Automatic Generation of Ranking of Variables
for Efficient Computation of Grobner Bases
in Engineering Applications

Hiroyuki Sawada
E-mail: h.sawada@aist.go.jp

National Institute of Advanced Industrial Science and Technology
1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan

Abstract. It is well known that a term order has a great influence on computational effi-
ciency of Grébner bases. This paper proposes a new method of determining a term order that
enables efficient computation of Grobner bases. The advantages of this method have been
shown through experiments. Furthermore, since it helps users without sufficient knowledge
about the computational algorithms in computing Grobner bases efficiently, it can create a
new application area of Grobner bases including engineering.

1 Introduction

There have been many attempts to formalize practical problems, including engineering design
problems, as constraint satisfaction problems, and to solve them by applying generic constraint
solving methods. According to this approach, the authors have developed innovative constraint
solving methods based on techniques of Grobner Basis and integrated them into our engineering
design support system DeCoSolver (Design Constraint Solver) [8-10].

Those constraint solving methods have been proven to be effective through case studies of
multidisciplinary engineering design: a robotic arm system design and a heat pump system design.
On the other hand, their limitations in computational efficiency have also been disclosed. Since the
most time consuming part of those constraint solving methods is the Grébner bases computation, in
order to apply them to practical use in industry, it is necessary to improve efficiency of computing
Grébner bases.

It is well known that a term order has a great influence on computational efficiency of Grébner
bases. Though the degree reverse lexicographic order (DRL) has been widely used as an efficient
term order, it is not always good for computational efficiency.

Pistone et al. [6] have chosen a preferable term order based on engineering meanings of each
variable in their engine design problem. Rust [7] has studied relationships between ranking of
variables and solvability of partial differential algebraic equations. Though they give some useful
guidelines to determine a term order, it cannot be determined automatically. Since people in
the area of engineering do not have sufficient knowledge about Grébner bases, its computational
algorithms and efficiency, it is quite difficult for them to decide a term order according to some
guidelines for themselves.

The objective of this research is to establish a method of determining a term order automatically
that makes it possible to compute Grébner bases efficiently. The structure of this paper is as follows.
Section 2 describes our new method of determining a term order. In Section 3, the procedure of
computing Grébner bases is explained. Section 4 shows the results of different experiments, which
illustrate the great advantages of our method. Since we focus on engineering applications, we deal
with Grobner bases over infinite fields.

2 Determination of Term Order

We give a few definitions [1] necessary to describe our new method.

320 Hiroyuki Sawada

Definition 1. (Term Order)
Let T(x1,...,x,) be a set of all terms in variables @1, ..., x,. A term order, notated by >, is a
linear order on T that satisfies the following conditions.

1.t>1 forallteT.
2. t1 >ty implies ty - s > ta-s for all s,t1,t2 € T.

Definition 2. (Block Order)
Let T(z1,...,2,) be a set of all terms in variables x1,...,x,. Let 1 <i < n, and set

T, =T(zx1,...,2;), and Ty = T(ziy1,...,T,).

Let >1 and >o be term orders on Ty and Ty respectively. Any t € T may be written uniquely as
t = tity with t; € T; for i = 1,2. A block order > on T is defined by s > t iff

§1 >1t1, or sy =t1 and sz > to.

The above definition of block order can be easily extended to a block order with more than two
blocks. Our method generates a block order where DRL is used in each block.

Notation 1 (Block Order)
“T1 > . ..> @ >> wip1 > ... > xy” means that xq,...,x; and Ty, ..., T, belong to the upper
and lower block respectively.

It is well known that to compute Grobner bases efficiently, dependent variables should be put in
the upper block. Based on this experiential fact, our method determines a term order in four steps:
reduction by bivariate linear polynomials, determination of blocks, determination of ranking of
variables in each block, and rearrangement of blocks.

2.1 Preprocess — Reduction by Bivariate Linear Polynomials
Suppose there is a bivariate linear polynomial.
az + by + ¢ (a, b and ¢ are constants and z > y). (1)

Since reduction by equation (1) substitutes —(b/a)y — (¢/a) for x, the rank of = has no influence on
computational efficiency afterwards. To remove such variables, inter-reduction by bivariate linear
polynomials is conducted one by one. The given polynomial set is divided into two polynomial
subsets: one is a set of bivariate linear polynomials used in the inter-reduction process, the other
is a set of polynomials obtained as results of the inter-reductions.

