algebaric system.

This proposition tell us that we have to add the ��eld equations� x2i = xi to the list of
equations that we want to solve. Consequently we have to compute a Gröbner basis of m+n
polynomials and n variables. In fact, the more equations you have the more able you are to
compute a Gröbner basis.

RR n° 4738



6 JC Faugère

3.2 Useful properties of Gröbner bases

Another order on monomials is the Degree Reverse lexicographical order or (DRL order).
This order is less intuitive than the lexicographical order but it has been shown that the
DRL ordering is the most e�cient, in general, for computating Gröbner bases.

x�11 � � �x�nn >DRL x�11 � � �x�nn i� deg(x�) =
Pn

i=1 �i > deg(x�) or deg(x�) > deg(x�)
and, in �� � 2 Z

n, the right-most nonzero entry is negative.
We have seen in proposition 1 that Gröbner bases are useful to solve a system but they

can also be used to discover low degree relations:

Proposition 2 If G is a Gröbner basis of an ideal I for <DRL then G contains all the
(independent) equations in I of lowest total degree.

By computing Gröbner bases it is even possible to �nd all the algebraic relations among
f1; : : : fm (see [CLO92] page 338 for a precise de�nition of the ideal of relations).

Proposition 3 ([CLO92] page 340) Fix a monomial order in k[x1; : : : ; xn; y1; : : : ; ym] where
any monomial involving one of the x1; : : : ; xn is greater than all monomials in k[y1; : : : ; ym]
(lexicographical ordering for instance) and let G be the Gröbner basis for this ordering. Then
G \ k[y1; : : : ; ym] describe all the relations among f1; : : : ; fm.

By combining proposition 2 and 3 we can thus �nd the lowest relations among the fi.
This will enable us to describe and generalize in another way the original attack of Patarin
(see section 5.2) for the Matsumoto Imai cryptosystem.

3.3 Algorithms for computing Gröbner bases

Notice that de�nition 1 does not depend on a particular algorithm. Due to space limitations
it is impossible to describe in details all the algorithms for computing Gröbner bases so we
report only recent improvements. Historically the �rst algorithm for computing Gröbner
basis was presented by Buchberger [Buc65, Buc70, Buc79]. The Buchberger algorithm is
a very practical algorithm and it is implemented in all Computer Algebra Systems (a non
exhaustive list of e�cient implementation is: Magma, Cocoa, Singular, Macaulay, Gb, . . . );
section 4.1 contains a comparison between them for the HFE problem. More recently more
e�cient algorithms for computing Gröbner have been proposed. The �rst one F4 [Fau99]
reduces the computation to a linear algebra problem (the link between solving algebraic and
Gaussian elimination is very old ([Mac16, Laz83] or even Sylvester)). More precisely the
algorithm F4 incrementally construct matrices in degree 2, 3, . . .D:

AD =

0
BB@

momoms degree � D in x1; : : : ; xn

m1 � fi1 : : :
m2 � fi2 : : :
m3 � fi3 : : :
� � � � � �

1
CCA

INRIA



Algebraic cryptanalysis of HFE 7

where m1;m2; : : : are monomials such that the total degree of mjfij is less than D.
The next step in the algorithm is to compute a row echelon of AD using linear algebra
techniques. It must be emphasized that the rows of AD is a small subset of all the possible
rows fmfi s:t: 1 � i � m m any monomial deg(m) � D � deg(fi)g.

A even more e�cient algorithm F5 [Fau02] is now available: the number of rows in the
generated matrix AD is minimal and the matrix is full rank (under some conditions see
[Fau02]). For the special case of F2 we use, in fact, a special version of this algorithm
(called F5=2) that takes into account the action of the Frobenius h2 = h. Of course the
implementation of the linear algebra part uses a dedicated version for F2 .

From a complexity point of view the two important parameters are: D the maximal
degree occurring in the computation and the size ND of the matrix AD . Then the whole
complexity is simply N!

D where 2 � ! � 3 is the cost of linear algebra.

