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Abstract. We prove a generalization of a classic Dickson lemma for Young diagrams de�ned

in this paper and related to the polynomials from an ideal in K[x1; x2; x3; :::; xn]. We de�ne

an universal base of an ideal using all minimal elements in the partially ordered set of Young

diagrams. This universal base is di�erent from the universal Gr�obner base in the sense of

Robbiano and Mora [1]. Nevertheless we prove that their universal Gr�obner base UGB(I) is a

subset of the universal base. We give also a new proof of �niteness of elements of all Gr�obner

bases using a generalization of Dickson's lemma for the Young diagrams of polynomials

introduced in this paper.

1 Dickson Sets

De�nition 1. Let (T;�) be the set with partial ordering �. We say that T satis�es the decreas-

ing chains breaking condition, if for any sequence (xi)
1

i=1 where xi 2 T and x1 � x2 � x3 �

x4::: (9n)(8m � n)(xn = xm).

In other words any decreasing chains of elements of T is stabilized.

De�nition 2. The partially ordered set (T;�) is a Dickson set if any in�nite subset S � T

contains a pair of elements x; y with x � y and x 6= y.

Let max(T ) and min(T ) be the sets of all maximal and minimal elements of T, respectively

max(T )
def
= fx 2 T j (y � x)) (y = x)g

min(T )
def
= fx 2 T j (y � x)) (y = x)g .

Corollary 1. Let T be a Dickson set. Then 8S � T the sets max(S) and min(S) are �nite.

Proof. These sets contain pairwise incomparable elements only.

De�nition 3. Given a partially ordered set T a subset S � T is increasing ideal in T (decreasing

ideal in T , respectively) if

(s 2 S) ^ (x � s)) (x 2 S) for increasing ideal and

(s 2 S) ^ (x � s)) (x 2 S) for decreasing ideal, respectively.

The sets of all increasing ideals and all decreasing ideals in T are partially ordered sets too if

we use the inclusion as an ordering relation.

(A � B), (A � B).

De�nition 4. A partially ordered set (T;�) is Noetherian if the set of increasing ideals of T

satis�es the increasing chains breaking condition.

It is easy to see that if T itself satis�es the decreasing chains breaking condition then T is

Noetherian.

The classic Dickson lemma [2] used for the proof of �niteness of elements in any Gr�obner base

of an ideal shows that the set of all monomials M of n variables x1; x2; :::; xn or what is equivalent

the set Zn
+
is the Dickson set. This set is also Noetherian.

The main result of this chapter is the following:

Theorem 1. Let (T;�) be a Noetherian Dickson partially ordered set. Then the set YT of all

�nitely generated increasing ideals of T is also a Dickson set.



398 Nikolay N.Vasiliev

Proof. Let S1; S2; S3; :::: be an in�nite sequence of �nitely generated ideals of T . We shall prove

that (9i; j) such that Si � Sj . Each ideal Si is generated by a �nite set of elements. Let fgi;kg
di
k=1

be the generators of Si. Suppose Si 6� Sj 8(i; j) we have 8i > 1 S1 6� Si.

This implies that 8i > 1(9ki)(1 < ki � d1) such that g1;ki 62 Si. We now have the function � :

i! ki. This function is de�ned for all naturals not equal to 1 and acts on the �nite set f1; 2; :::; d1g.

Therefore, (9k)(1 � k � d1) that �
�1(k) is in�nite. We have for any i 2 ��1(k) f1 = g1;k 62 Si.

Thus, all generators of Si for an in�nite set of i 2 ��1(k) are outside the ideal ff1g generated by f1.

Now we can renumber our in�nite set of ideals Si i 2 ��1(k) as ~S1; ~S2; ~S3; :::: to apply our previous

construction to the new set of ideals ~S1; ~S2; ~S3; ::::. Making this we shall have a new element f2 and

a new in�nite sequence of ideals, which all are outside ff1; f2g. Repeating the process further we

could build the in�nite sequence of strongly increasing ideals ff1g; ff1; f2g; ff1; f2; f3g; ::::, which

contradicts the Noetherity of the set T.