2.2 Determination of Blocks

If there is a polynomial that has a variable appearing in a linear term only once and nowhere else
in the polynomial, it would be better to put the variable in the upper block. This can be extended
to the following heuristics.

Heuristics 1 If there is a polynomial that has some variables appearing in linear terms only once
and nowhere else in the polynomial, it would be better to put such variables in the upper block and
the others in the lower.

As a supplement, the following heuristics can be obtained.

Heuristics 2 If there is a polynomial that has no variable appearing in a linear term only once
and nowhere else in the polynomial, all the variables of the polynomial should be put in the same
block.

... Efficient Computation of Grobner Bases 321

First of all, our method divides a polynomial set F' into two polynomial subsets of P and @
corresponding to Heuristics 1 and 2 respectively.

F={fi(x1,...,xn),- s fm(@1,...,2n)},

P ={f € F|3i z; appears in a linear term only once and nowhere else in f}, (2)
Q=F-P

Next, for each polynomial in P, a directed graph that shows the upper-lower relationships between
variables is constructed. Our method combines these partial directed graphs into a global graph,
and determines blocks based on it. Blocks are determined by three steps: constructing partial and
global directed graphs, converting each closed path into one node, and determining the order of
blocks and variables in each block.

Constructing Partial and Global Directed Graphs Fig. 1 shows an example of construct-
ing the partial and global directed graphs from P, the subset of the given polynomial set F' in
equation (3).

Polynomial: ~ z22-2x+z+ 3u—-1 B+x-y-3 2%-y+2z+u
Block: Upper Block: x, u Upper Block: y Upper Block: z, u
Lower Block: z Lower Block: x Lower Block: y

k.
L)

Directed graph:

Fig. 1. Construction of directed graphs

F:{22—2x+z+3u—1,x2+x—y—3,2y2—y+2z+u,xu—yz—1},
P={"-2c+2+3u—-1L2"+2—y—3,2y° —y + 22+ u}, (3)
Q= {zru—yz—1}.

When the global directed graph has closed paths, variables on the same closed path are put in the
same block. Though it seems proper, there is a case where it is not appropriate for a closed path
consisting of two nodes.

Ezample 1. Let equation (4) be a given polynomial set.

x— f(2),y —g9(2),z — h(x,y), (f(z), g(2), h(x,y) are non-linear). (4)

Fig. 2 shows the global directed graph for equation (4). In this case, if x and y are put in the upper

Fig. 2. Closed paths consisting of two nodes

block and z is put in the lower, the Grobner basis is obtained immediately as equation (5).

z = f(2),y = 9(2), 2 = h(f(2), 9(2))- (5)

322 Hiroyuki Sawada

Thus, there is a case where removing one of directed edges from a closed path consisting of two
nodes is considered to improve computational efficiency. In order to construct a global directed
graph, we have introduced a Control Parameter of Removing Directed Edges C.4. as below.

Control Parameter of Removing Directed Edges C 4
Suppose there is a closed path consisting of two nodes of X and Y. If equation (6) is valid, the
directed edge from X to Y is removed.

(Number of directed edges to X)
(Number of directed edges to Y)

> Chrde- (6)

In Fig. 2, the number of directed edges to each node is given as below.

{z} {y} {z}
1 1 2

Number of directed edges to each node

Therefore, if C).4. is defined as 1, directed edges from z to x and y are removed, which leads to
good block order for computational efficiency.

Converting Each Closed Path into One Node If the global directed graph has a closed path,
all the variables on the same closed path should be put in one node (Fig. 3).

Closed Path ——

Fig. 3. Conversion of a closed path into one node

Determining the Order of Blocks and Variables in Each Block Since the global directed
graph has no closed path, it has starting and terminal nodes. Firstly, the maximum distance
between the starting and the terminal nodes is calculated to determine the number and the order
of blocks. Then, each variable node is assigned to one of blocks so that the upper-lower relations
represented by the global directed graph are kept.

r belongs to the Ist

bel f e
w9
3 Blocks w belongs to the 2nd

s and ¢ belong to the 2nd
or 3rd block. or 3rd block.