3.4 Complexity of Gröbner bases

Complexity of Gröbner bases (and more generally polynomial system solving) is the subject
of a huge number of papers. Adding the ��eld equations� x2i � xi imply a simple geometry
of the set of solutions: all the ideals are radicals (no multiple roots), zero dimensional (�nite
number of solutions). In fact it is easy to prove:

Proposition 4 The maximal degree D of the polynomials occurring in the computation of
a Gröbner basis including �eld equations x2i = xi is less than n. The complexity of the whole
computation is bounded by a polynomial in 2n.

Remark 1 Note that this result is only a rough upper bound. This must be compared with
the complexity of the exhaustive search O(n2n). In practice, however, e�cient algorithms
for computing Gröbner bases behave much better than in the worst case.

A crucial point in the cryptanalysis of HFE is the ability to distinguish a �random� (or
generic) algebraic system from an algebraic system coming from HFE. We will establish in
section 4.2 that this can be done by computing Gröbner bases and comparing the maximal
degree occurring in these computations. As a consequence we have to describe theoretically
the behavior of such a computation. This study is beyond the scope of this paper and is the
subject of another paper [BFS03] from which we extract some results. First the asymptotic
behavior of the maximal degree occurring in the computation is:

d = max total degree �
n

11:114 : : :

From this result we know that computing Gröbner bases of random systems is simply
exponential; consequently, in practice, it is impossible to solve a system of n equations of
degree 2 in n variables when n is big (say n � 80). From a practical point of view it is even
more important to have exact values (see [BFS03]) for D and ND when n is small:

RR n° 4738



8 JC Faugère

n 14 15 16 17 � � � 23 24 25 � � � 80
degree 4 4 5 5 � � � 5 6 6 � � � 12

nb of rows 1695 1379 8840 11424 � � � 40480 223124 278875 � � � 73526787216476� 246

Table 1. Maximal degree occurring in Gröbner for random systems.

For instance when n = 80, we read the maximal degree in the table: D = 12 and the size
of the matrix is 246 so the total cost is bigger than 246! � 292. In [BFS03] we give explicit
expressions for ND in function of D and n; the two following formulas are useful for HFE:

Proposition 5 Let S be a system of n random equations in n variables. During the com-
putation of S with F5 the size of matrix at degree D is:

Number of rows in degree 4 in degree 5

in the matrix 1=2n
�
1 + n2

�
1=6n (n� 1) (n� 3) (n+ 1)

4 Experimental results

The results of this section are all coming from experiments: we are running Gröbner ba-
sis computations for real size HFE problems; then we analyse the results in the light of
theoretical results obtained in section 3.4.

Let HFE(d; n) be the algebraic system corresponding to the basic HFE problem with
f(x) a random (quadratic) polynomial of degree d and random coe�cients in the �eld F2n .

To generate the system of equations HFE(d; n) we have used two programs: one written
by JF Michon using NTL[Sho03] the other one being written in C by D. Augot. For instance
when d = 16 and n = 12 it takes 1 min 25 sec (PIII 1000 Mhz) to generate the algebraic
system and the size of the output �le is 13 Mbytes.

From the Gröbner point of view we note that the two a�ne transform (see section 2) S
and T are useless: the e�ect T (resp. S) is equivalent to a random change of coordinates
(resp. to replace the generators of the ideal I by linear combinations). Hence the ideal (the
hilbert function) remains unchanged. Of course, without S, T , HFE could be attacked by
other methods.

4.1 First HFE Challenge is broken

The �rst HFE Challenge was proposed in [Pat96c] with a (symbolic) prize of 500$. This
correspond to a HFE(d = 96; n = 80) problem and can be downloaded from [Pat96a]. For
this problem, the exhaustive search attack require � 280 operations, hence is not feasible.

We have computed a Gröbner basis of this system with the algorithm F5 (in fact a
special version for F2 ) implemented in the FGb (Fast Gb) Gröbner program (written in C).
As explained in section 3.3 the most time consuming part is linear algebra: for this example
we have solve a 307126� 1667009 matrix over F2 . The total running time was 187892 sec
(� 2 days and 4 hours) on an HP workstation with an alpha EV68 processor at 1000 Mhz

INRIA



Algebraic cryptanalysis of HFE 9

and 4Go bytes of RAM. Some care has been taken for the memory management since the
size of the process was 7.65 Giga bytes.

