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Abstract. When constructing parametric Gr�obner bases, we usually assume that parame-

ters can take arbitrary values. However, in the case there are some constraints among pa-

rameters, it is more natural to construct parametric Gr�obner bases for parameters satisfying

such constraints. Using this idea, we formalized parametric Gr�obner bases in terms of ACGB

[8, 9]. This natural formalization leads us to the desirable fact that is discrete comprehensive

Gr�obner bases studied in [4{6] can be naturally de�ned as special instances of ACGB.

1 Introduction

Comprehensive Gr�obner bases or comprehensive Gr�obner systems introduced in [11] are uniform

representations of Gr�obner bases of polynomial ideals with parameters. During their construction,

we implicitly assume that parameters can take any value. The following is a computation example

of CGB1. It computes the comprehensive Gr�obner system of the polynomial ideal ha � b; xya �
x
2
yb� 3a; xyb� 3xb� 5bi with parameters a and b.

torder({y,x},lex);

on cgbgs;

gsys{a-b,x*y*a-x^2*y*b-3*a,x*y*b-3*x*b-5*b};

{{a - b <> 0 and b <> 0,{a - b}},

{a <> 0 and b = 0,{a - b}},

{b <> 0 and a - b = 0,

2

{b*y*x - a*y*x + 3*a,

b*y*x - (3*b)*x - 5*b,

2 2

(2*a*b)*y - (15*b )*x + (9*a*b - 25*b ),

2 2 2

(3*b )*x - (3*a*b - 5*b )*x - 2*a*b}},

{a = 0 and b = 0,{}}}

Though there is an obvious constraint a � b = 0 among parameters a and b, the computation

produced case distinctions {a - b <> 0 and b <> 0,{a - b}} and

{a <> 0 and b = 0,{a - b}} where the ideal becomes the whole ring. When we are interested

in only values such that the ideal becomes proper, those computations are unnecessary.

It is not very diÆcult to make an implementation with facilities to handle such constraints

among parameters. Actually DisPGB2 which is an another implementation to compute parametric

Gr�obner bases has such a tool [1]. We can input two kinds of constraints among parameters. One

1 http://www.fmi.uni-passau.de/~redlog/cgb/
2 http://www-ma2.upc.es/~montes/
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is in a form of equalities, and the another one is in a form of inequalities. The following is its

computation example, where the input ideal h(a�b)+(xya�x
2
yb�3a)3+(xyb�3xb�5b)4; xya�

x
2
yb� 3a; xyb� 3xb� 5bi has a slightly more complicated form.

L := dispgb([(a-b)+(x*y*a-x^2*y*b-3*a)^3+(x*y*b-3*x*b-5*b)^4,

a*(x*y*a-x^2*y*b-3*a),

x*y*b-3*x*b-5*b],plex(y,x),plex(a,b),null=[a-b],notnull={a}):

tprint(L);

null = [a - b], notnull = {a}

2

Case = [1], [b <> 0], [3 x + 2 x - 2, 2 y - 15 x - 16]

[0] - Not compatible conditions

In this example, null = [a - b] is a constraint consisting of the set of equalities fa � b = 0g,
notnull = {a} is a constraint consisting of the set of inequalities fa 6= 0g.

It is also very easy to add such facilities to an ACGB introduce in [8, 9]. An ACGB (Alterna-

tive Comprehensive Gr�obner bases) is de�ned as a Gr�obner basis in a polynomial ring over a

certain commutative Von Neumann regular ring, it serves as an alternative of a comprehensive

Gr�obner basis. We generalized an ACGB so that we can handle constraints among parameters.

Our rather trivial generalization brings us an interesting and desirable result.

Discrete comprehensive Gr�obner bases we have been studying in [2, 4{6] are di�erent kinds of ap-

plications of commutative Von Neumann regular rings to comprehensive Gr�obner bases. We found

that they are special instances of ACGB-V. Consequently, we can give more general alternative

proofs of our results in [2, 4{6]. We can extend discrete comprehensive Gr�obner bases to more

general cases in a natural way.

Our plan is as follows. In Section 2, we describe our formalization. In Section 3, we show how

discrete comprehensive Gr�obner bases can be naturally de�ned as special instances of ACGB un-

der our formalization. In Section 4, we discuss further properties of our formalization.

We assume the reader is familiar with comprehensive Gr�obner bases introduced in [11] and ACGB

introduced in [8, 9]. We also assume the reader is familiar with Gr�obner bases in polynomial rings

over commutative Von Neumann regular rings, we refer the reader to [3], [10] or [13] for details.