2 Young Diagrams of Polynomials

Consider from this viewpoint the set T of monomials of n variables x1; x2; :::; xn with a natural

partial ordering m1 � m2

def
= m1 j m2. We identify T and Zn

+
.

De�nition 5. We de�ne the n-dimensional Young diagrams as �nitely generated decreasing ideal

in T in the sense of theory of partially ordered sets.

As a motivation of this de�nition we could say that the two-dimensional diagrams in this sense

strongly correspond to the conventional Young diagrams used in the groups representations theory

for the classi�cation of representations of symmetric groups Sn [3]. Monomials as elements of the

diagrams in our sense correspond to the cells of classic Young diagrams. It is shown in the diagram

of Fig. 1.

De�nition 6. The degree of Young diagram Y is the number of elements in Y.

As a consequence of Theorem 1 we have

Theorem 2. The set of all n-dimensional Young diagrams is the Dickson set.

Proof. It follows from Theorem 1 because the set Zn
+
is the Noetherian set and the Dickson set.

Corollary 2.1 For any in�nite set of n-dimensional Young diagrams Y1; Y2; Y3; :::: there exist two

of them Yi and Yj such that Yi � Yj .

Fig. 1. Two-dimensional Young diagram of the polynomial x7+x8+x4y+x5y+x4y2+x5y2+x3y3+y5+y6.

Now we start to study ideals in the ring of polynomials K[x1; x2; :::; xn]. From this moment the

word "ideal" will be used in the sense of commutative algebra as an ideal of a commutative ring.
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In the theory of Gr�obner bases the following standard construction is used. If some admissible

ordering � Zn
+

is �xed then each f 2 K[x1; x2; x3; :::xn] de�nes its leading term lead(f). All

monomials flterm(f)gf2I generate a monomial ideal Mon(I). Then the generators of the ideal

Mon(I) corresponds exactly to all leading terms of Gr�obner base of ideal I with respect to the �xed

admissible ordering. Instead of this we will not �x any admissible ordering but we de�ne Young

diagrams corresponded to polynomials in K[x1; x2; x3; :::xn] using the natural partial ordering of

monomials only.

De�nition 7. For f 2 K[x1; x2; x3; :::; xn] supp(f) is the set of all nonzero monomials of poly-

nomial f .

De�nition 8. For f 2 K[x1; x2; x3; :::; xn] we de�ne a Young diagram Y (f) as

Y (f) = fm 2 T = Zn
+
j (9 ~m 2 supp(f)) m j ~mg.

It is evident that Y (f) is a Young diagram.

According to Theorem 2 there exists in the set fY (f) j f 2 Ig only a �nite subset of minimal

diagrams.

We emphasize this subset of minimal diagrams corresponds to the polynomials from I as UY (I).

According to the minimality of elements of UY (I) we have 8Y 2 UY (I) (9f 2 I) such that

supp(f) � Y and (Y (g) � Y 2 UY (I)) ^ (Y (g) 6= Y )) (g 6� I).

This property is very close to the irreducibility in the GB theory.

3 Universal Base of an Ideal

We start this part with the following Lemma.

Lemma 1. Let f1; f2 2 I such that Y (f1) = Y (f2) 2 UY (I). Then 9(c 6= 0)(c 2 K) that f1 = cf2.

Proof. If f1 6= cf2 then there exists a linear combination g = af1+bf2 that (Y (g) � Y )^(Y (g) 6=

Y ) in contradiction to the minimality of the diagram Y .

According to this lemma, if we normalize all the polynomials f making the sum of coeÆcients of

all maximal monomials equal to 1, then all normalized polynomials f 2 I such that Y (f) 2 UY (I)

are de�ned in unique way.

De�nition 9. Universal base U(I) of an ideal I 2 K[x1; x2; x3; :::; xn] is the set of all normalized

polynomials f 2 I such that Y (f) 2 UY (I).

According to Theorem 2 the universal base of I is �nite. The next theorem shows why we have

used the word "universal".