For this algebraic systems [Pat96a] we found that there were four solutions:

X = 644318005239051140554718 X = 934344890045941098615214
X = 1022677713629028761203046 X = 1037046082651801149594670

where X =
P80

i=1 xi2
i�1.

It must be emphasized that this computation is far beyond the capacity of all the other
implementations and algorithms for computing Gröbner basis as is made clear by the fol-
lowing table:

Algo 10 12 14 16 18 19 21 33
Maple (Buchberger) 71.7 s 587.9 s
Magma (Buchberger) 1.5 s 17.0 s 135.4 s 1900 s
Gb (Buchberger ) 0.8 s 15.1 s 105 s 443.2 s

Singular (Buchberger ) 0.7 s 8.6 s 55.5 s 334.3 s 663.4 s
FGb F4 2.4 s 12.3 s 70.5 s 133.2 s 436.9 s
FGb F5=2 0.9 s 1.5 s 4.25 s 442.7 s

Comparison of various algorithms and implementations (PC PIII 700 Mhz)

Grobner Bases / HFE (d=96)
PC Pentium III 700 Mhz
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10 JC Faugère

Because 80 equations of degree 2 was a previously untractable problem, this Gröbner
computation represents a breakthrough in research on polynomial system solving.

4.2 HFE algebraic systems are not random

We have collected a lot of experimental data by running thousand of HFE systems for various
d � 1024 and n � 160. In the following graph, the maximal degree occurring in the Gröbner
basis computation of an algebraic system coming from HFE (resp. from a random system
as described in table 1 section 3.4) is plotted:

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

n

Maximal Degree in the 
Gröbner basis computation 

HFE 128<d<513
HFE 16<d<129

HFE 3<d<17

random system

Small dots correspond to a computer simulation.

As is made clear by this graph, HFE algebraic system are not equivalent to random
system from the Gröbner basis point of view.

Remark 2 A common pitfall is to compare an HFE algebraic system and random system
for too small values of n. For instance, if we want to experimentally prove that the maximal
degree occurring in the computation of HFE(129; n) is always less than 5. We read in table
1 (section 3.4) that we must take n � 24: in fact when n < 24 for all random systems
in n variables the computation stops at degree 5. Hence, when n < 24 it is impossible to
distinguish HFE(129; n) from a random system.

Remark 3 For the �rst HFE challenge, the di�erence with a random system can be detected
after 6 hours of computation.

INRIA



Algebraic cryptanalysis of HFE 11

From the graph and [KS99, Cou01] it is natural to conjecture:

Proposition 6 The basic HFE problem corresponding a secret polynomial of degree d with
coe�cients in the �eld F2n can be solved in O(n!D) where D < log2(d) is the maximal degree
occurring in the computation. For practical value of d < 513 we have D � 5. More precisely
D � 4 (resp. D � 3) when D � 128 (resp. D � 16).

4.3 Experimental complexity

We know from proposition 6 that the complexity for computing a Gröbner basis of HFE(d; n)
is polynomial in n (say O(nkd)) when d is �xed but we want to �nd precisely kd for practical
value of d < 513. Consequently we analyse some simulation results. From a practical point
of view the complexity could be the running-time but it is a noisy measurement: it depends
strongly on the architecture (32 or 64 bits), the size of the various level of cache, the load of
the computer, . . . . Hence we give also the total number of arithmetic operations: since the
most consuming part is linear algebra over F2 we give the number of 64 bits xor operations
(XOR). This number is the same for all computers and depends only on the linear algebra
that we have implemented (in our case standard Gaussian elimination).

First we want to establish that there are only three �class of complexity� when d < 513:

C1 when 4 < d < 17 all the HFE(d; n) are in roughly equivalent.

C2 when 16 < d < 129 all the HFE(d; n) are in roughly equivalent.

C3 when 128 < d < 513 all the HFE(d; n) are in roughly equivalent.