The reader is not necessarily required to be acquainted with discrete comprehensive Gr�obner bases.

2 ACGB-V

When there is a constraint of parameters �A = A1; : : : ; Am in a form of polynomial equations

f1( �A) = 0; : : : ; fl( �A) = 0, it is more natural to consider the range of values for �A to be the variety

V (f1( �A); : : : ; fl( �A)) than a whole space Km. Here, K is a �eld we are working in.

One of the main ideas of ACGB is that we consider a polynomial in �A as a function from K
m to K,

i.e. as a member of KK
m

that is a commutative Von Neumann regular ring, and then treat it as a

member of the regular closure of K[A1; : : : ; Am] in K
K

m

. When such constraints exist, we can re-

place KK
m

by KV (f1( �A);:::;fl( �A)). Note that the restriction of K[A1; : : : ; Am] on K
V (f1( �A);:::;fl( �A)) is

isomorphic to a quotient ring K[ �A]=I(V (f1( �A); : : : ; fl( �A))), where I(V (f1( �A); : : : ; fl( �A))) denotes

an ideal of K[ �A] that consists of all polynomials vanishing at every point of V (f1( �A); : : : ; fl( �A)).

Hence, it is isomorphic to K[ �A]=rad(hf1( �A); : : : ; fl( �A)i) in case K is an algebraically closed �eld.

Here, rad(I) denotes a radical ideal of I . The above observation leads us to the following de�nition.

De�nition 1. LetK be an algebraically closed �eld. Let F be a �nite set of polynomials in K[ �A; �X],

where �A and �X denote a sequence of indeterminates A1; : : : ; Am and X1; : : : ; Xn. Let I be a poly-

nomial ideal in K[ �A]. An ACGB-V (Alternative Comprehensive Gr�obner Basis on a Variety) of

F with respect to I is de�ned as follows.
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Let T be a regular closure of the quotient ring K[ �A]=rad(I) in the commutative Von Neumann

regular ring K
V (I). Then there exists a strati�ed Gr�obner basis G of F in T [ �X]. We call G an

ACGB-V of F with respect to the ideal I.

For the construction of G, we can use the same algorithm as in [8, 9] using terraces to compute T .

The only di�erence is that any preterrace appearing in a computation of T has a form of hs; t; ri
where s and t include all generators of rad(I). Note that this restriction is imposed in order to

assure that V (I) � V (s) and V (I) � V (t). The name ACGB-V is derived from the next theorem,

where we use the same notations of specializations as in [8, 9].

Theorem 1. Using the same notations as in the above de�nition, let G = fg1( �X); : : : ; gk( �X)g be

an ACGB-V of F = ff1( �A; �X); : : : ; fl( �A; �X)g with respect to an ideal I of K[ �A], then the following

properties hold for any m-tuple (a1; : : : ; am) of elements of K belonging to the variety V (I):

1. G(a1;:::;am) = fg1(a1;:::;am)(
�X); : : : ; gk(a1;:::;am)(

�X)gnf0g is a reduced Gr�obner basis of the ideal

generated by F (a1; : : : ; am) = ff1(a1; : : : ; am; �X); : : : ; fk(a1; : : : ; am; �X)g in K[X1; : : : ; Xn].

2. For any polynomial h( �X) 2 T [ �X], we have (h #G)(a1;:::;am)( �X) = h(a1;:::;an)(
�X) #G(a1;:::;am)

.

Proof. The proof is exactly same as the proof of theorem 3.2 of [8] or theorem 4.3 of [9]. 2

Example 1. Let F be the set of polynomials fa� b; xya� x
2
yb� 3a; xyb� 3xb� 5bg. Take a lex-

icographic term order > such that y > x. As we saw in the examples of Section 1, when we are

interested in only values such that the ideal becomes proper, it is more natural to construct an

ACGB-V of F with respect to the ideal ha�bi. Since ha�bi is already a radical ideal, we construct
a strati�ed Gr�obner basis G of fa � b; xya � x

2
yb � 3a; xyb � 3xb � 5bg in T [x; y], where T is a

regular closure of K[a; b]=ha� bi. This G is the desired ACGB-V of F and has the following form

using terraces:

G = f [(V (a� b)� V (a� b; a); 1)]y + [(V (a� b)� V (a� b; a);�15=2)]x
+ [(V (a� b)� V (a� b; a);�8)],

[(V (a� b)� V (a� b; a); 1)]x2 + [(V (a� b)� V (a� b; a);+2=3)]x

+ [(V (a� b)� V (a� b; a);�2=3)] g.