Theorem 3. Let � be any admissible monomial ordering. Assume that g 2 Gb(I;�) is an element

of Gr�obner base of ideal I with respect to the ordering prec. Then Y (g) 2 UY (I) and 9c 2 K that

cg 2 U(I).

Therefore, the universal base contains all elements of all Gr�obner bases of ideal I, which cor-

respond to all admissible monomial orderings if we neglect the multiplicative constants.

Proof. It is evident that lterm�(g) 2 max(g), where max(g) is the set of maximal monomials of

the polynomial g. In the case if Y (g) 62 UY (I) its Young diagram Y (g) is not minimal and 9g1 2 I

that Y (g1) � Y (g).

Therefore, lterm(g1) j lterm(g). Since g 2 Gb(I;�) we have lterm(g1) = lterm(g). It shows

that element g could be reduced to the g1 in contradiction to the irreducibility of the Gr�obner

base Gb(I;�).

As a consequence of this theorem we obtain the well known theorem by Robbiano about �niteness

of elements of all Gr�obner bases.
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4 Characterization of Elements of Universal Base

We prove in this part a theorem, which describes all elements of universal base U(I) in terms of

linear algebra. In particular, this theorem allows us to get a criterion for membership problem for

universal Gr�obner bases introduced by Robbiano and Mora.

De�nition 10. Let f 2 K[x1; x2; x3; :::; xn]. L(f) is a linear vector space over K generated by all

monomials m 2 Y (f).

Theorem 4. The next conditions are equivalent.

1. Y (f) 2 UY (I)

2. dimK(I
T
L(f))) = 1

Proof. 1 ) 2 follows from Lemma 1 since any two polynomials from I with the same Young

diagram are proportional.

We now show that 2 ) 1. Let dimK(I
T
L(f)) = 1. Since f 6= 0 and f 2 I

T
L(f)) we have

for any a 2 K af 2 I
T
L(f). Therefore, the element f is de�ned up to multiplicative constant.

In the case if its diagram Y(f) is not minimal Y (f) 62 UY (I) we have that 9 some diagram Y1
Y1 � Y such that Y 1 2 UY (I). Let f1 2 I such that supp(f1) � Y1. Evidently f1 2 L(f) and is

not proportional to the polynomial f because their diagrams are not equivalent. We have found

two linear independent elements in I
T
L(f) that contradicts dimK(I

T
L(f)) = 1.

Remark 1. Condition 2 of Theorem 4 can be checked e�ectively if we have any arbitrary Gr�obner

base of the ideal I . It could be done in the following way. Let Y be a Young diagram. Let Y =

fmig
deg(Y )

i=1
. We can write mi =

Pk

j=1 �ij lj , where all images ~lj of elements lj in factor algebra

K[x1; x2; x3; :::; xn] are linearly independent.

Condition 2 of Theorem 4 in terms of elements of the matrix A = (�ij) will be equivalent to

the condition rank(A) = N � 1, where N is the degree of Young diagram Y . Using any Gr�obner

base of the ideal I we de�ne a canonical monomial basis of factor algebra K[x1; x2; x3; :::; xn]=I

and only �nite number of elements of the basis are represented in the expansion mi =
Pk

j=1 �ij lj
even in the case if dimK[x1; x2; x3; :::; xn]=I =1 !

Remark 2. The universal base U(I) could contain more elements than the universal Gr�obner

base UGb(I) by Robbiano and Mora. Other elements of the base U(I) which are not the elements

of any Gr�obner base can also be described in this context. If we generalize the de�nition of Gr�obner

base in an appropriate way for inadmissible orderings, but for weak admissible ones we can get all

elements of generalized Gr�obner bases for all weak admissible orderings. All elements of the univer-

sal base U(I) indeed represent the elements of generalized Gr�obner bases for all weak admissible

orderings but it is out of the scope of the present paper.

5 Conclusion

We have described an universal base of ideal using the minimality of Young diagrams related

to the polynomials from an ideal. This approach does not need to �x any admissible monomial

ordering but uses the natural partial monomial ordering only. We have also given an algorithmic

characterization of all elements of the universal base of an ideal and proved that the universal

Gr�obner base is the subset of our universal base.
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