For all admissible values of d inside a class Cj we compare HFE(d; n) with a �reference
degree�: 12 (class C1), 17 (C2), 129 (C3). For instance for the second class C2 we compare
HFE(d; n) with HFE(17; n):

n 21 22 23 24 28 30 32 33 40 41 49 50 60 64 70 80
XOR(96)/XOR(17) 5.3 6.4 7.3 8.3 9.4 9.3 9.1 9.0 8.3 8.2 7.6 7.5 6.9 6.7 6.4 6.1
CPU(96)/CPU(17) 3.8 4.6 5.2 5.9 6.5 6.4 6.2 6.1 5.7 5.6 5.1 5.0 4.7 4.9 5.1 4.4

Comparison: HFE(96,n)/HFE(17,n)

From this table we conclude that HFE(96; n) is only 6 times more di�cult than HFE(17; n)
so that the exponents k96 and k17 are the same. On the other the hand the following results
clearly indicates that k12 < k17 < k129:

n 40 41 45 49 50 55 60 64 70 80
XOR(17)/XOR(12) 195.6 200.9 246.4 295.2 307.3 373.6 444.9 508.3 603.2 789.7
CPU(17)/CPU(12) 131.4 133.7 182.1 251.6 262.0 374.3 487.6 701.3 932.4 1505.4

Comparison: HFE(17,n)/HFE(12,n)

RR n° 4738



12 JC Faugère

n 18 19 20 21 22 23 24 28 29 30 31 32
XOR(129)/XOR(17) 21.5 29.3 35.6 43.8 50.4 56.9 61.6 81.9 88.0 93.4 96.9 99.4
CPU(129)/CPU(17) 35.8 49.5 61.2 80.0 100.2 125.0 145.5 246.5 292.1 329.7 360.7 397.3

Comparison: HFE(129,n)/HFE(17,n)

Comparison XOR HFE(d)/HFE(17)
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Small dots correspond to a computer simulation.

To sum up:

HFE(129,n) � HFE(96,n) � HFE(17,n) � HFE(12,n)

Next we want to �nd k12, k17, k129. We have used several methods to �nd the exponent.
We begin by a theoretical analysis made on the following hypothesis: suppose that the
HFE(d; n) behave like a random system except that the maximal degree occurring in the
computation D0 is much less than D (given by the bound of section 3.4). If this is true we
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have to solve a linear system whose size is r� c where r is given by proposition 5 and c the

number of columns is simply the number of monomials in degree D0: c =

D0X
i=1

�
n
i

�
.

Since the rows of the matrix have the shape mfi and fi is a polynomial of degree 2, the

number of non zero elements in the r � c matrix is at most NZ = r n (n+1)
2 . By applying

sparse linear algebra technique (Wiedemann's algorithm, . . . ), we can �nd the solution in
O(rNZ) = O(r2n2) operations. From proposition 6 we know that D0 � 4 when d � 128 and

in that case r � n3

2 (from proposition 5). Consequently the total cost is O(n8). In the same
way we found O(n10) (resp. O(n6)) when 129 � d � 512 (resp d < 17).

It must be emphasized that the previous computation is not a complexity proof since we
cannot check the hypothesis. We must con�rmed this results experimentally by doing real
simulations.

Suppose that the complexity is f(n) = Cnk then we draw the curve log(f(n)) = log(C)+
k log(n) to �nd the slope of line. We can also try to �nd a good polynomial approximation
(using least squares method) of the curve f(n). For instance, when HFE(d = 12; n) we have
collected a set of data 10 < n < 160 and found:

f(n+1)
f(n) � 1 + 6:129055587

n

log(f(n)) � 6:086191079 log(n)� 4:324402957
f(n) � �194:0797n3+ 11:1747n4 � :3354n5 + :02212n6

f(n) � 224:4411n3� 15:4212n4+ :2696n5 + :01623n6 + 2:0810�5 n7

Hence it is clear that k12 = 6. We report in the following tables the result of our
simulations. The running-times are given for HP workstation with an alpha EV68 processor
at 1000 Mhz. (C1 and C2 are constants):

n 93 94 95 96 97 98 99 100 120 140 160
XOR 233:6 233:7 233:7 233:8 233:9 234:0 234:1 234:2 235:8 237:1 238:3