Fig. 4. Determining the order of blocks and variables in each block

Fig. 4 shows an example. In this case, though {z}, {y}, {#} and {u} are assigned to appropriate
blocks uniquely, {v}, {w}, {r} and {s,t} cannot be assigned uniquely. Appropriate blocks for these
nodes are determined by applying Heuristics 2 to a polynomial set () defined in equation (2).

1. For each node, blocks to which it may be assigned are determined.
2. If all the variable nodes can be assigned uniquely, they are assigned to appropriate blocks and
the computation is finished.

... Efficient Computation of Grobner Bases 323

3. Otherwise, one of variable nodes, N, that might be assigned to the highest block is selected.
Let Vv be a set of variables included in V.

4. From the polynomial set), all the polynomials that have variables included in Vi are selected.
Let Vg be a set of variables that the selected polynomials contain. According to Heuristics 2,
the variables of node NV should be put in a block that has variables of Vg,.

5. For each block B, percentage of variables included in V{y is calculated.

Block B’s percentage of variables included in Vg) =
Q
(Number of variables included in both of block B and Vp)
(Number of variables included in block B))

6. The block whose percentage of variables included in Vg is the maximum is decided as the
appropriate block for N. If there are plural appropriate blocks, the highest block should be
selected.

7. Go to step 1.

2.3 Determination of Ranking of Variables in Each Block

Currently, we have no well-known heuristics to determine ranking of variables in a block. The
author has conducted a lot of experiments, and found that when variable ranking is determined
according to the following procedure, memory consumption is reduced and Grobner bases can be
computed efficiently.

1. For each variable, the maximum degree in the given polynomial set F' is calculated. A variable
of small maximum degree should be greater than that of large maximum degree. If there are
plural variables of the same maximum degree, the order is decided by the way of step 2.

2. For each variable, all the terms of each polynomial in F' are classified by the degree of the
variable. Then, products of the degree and the number of terms in the corresponding group
are summed. A variable of the large summation should be greater than that of the small
summation.

For example, in the case of Katsura-2 [3] shown by equation (7), numerical values used to determine
the ranking are obtained as below.

{uo + 2u2 + 2uy — 1, 2ujug + 2uqus — ul,ug —ug + 2u§ + QU%}. (7)
Uo u1 U2
Maximum degree 2 2 2
Number of terms of degree 1 3 4 2
Number of terms of degree 2 1 1 1
Sum of (degree x number of terms)|1 x3+2x1=5{1x4+2x1=6/1x2+2x1=4

Thus, the ranking is determined as u; > ug > us.

2.4 Postprocess — Rearrangement of Blocks

In Section 2.2, blocks have been determined principally based on Heuristics 1. However, if there
are many polynomials corresponding to Heuristics 2, it is reasonable to put the variables in the
same block.

As a post process, our method combines adjacent blocks into one block if necessary. In order
to decide whether adjacent blocks should be combined, we have introduced a Control Parameter
of Combining Blocks C.p as below.

Control Parameter of Combining Blocks C,
Let By >> ... >> Bj be adjacent blocks determined by the procedure of Section 2.2. If
equation (8) is valid, these blocks are combined into one block.

Number of polynomials that disagree to By >> ... >> B;

Cep. 8
Number of polynomials that agree to By >> ... >> B; > Ceb (8)

324 Hiroyuki Sawada

3 Computation of Grobner Bases

Groébner bases can be computed by the following steps.

1. Let @ be the given polynomial set. Let H be a set of bivariate linear polynomials obtained by
the preprocess (Section 2.1), and F be a set of the others. Let 1, ..., x, be variables included
in F, and y1, ...,y be variables that are included in H and excluded from F.

The term order Ty for F' is determined.

The Grober basis G of F' is computed by the term order Tr.

4. G U H is a Grobner basis of @ of the term order y; > ... >y, >> Tp.

LN

Proof. Since all the polynomials in F' have been reduced by bivariate linear polynomials in
H, head terms of polynomials in H are yi,...,y,. Thus, head terms of polynomials in H are
prime to head terms in G. In addition, since inter-reduction by bivariate linear polynomials
are conducted one by one (Section 2.1), every polynomial in H has a different head term from
the others. Therefore, all the S-polynomials generated by G U H reduce to zero modulo GU H.
It is obvious that Ideal(®) = Ideal(G U H), where Ideal(®) is an ideal generated by &.
Thus, G U H is a Grobner basis of @ of the term order y; > ... >y, >> TF.