We should note that the ACGB-V of f(a� b)+(xya�x
2
yb�3a)3+(xyb�3xb�5b)4; xya�x

2
yb�

3a; xyb� 3xb� 5bg with respect to ha� bi has the same form.

3 Connection Between Discrete Comprehensive Gr�obner Bases

In this section, we show that discrete comprehensive Gr�obner bases introduced in [4, 5] and further

optimized in [2, 6] are special instances of ACGB-V. Before describing our results, we will give a

short review of discrete comprehensive Gr�obner bases.

Though the original discrete comprehensive Gr�obner bases introduced in [4, 5] works for arbi-

trary commutative Von Neumann regular ring, we studied them for only �elds in [2, 6]. In this

paper, we also concentrate on polynomial rings over �elds.

We begin with a general de�nition of discrete comprehensive Gr�obner bases employed in [2].

De�nition 2. Let K be an arbitrary �eld and F = ff1( �A; �X); : : : ; fl( �A; �X)g be a �nite set of

polynomials in K[ �A; �X], where �A and �X denote a sequence of indeterminates A1; : : : ; Am and

X1; : : : ; Xn. Let S be a set of polynomials fs1(A1); : : : ; sm(Am)g, where each si(Ai) is a non-

constant univariate polynomial in K[Ai]. A �nite set G = fg1( �A; �X); : : : ; gk( �A; �X)g of polynomials

in K[ �A; �X] is called a discrete comprehensive Gr�obner basis of F with respect to ( �A;S) if it satis�es

the following:

G(�a) = fg1(�a; �X); : : : ; gk(�a; �X)gnf0g is a Gr�obner basis of ff1(�a; �X); : : : ; fl(�a; �X)g in K[ �X ] for any

elements �a = a1; : : : ; am of K( an algebraic closure of K) satisfying s1(a1) = 0; : : : ; sm(am) = 0.
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In [2], we showed that we can always construct such a discrete comprehensive Gr�obner basis when-

ever K is a perfect computable �eld using the fact that the quotient ring

K[ �A]=hs01(A1); : : : ; s
0

m
(Am)i becomes a commutative Von Neumann regular ring. Here, s0

i
(Ai) de-

notes a squarefree part of si(Ai) for each i = 1; : : : ;m. Our proof was rather elementary, it is

simply based on the Chinese remainder theorem, it does not use any sophisticated technique.

In the rest of this section, we show that we can naturally extend discrete comprehensive Gr�obner

bases to more general situations as a corollary of Theorem 1.

Lemma 1. Let K be an arbitrary �eld and I be a zero dimensional radical ideal in a polynomial

ring K[ �A]. Then K[ �A]=I becomes a commutative Von Neumann regular ring.

Proof. Present I as an intersection of prime ideals P1; : : : ; Pk of K[ �A]. Since I is zero dimensional,

each Pi is also zero dimensional. Therefore Pi is a maximal ideal. So we can apply the Chinese

remainder theorem to get an isomorphism K[ �A]=I ' K[ �A]=P1 � � � � � K[ �A]=Pk. The right-hand

side is a direct product of �elds, so it becomes a commutative Von Neumann regular ring. 2

Using this lemma together with Theorem 1, we can generalize discrete comprehensive Gr�obner

bases.

Theorem 2. Let K be an arbitrary �eld and I be a zero dimensional ideal in a polynomial ring

K[ �A]. Let F = ff1( �A; �X); : : : ; fl( �A; �X)g be a �nite set of polynomials in K[ �A; �X], where �A and �X

denote a sequence of indeterminates A1; : : : ; Am and X1; : : : ; Xn.

Let G = fg1( �A; �X); : : : ; gk( �A; �X)g be a strati�ed Gr�obner basis of F in a polynomial ring

(K[ �A]=rad(I))[ �X ] over a commutative Von Neumann regular ring K[ �A]=rad(I). Then we have the

following two properties for any m-tuple (a1; : : : ; am) (denoted by �a) of elements of K belonging to

the variety V (I):

1. G(�a) = fg1(�a; �X); : : : ; gk(�a; �X)g n f0g is a reduced Gr�obner basis of

F (�a) = ff1(�a; �X); : : : ; fl(�a; �X)g in K[X1; : : : ; Xn].