C1n
6 233:6 233:7 233:7 233:8 233:9 234:0 234:1 234:2 235:8 237:1 238:3

XOR/C1n
6 .998 1.000 1.001 1.000 1.000 1.002 1.001 .999 1.001 1.000 1.000

CPU (sec) 26:2 26:2 26:3 26:4 26:5 26:6 26:6 26:7 28:4 29:8 210:9

C2n
6 26:1 26:2 26:3 26:4 26:5 26:6 26:7 26:8 28:4 29:8 210:9

CPU/C2n
6 1.047 .996 .987 .984 .978 .992 .963 .944 1.033 .995 1.000

Comparison between running-times for HFE(12; n) and theoretical O(n6)
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HFE(12,n)

1

1000

1E+06

1E+09

1E+12

0 20 40 60 80 100 120 140

n

n^6
xor

theoretical n^6

Experimental
curve

Comparison between running-times for HFE(12; n) and theoretical O(n6)

n 41 45 49 50 55 60 64 70 80
XOR 234:0 235:1 236:1 236:4 237:5 238:5 239:3 240:3 241:9

C1n
8 234:0 235:1 236:1 236:4 237:5 238:5 239:3 240:3 241:9

XOR/C1n
8 ) 1.014 1.003 .999 .999 .999 .997 1.002 1.000 1.000

CPU (sec) 26:8 27:8 28:9 29:2 210:4 211:4 212:5 213:6 215:4

C2n
8 26:5 27:7 28:9 29:1 210:4 211:5 212:4 213:6 215:4

CPU/C2n
8 1.159 1.092 1.054 1.026 .991 .927 1.045 .995 1.000

Comparison between running-times for HFE(17; n) and theoretical O(n8)

INRIA



Algebraic cryptanalysis of HFE 15

HFE(17,n)

1,E+00

1,E+03

1,E+06

1,E+09

1,E+12

1,E+15

0 10 20 30 40 50 60 70 80 90 100

n

xor

CPU (sec)

n^8

Memory (ko)

CPU Alpha DS25 1000 Mhz

Memory

XOR

Comparison between running-times for HFE(17; n) and theoretical O(n8)

All results presented in the above tables (and similar simulations for other values of d)
con�rm the validity and the accuracy of the previous estimation.

Theorem 1 The complexity of the Gröbner basis compute HFE(d; n) is:

degree of f(x) d � 16 17 � d � 128 129 � d � 512
Gröbner complexity O(n6) O(n8) O(n10)

5 Patarin original attack revisited

It is interesting to compare the Gröbner bases method with the original attack of Patarin [Pat95a].
We consider the �toy example� ([MI88] page 420): the secret key is f(x) = x3, n = 8 that is
to say the �eld is F28 and the public key is:

RR n° 4738



16 JC Faugère

[x0 + x1 + x3 + x7 + x0 x1 + x0 x2 + x0 x4 + x0 x5 + x0 x6 + x0 x7 + x1 x4 + x1 x6 + x1 x7 +
x2 x6 + x3 x4 + x3 x5 + x3 x7 + x4 x5 + x5 x6 + x5 x7 + y0 ;
x1 + x2 + x4 + x6 + x0 x3 + x0 x6 + x0 x7 + x1 x3 + x1 x4 + x1 x6 + x2 x5 + x2 x7 + x3 x4 +
x3 x7 + x4 x6 + x4 x7 + x6 x7 + y1 ;
1 + x0 + x1 + x2 + x3 + x5 + x6 + x0 x1 + x0 x2 + x0 x5 + x1 x2 + x1 x4 + x1 x6 + x1 x7 +
x2 x6 + x2 x7 + x3 x5 + x3 x6 + x3 x7 + x4 x5 + x5 x6 + x5 x7 + y2 ;
x0 + x2 + x3 + x7 + x0 x3 + x0 x5 + x1 x4 + x1 x5 + x1 x6 + x1 x7 + x2 x3 + x2 x4 + x2 x7 +
x3 x4 + x3 x7 + y3 ;
1+ x0 + x1 + x2 + x6 + x7 + x0 x2 + x0 x4 + x0 x5 + x1 x3 + x1 x7 + x2 x6 + x3 x4 + x3 x5 +
x3 x6 + x4 x5 + x4 x6 + x4 x7 + x5 x6 + x5 x7 + x6 x7 + y4 ;
x4 + x6 + x0 x1 + x0 x2 + x0 x3 + x1 x2 + x1 x3 + x1 x5 + x2 x6 + x3 x4 + x3 x7 + y5 ;
1+ x0 + x2 + x3 + x7 + x0 x1 + x0 x4 + x1 x3 + x1 x4 + x1 x6 + x2 x3 + x2 x4 + x2 x6 + x3 x4 +
x3 x5 + x3 x7 + x4 x5 + x4 x6 + x4 x7 + x5 x6 + x5 x7 + x6 x7 + y6 ;
x0 + x1 + x4 + x5 + x7 + x0 x1 + x1 x3 + x1 x5 + x2 x6 + x2 x7 + x3 x5 + x3 x6 + x3 x7 + x4 x5 +
x5 x6 + x5 x7 + y7 ]