4 Experiment

The following polynomial sets have been used to evaluate our method. The notation “x(d)” means
that the maximum degree of variable z is d.

1. Katsura-8 [3] (9 variables and 9 polynomials)
Variables (maximum degrees): uo(2),u1(2),u2(2), us(2), u4(2), u5(2), ue(2), u7(2), us(2)
2. Heatpump! (21 variables and 20 polynomials)
Variables (maximum degrees): pa20(6), p223(1), P240(1), P249 (1), P259(2), P275(1), p276 (1), P277(1),
p2r8(1), p2s3(1), 11(1), 212(1), 13(1), 214(6), 715(1), 216 (1), 717(1), 218(1), T10(1), 220 (1),
I21 (1)
This polynomial set is derived from a heat pump system design problem (ref. Appendix) [8].
3. Mckay? [4] (4 variables and 20 polynomials)
Variables (maximum degrees): a;(17), a2(10), a3(9), as(6)
4. Robot? [8] (49 variables and 49 polynomials)

Variables (maximum degrees): psgs(1), paso(1), €41 (1), 242(1), 43(2), v44(4), 245(2), 246 (2),
247(2), 249 (1), 250(1), @51 (1), T52(1), @55(1), w54(1), 55 (1), T57(1), 58 (1), T59(1), 60(1),
z61(1), 62(1), 263(1), Tea(1), Te5(1), Te6 (1), 2e7(1), Tes (1), Te9 (1), 270(1), 271 (1), 272(1),
ZL'73(].),£U74() ZL'75() w76()7:577() w78()7:579(1)7:”8 (1)71'8 (1)7:68 (1)71'8 (1)71'84(1)7
3085(1)73386(1) 3587(1) 3088(1) 3389(1)

This polynomial set is derived from a robotic arm system design problem (ref. Appendix) [8].

The term order determined by our method has been compared with two different kinds of term
order.

Comparison-1 Randomly generated DRL order

This comparison discloses the effectiveness of determining blocks.

Comparison-2 Randomly generated block order in which each block has the same variables in
the determined term order

This comparison discloses the effectiveness of determining ranking of variables in each block.

Crqe and Cgp have been assigned the following numerical values.

Control Parameter of Removing Directed Edges C,4.: 1
Control Parameter of Combining Blocks C,;: 1

The following hardware and software have been used for this experiment.

! http://unit.aist.go.jp/digital-mfg/staff/sawada/robot
2 http://www-calfor.lip6.fr/~ jcf/Benchs/@benchs/mckay.fgb
% http://unit.aist.go.jp/digital-mfg/staff/sawada/heatpump

... Efficient Computation of Grobner Bases 325

Table 1. Results of Experiments

Problems | Software Timing Comparison-1|{Comparison-2
Katsura-8 [Risa/Asir 6 min 32 sec| 8/100 (x1)| 8/100 (1)
CoCoA 137 min 21 sec| 8/100 (x1)| 8/100 (x1)

Heatpump |Risa/Asir 1 sec - (%2)| 3/100 (1)
CoCoA 8 sec - (%2) 2/100 (1)

Mckay |Risa/Asir 12 h 2 min 2/24 (1) 2/24 (x1)
CoCoA |more than 5 days - (%2) — (x2)

Robot |Risa/Asir 1 min 7 sec - (¥2)| 1/100 (1)
CoCoA 9 h 17 min - (%2) — (x2)

*1 “a/b” means that the generated term order is ath fastest among b choices.
*2 Grobner bases could not be computed by the other term orders.

Computational Time: 6 min 32 sec
Results of comparison with other orders
(a) Randomly generated degree-reverse-lexicographic orders

Histogram: 1o
8
s |
4
L b H‘I‘W—W‘I o

0 10 20 30 40 50 60
Computational Time (min)

Frequency

(b) Randomly generated block orders in which each block has the same variables in the generated term order
Same as (a), histogram omitted.