2. For any polynomial h( �A; �X) 2 K[ �A; �X ], we have (h( �A; �X) #G)(�a; �X) = h(�a; �X) #G(�a).

Proof. Though, K might not be algebraically closed, we can work in its algebraic closure K and

have a ACGB-V of F with respect to I by Theorem 1. Since K[ �A]=rad(I) is already a commutative

Von Neumann regular ring, its regular closure in K
V (I) is the ring itself. Therefore, any element

of T has a representative in K[ �A]. This assures that we can have G inside of K[ �A; �X]. Such a G

clearly satis�es the above two properties. 2

4 Some Properties of ACGB-V

As we saw in Section 1, we should use information about constraints on parameters in construction

of parametric Gr�obner bases. A natural way to get such constraints from a �nite set of polynomials

F = ff1( �A; �X); : : : ; fl( �A; �X)g with parameters �A is �rst to compute an elimination ideal I of hF i
with respect to �A, i.e. I = hF i \K[ �A], then construct an ACGB-V of F with respect to I .

It might happen that there exist some hidden constraints even if the elimination ideal I is equal

to f0g.

Example 2. Let F = fAX + 1; X + Y g with a parameter A. Though its elimination ideal is equal

to f0g, there is a hidden constraint A 6= 0, that is fa 2 C j 9x; y 2 C ax + 1 = 0 and x + y = 0g
= fa 2 C j a 6= 0g.

In this example, there does not exists any nontrivial ideal I of Q[A] such that V (I) � fa 2 C j a 6=
0g. Therefore there is no proper ideal I of parameter A such that we could construct a ACGB-V

of F with respect to I . Fortunately this is not a coincidence. The following theorem is an easy

consequence of a well-known fact of varieties, from which we know the above natural construction

is the best e�ort by ACGB-V's.
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Theorem 3. Let K be an algebraically closed �eld and F = ff1( �A; �X); : : : ; fl( �A; �X)g be a �nite

set of polynomials in K[ �A; �X ] with parameters �A. Let I be an elimination ideal of hF i with respect

to �A. Then there does not exists an ideal I 0 in K[ �A] such that V (I) properly includes V (I 0) and any

constraint of �A resides inside of the variety V (I 0) that is V (I 0) � f�a 2 K
m j 9 �x 2 K

n
fi(�a; �x) = 0

for i = 1; : : : ; lg.

Proof. This is simply a restatement of a well-known fact that V (I) is the Zariski closure of the

projection of V (F ) i.e. f�a 2 K
m j 9 �x 2 K

n (�a; �x) 2 V (F )g. 2

We conclude the section with the following interesting fact.

Theorem 4. Let I be a zero dimensional ideal of a polynomial ring K[A1; : : : ; Am] with an arbi-

trary �eld K. Let si(Ai) be a univariate polynomial of Ai for each i = 1; : : : ;m. Then we have a

polynomial f(A1; : : : ; Am) in K[A1; : : : ; Am] such that f(a1; : : : ; am) = 0 if (a1; : : : ; am) 2 V (I)

and f(a1; : : : ; am) = 1 if (a1; : : : ; am) =2 V (I). Where each ai runs over any element of K that

satis�es si(ai) = 0.

Proof. This is a special instance of Theorem 2 with I = hs1(A1); : : : ; sm(Am)i, although there does
not appear any variable Xi. 2

Example 3. Let I be an ideal hA2 � 2; A � Bi of Q[A;B], s1(A) = A
2 � 1 and s2(B) = B

2 � 1.

The f(A;B) has the following form � 1
4
AB + 1

2
.

5 Conclusion and Remarks

Though we have not implemented ACGB-V yet, we can expect the following.

When an ideal I is zero dimensional, ACGB-V of F with respect to I is a generalization of

our discrete comprehensive Gr�obner basis as we saw in Section 3. Once we get a prime ideal

decomposition I = \l
i=1Pi with zero dimensional maximal ideals Pi's, what we have to do is

essentially computation of each �eld K[ �A]=Pi. We think that the computation of ACGB-V of

F is much more eÆcient than the computation of ACGB of F . We can even use a distributive

computation for K[ �A]=Pi's.

When an ideal I is not zero dimensional, an ACGB-V of F with respect to I is constructed by

using terraces and its computation is essentially same as the computation of an ACGB of F as we

have explained right after De�nition 1. In this case we do not think we can expect much advantage

of ACGB-V for most cases, although we can expect drastic reduction of computation time in some

case such as the second example of Section 1.
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