5.1 Patarin's attack

The idea of Patarin (see [Pat95b] page 12) is to �nd a low degree relation between x and
y = f(x). In our case we have, for instance, y5 = (x3)5 = x15 = x. This imply that we can
�nd equations of degree 2 (since 5 = 1 + 4) in y and 1 in x:

a0 +
7X
i=0

bixi +
X

0�i<j�7

ci;jyiyj +
7X
i=0

diyi = 0

This give three independent equations:
x0 + x1 + x3+ x4 + x7 = y0 y2 + y0 y3 + y2 y4 + y3 y4 + y0 y7

+y4 y7 + y2 + y4 + y5 + y6 + y7

x2 + x3 = y2 y3 + y2 y4 + y3 y4 + y2 y5 + y3 y5 + y2 y6 + y3 y6

+y3 y7 + y4 y7 + y5 y7 + y6 y7 + y0 + y2 + y3 + y5 + y6 + y7

x1 + x6 + x7 = y0 y3 + y0 y4 + y3 y4 + y0 y5 + y4 y5 + y0 y6 + y4 y6

+y2 + y3 + y4 + y7 + 1

As a result, from these equations, we can eliminate three variables x0; x1 and x2 in the
8 public equations. We obtain 5 equations of degree 2. We can now �nd the solution by
doing an exhaustive search for 3 variables (x3, x4 and x5).

5.2 Generic Gröbner bases in precomputation phase

Proposition 2 and 3 tell us that a computation of the Gröbner basis (for an appropriate
ordering) of the public equations give us the relations among the yi of lowest degree. The
Gröbner bases G contains 178 polynomials; among them 24 are of total degree two and linear
in xi (we will denote G

0 this subset of G). G0 contains the three previous linear equations
found in [Pat95b] but also many others; for instance one such equation is:

INRIA
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x3 + x2 + (x1 + x6 + x7 ) (y4 + y3 + y6 + y5 + 1) + y0 + y4 + 1 = 0

Now to �nd the solution it is enough to substitute the values of yi (can be done in
O(n3) operations) and then to solve a linear system (again O(n3) operations). So the most
costly operation is the computation of G0: since G0 contains equations of degree 2 this can
be done (by linear algebra techniques) in O(n7) operations. Note that this step has to be
done only once (one precomputation phase for each new public key); hence the complexity
is O(n7)+KO(n3) where K is the number of messages to decipher. This must be compared
with the complexity O(n6) found in section 4.3 (theorem 1). We conclude that Gröbner
bases is useful to �nd automatically all the low degree relations; the drawback is that we
cannot �nd a bound similar to [Pat95b] for the number of independent equations.

6 Conclusion

We have presented a very e�cient attack on the basic HFE cryptosystem based on Gröbner
bases computation. It is not only a theoretical attack with a good complexity but also a
very practical method since our implementation was able to break the �rst HFE challenge
(80 bits). However, several modi�ed versions of HFE have been proposed [Pat96b, PGC98].
These perturbations ( for instance one can simply remove some equations of the public key)
are applied to the basic HFE and are expected to make attacks harder. Hence, the HFEv-
is the modi�ed version of HFE used in Quartz that has been submitted to European project
NESSIE. It is an open issue to evaluate the practical robustness of these modi�ed versions
of HFE by using the techniques presented in this paper.