Fig. 5. Result of experiment — Katsura-8 (Risa/Asir)

Computational Time: 137 min 21 sec

Results of comparison with other orders

(a) Randomly generated degree-reverse-lexicographic orders
Histogram:

12
1o

R B

2

:os |

£ 4
27_|_|_|—|_|_|_ l_‘_'—|—|_|_
0 i I o |

0 120 240 360 480 600 720 840 960

Computational Time (min)

(b) Randomly generated block orders in which each block has the same variables in the generated term order
Same as (a), histogram omitted.

Fig. 6. Result of experiment — Katsura-8 (CoCoA)

Hardware: Pentium-4 2GHz CPU and 2 GB RAM
Software: Risa/Asir? [5] and CoCoA® [2] on Windows 2000

Table 1 and Figs. 5 to 10 show the results of the experiments. For all the benchmarks, our method
took a few seconds to determine the term order.

These figures show that the term order determined by our method has a good effect on com-
putational efficiency of Grobner bases.

5 Conclusion

In this paper, we have proposed a new method of determining the term order that makes it possible
to compute Groébner bases efficiently, and examined its effectiveness. The benchmark test involving
four completely different polynomial sets have proven the effectiveness of our method.

4 http://www.math.kobe-u.ac.jp/Asir/asir.html
® nttp://cocoa.dima.unige.it/

326 Hiroyuki Sawada

Computational Time: 1 sec

Results of comparison with other orders:

(a) Randomly generated degree-reverse-lexicographic orders
Groebner bases could not be computed according to the other term orders.

(b) Randomly generated block orders in which each block has the same variables in the generated term order
Histogram: 2 o

15 —

10 —

Frequency

5 -

0

Fig. 7. Result ot experiment — Heatpump (Risa/Asir)

Computational Time: 8 sec
Results of comparison with other orders:
(a) Randomly generated degree-reverse-lexicographic orders
Groebner bases could not be computed according to the other term orders.
(b) Randomly generated block orders in which each block has the same variables in the generated term order

Histogram: 4 5

40 __I—
10

5 ’—|—|_|_b—\
§ s | | s | | s s |

0

Frequency

»)
0 5 10 15 20 ““30 to ““More than
240 5 hours

Computational Time (m in)
Fig. 8. Result ot experiment — Heatpump (CoCoA)

Computation Time: 12 h 2 min

Results of comparison with other orders

(a) Randomly generated degree-reverse-lexicographic orders
Histogram:

6

4

L em [=

0

Frequency

0 10 20 30 40 50 Memory
exhausted

Computational Time (hr)
(b) Randomly generated block orders in which each block has the same variables in the generated term order
Same as (a), histogram omitted.

Fig. 9. Result of experiment — Mckay (Risa/Asir)

Since our method can determine an efficient term order autormatically with small computational
cost, it is considered effective for practical use. Especially, our method helps users without sufficient
knowledge about the computational algorithms in computing Grobner bases efficiently. This means
that our method has a possibility of creating a new application area of Grébner bases in addition
to engineering. On the other hand, our method is based on heuristics and experiments, and there
are many unknown factors. For example, the effect of two control parameters C,4. and C., on
computational efficiency is unclear. In addtion, it is unclear how and why the procedure given in
Section 2.3 can reduce memory consumption. Therefore, further study and research is necessary.

Our method has some limitations. Firstly, it does not work on a problem symmetric with
respect to the variables. When we computed Grobner bases of a symmetric problem, which is a
subset of Cyclic-7, in 100 random DRLs, the fastest was 33 seconds while the slowest was 114
seconds. Our method cannot select the good ranking for such kind of symmetric problems though
the computational efficiency should depend on ranking of variables. Secondly, our method does
not check whether the given polynomial set is already a Grobner basis according to some term
order. Actually, when we applied our method to the Grobner bases computed in the experiments
in Section 4, different term orders were obtained. We also recalculated Grobner bases from each
obtained Grobner basis by the original term order and the newly obtained one. In these cases,

... Efficient Computation of Grobner Bases 327

Computation Time: 1 min 7 sec

Results of comparison with other orders

(a) Randomly generated degree-reverse-lexicographic orders
Groebner bases could not be computed according to the other term orders.