Acknowledgements

We would like to thank the JF Michon and D Augot for their programs. We gratefully
acknowledge several useful discussions with J. Patarin who also introduced to him his work
on HFE. I am indebted to the LIP6 for its partial support of this work (Alpha DS25).

References

[Bec93] Becker T. and Weispfenning V. Groebner Bases, a Computationnal Approach to
Commutative Algebra. Graduate Texts in Mathematics. Springer-Verlag, 1993.

[BFS03] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity of gröbner
bases computation of generic systems. in preparation, 2003.

[Buc65] Buchberger B. Ein Algorithmus zum Au�nden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck,
1965.

RR n° 4738



18 JC Faugère

[Buc70] Buchberger B. An Algorithmical Criterion for the Solvability of Algebraic Sys-
tems. Aequationes Mathematicae, 4(3):374�383, 1970. (German).

[Buc79] Buchberger B. A Criterion for Detecting Unnecessary Reductions in the Con-
struction of Gröbner Basis. In Proc. EUROSAM 79, volume 72 of Lect. Notes in
Comp. Sci., pages 3�21. Springer Verlag, 1979.

[CLO92] D. Cox, J. Little, and D. O'Shea. Ideals, Varieties and Algorithms. Springer
Verlag, New York, 1992.

[Cou01] Nicolas T. Courtois. The security of hidden �eld equations (hfe). In Cryptog-
raphers' Track RSA Conference, volume 2020 of Lecutures Notes in Computer
Science, pages 266�281, 2001.

[CSPK00] Nicolas Courtois, Adi Shamir, Jacques Patarin, and A. Klimov. E�cient al-
gorithms for solving overde�ned systems of multivariate polynomial equations.
In Eurocrypt'2000, volume 1807 of Lecutures Notes in Computer Science, pages
392�407. Springer Verlag, 2000.

[Fau99] Faugère J.C. A new e�cient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra, 139(1�3):61�88, June 1999.

[Fau02] Faugère J.C. A new e�cient algorithm for computing Gröbner bases without
reduction to zero F5. In T. Mora, editor, Proceedings of ISSAC, pages 75�83.
ACM Press, July 2002.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. 1666:19�30, 1999.

[Laz83] Lazard D. Gaussian Elimination and Resolution of Systems of Algebraic Equa-
tions. In Proc. EUROCAL 83, volume 162 of Lect. Notes in Comp. Sci, pages
146�157, 1983.

[Mac16] F.S. Macaulay. The algebraic theory of modular systems., volume xxxi of Cam-
bridge Mathematical Library. Cambridge University Press, 1916.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
e�cient signature-veri�cation and message-encryption. In Crypto 88, volume
330 of Lecutures Notes in Computer Science, page 419. Springer Verlag, 1988.

[Pat95a] Jacques Patarin. Cryptanalysis of the matsumoto and imai public key scheme of
eurocrypt'88. In Proc. of the 15th Annual International Cryptology Conference on
Advances in Cryptology - CRYPTO'95, pages 248�261, Santa Barbara, California,
1995.

[Pat95b] Jacques Patarin. Cryptanalysis of the matsumoto and imai public key scheme of
eurocrypt'88. Extended version, 1995.

INRIA



Algebraic cryptanalysis of HFE 19

[Pat96a] Jacques Patarin. HFE �rst challenge, 1996.
http://www.minrank.org/challenge1.txt.

[Pat96b] Jacques Patarin. Hidden �elds equations (HFE) and isomorphisms of polynomials
(IP): Two new families of asymmetric algorithms. In EUROCRYPT'96, volume
1070 of Lecutures Notes in Computer Science, pages 33�??, 1996.

[Pat96c] Jacques Patarin. Hidden �elds equations (HFE) and isomorphisms of polynomials
(IP): Two new families of asymmetric algorithms. Extended version, 1996.

[PGC98] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Improved algorithms for
isomorphisms of polynomials. 1403:184�??, 1998.

[Sho03] V. Shoup. NTL 5.3.1, a Library for doing Number Theory, 2003.
http://www.shoup.net/ntl.

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge Press, 1999.

RR n° 4738



Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