(b) Randomly generated block orders in which each block has the same variables in the generated term order
Histogram: 40

30 -

20 =

Frequency

10 -

0 L e o Em e -
0 30 60 90 120 150

Computational Time (min)

Fig. 10. Result of experiment — Robot (Risa/Asir)

there was no significant difference in computational time between these two different term orders.
However, it cannot be extended to general cases.

Our method is now implemented as a Risa/Asir program. It is available from our Web page®

free of charge.

References

1
2

1

. T. Becker and V. Weispfenning. Grébner Bases. Springer—Verlag, 1993.

. A. Capani and G. Niesi. The CoCoA 3 Framework for a Family of Buchberger-like Algorithms. Grébner

Bases and Applications, 251:338-350, 1998.

S. Katsura. Theory of Spin Glass by the Method of the Distribution Function of an Effective Field.

Progress of Theoretical Physics, (87):139-154, 1986.

M. Noro and J. Mckay. Computation of Replicable Functions on Risa/Asir. In Proceedings of PASCO’97,

pages 130-138. ACM, 1997.

M. Noro and T. Takeshima. Risa/Asir — a Computer Algebra System. In Proceedings of ISSAC’91,

pages 387-396. ACM, 1992.

G. Pistone, E. Riccomagno, and H. P. Wynn. Grobner Basis Methods for Structuring and Analyz-

ing Complex Industrial Experiments. In Proceedings of First International Symposium on Industrial

Statistics, 1999.

C. J. Rust. Ranking of Derivatives for Elimination Algorithms and Formal Solvability of Analytic Partial

Differential Equations. PhD Thesis, University of Chicago, 1998.

H. Sawada and X.-T. Yan. Applying Generic Constraint Solving Techniques in Providing Insights into

Engineering Design. In Proceedings of ICED 01, Design Methods for Performance and Sustainability,

pages 123-130, 2001.

H. Sawada and X.-T. Yan. Application of Grobner Basis and Quantifier Elimination in Engineering

Design: An Introduction for Engineers. In Proceedings of ASCM 2001, pages 141-150, 2001.

0. H. Sawada and X.-T. Yan. Computer Support for Insightful Engineering Design based on Generic and
Rigorous Principles of Symbolic Algebra. In Recent Advances in Integrated Design and Manufacturing
in Mechanical Engineering, G. Gogu et al. eds., pages 13-22, Kluwer Academic Publishers, 2003.

Appendix. Engineering Design Examples

1. A Heat Pump System Design Problem

Fig. 11 shows the heat pump system. It consists of a compressor, a condenser, an expansion
valve and an evaporator. The refrigerant evaporates at the evaporator and collects heat from
the water. Then, it is adiabatically compressed by the compressor. In the condenser, it con-
denses and release heat to heat up the water. After that, it goes through the expansion valve.
The design task is to determine the following design parameter values: condensation and evap-
oration temperature Tc and T'e, heat transfer area of the condenser and evaporator Ac and
Ae, discharging pressure and compression ratio of the compressor Pd and &, and mass flow
rate of the refrigerant Qr.

6 http://staff.aist.go.jp/h.sawada/termorder.html

328 Hiroyuki Sawada

Hot spring (30 °C, 3.0 I/s)

High pressure
saturated gas & li

Expansion Valve
(Isenthalpic
Expansion)

Low pressure saturated
gas & liquid

Drain (5 °C, 2.4 I/s)

Condenser
High pressure

uid

gas — Hot water supply
Compressor _, for a bath
(Adzabat;c (45 °C, 3.0 Is)
Compression) |
Low pressure

Drain water
(20°C, 2.4 l/s)

gas

NN\

Fig.11. A heat pump system

2. A Robotic Arm System Design Problem
Fig. 12 shows the robotic arm system. The gear-motor-A and gear-motor-B drive the joint-A
and joint-B respectively. The given operation is to lift up the object along to the vertical line.
It is assumed that both links have the same lengths L, and that there is a linear relationship
between L and their mass m as bellow:

m =L, v = 3.5[kg/m)].

Flow of refrigerant ——
Flow of water ———>

The design task is to determine the link length L and select appropriate motors and gear ratios

for both joints.

Joint-A

Joint-B

/

Pulley

Gear-Motor-A

Link-A

Hand

30 cm/s
M2 kef

) Hand

Gear-Motor-B

Fig. 12. A robotic arm system

X

