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Abstract. We provide a constructive approach to the strati�cation of the representation-

and the orbit space of linear actions of compact Lie groups contained in GLn(R) on R
n.

Strata of the representation space are described as di�erences of closed sets given by poly-

nomial equations while d-dimensional strata of the orbit space are represented by means of

polynomial equations and inequalities. All algorithms have been implemented in SINGU-

LAR V2.0.

Introduction

In 1983 Abud and Sartori [1] pointed out the relation between symmetry breaking and strati�-

cations of linear actions of compact Lie groups and presented several applications in physics. Let

G be a compact Lie group which acts linearly on Rn. Note that for all points w 2 Rn which are

suÆciently close to a point v 2 Rn, the stabilizer Gw is conjugated to some subgroup of Gv , i.e.,

the isotropy may jump, but if it jumps it only jumps up (loss of symmetry). Symmetry breaking

can brie
y be described as follows. Let �0 2 Rn be the ground state of a physical system and

V
(z) be a G-invariant potential which determines �0 and depends on the parameter 
. Varying

 might change �0 and the stabilizer group G0 of �0 which may be smaller than the previous

stabilizer (loss of symmetry). Hence various patterns of spontaneous symmetry breaking, which

correspond to distinct phases of the model, occur. Note that the orbit space of G and all strata

are semialgebraic sets (see for instance [11]).

There are several approaches for constructing the strati�cation of the orbit space of a compact

Lie group starting with Abud and Sartori, see [1]. Explicit algorithms for �nite groups are given

for instance in [3] and Gatermann [7] provides a systematic exposition for compact Lie groups.

These algorithms (except [3]) construct a strati�cation of the orbit spaceRn=G of a compact Lie

group G by using the matrix grad(z) which is de�ned on Rn=G. We present a di�erent approach,

namely, we �rstly compute a strati�cation of the representation space of G. Only then images of the

strata are computed by means of elimination theory (equations) and results of Procesi and Schwarz

(inequalities), see [11]. For several applications, like the construction of polynomial potentials on

the orbit space, this approach may lead to easier computations. Namely inequalities need not be

calculated since the Zariski-closure of a stratum �x equals the zero set of the ideal obtained by

computing the image �(�x) and primary decomposition is easier on the representation space than

on the orbit space1. In addition, we show that each d-dimensional stratum can be presented by at

most d strict inequalities up to generic equivalence, in contrast to the (at most) 2n� 1 inequalities

obtained from the Theorem of Procesi and Schwarz.

1 Equations for the (Zariski-closure) of strata are computed out of rank conditions on the matrix grad(z).

The locus where rank (grad(z)) � d contains all d-dimensional strata of the orbit space and must

be decomposed in irreducible components in order to obtain equations de�ning these strata. On the

representation space the corresponding locus is a �nite union of vectorspaces which is not true for the

orbit space.
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1 On Invariant Theory of Compact Lie Groups and Orbit Spaces

We present some background on invariants of compact Lie groups and orbit spaces. In both sections

we use fundamental facts from semialgebraic geometry like the Tarksi-Seidenberg principle, for

which we refer to [5]. For short, an basic open (basic closed) semialgebraic subset of the algebraic

set V � Rn is of the form fv 2 V j gi(v) > 0; 1 � i � rg, respectively, � instead of >, where
g1; g2; : : : ; gr 2 R[x1; x2; : : : ; xn]. An open (closed) semialgebraic subset of V is a �nite union of

basic open (basic closed) semialgebraic subsets of V .

1.1 Invariants of Lie Groups

Let G be a compact Lie group and � : G ! GLn(R) be a faithful representation. In the sequel

we identify G and its image �(G) � GLn(R). It is well-known that Rn admits a G-invariant
scalar product ( ; )G on Rn (see for instance [6]). By the Gram-Schmidt orthonormalization

process there exists A 2 GLn(n) such that A � G � A�1 � On(R), i.e, the representation �
is equivalent to an orthogonal representation. From now on we assume G � On(R) and that

G acts as usual on Rn. In the sequel let K be on of the �elds R or C. For X � Kn we

de�ne I(X) := ff 2 K[t1; t2; : : : ; tn] j f(x) = 0 for all x 2 Xg, the ideal of X and for an ideal

I � K[x1; x2; : : : ; xn] we de�ne V(I) := fx 2 Kn j f(x) = 0 for f 2 Ig, the variety associated to

I . A subset U � Kn is closed in the Zariski topology if and only if U = V(I) for some ideal

I � K[x1; x2; : : : ; xn]. A polynomial f 2 K[x1; x2; : : : ; xn] is invariant w.r.t. G if f(g�1 �x) = f(x)

for all g 2 G. The ring K[x1; x2; : : : ; xn]
G
, consisting of all invariant polynomials w.r.t. G, is called

the invariant ring of G (� will be omitted). By Hilbert's Finiteness Theorem, the invariant ring is

�nitely generated as a K�algebra. Homogeneous generators �1; �2; : : : ; �m of K[x1; x2; : : : ; xn]
G

are called fundamental invariants (i.e., each invariant polynomial is a polynomial in �1; �2; : : : ; �m).
Fundamental invariants de�ne the projection

� : Kn �! Kn=G � Km

x 7�! (�1(x); �2(x); : : : ; �m(x))

of Kn onto an embedding of the orbit space Kn=G � Km, also called the Hilbert map. Note that

� maps closed sets to closed sets2 and that each �ber contains precisely one closed orbit (see for

instance[9]). For K = C the image of �(Cn) � Cm equals the variety of the ideal of relations of

�1; �2; : : : ; �m (see for instance[9]). Over R it is well-known that the image of � is a semialgebraic

set.

Proposition 1. Let G � GLn(R) be a compact Lie group. The orbit space Rn=G of G is a

semialgebraic set semialgebraically homeomorphic to �(Rn).

Proof. It is well-known that the orbits of G can be separated by fundamental invariants of G (see

for instance Theorem 3.4.3. in [10]). By the Tarski-Seidenberg principle (see for instance [5]) the

real image of � is a semialgebraic set (it equals the projection of the graph, which is a real algebraic

set). ut

Note that the orbit space of an algebraic group parameterizes all closed orbits. Hence the orbit

space of a compact Lie group G parameterizes all orbits of G since they are closed. Orbits which are

not closed cannot be separated by polynomials so group actions having non-closed orbits cannot

be strati�ed by using their invariant rings, see [12].

1.2 Inequalities De�ning Orbit Spaces

Procesi and Schwarz have constructed polynomial inequalities which have to be added to the

equations coming from the Hilbert map of a compact Lie group G, which need not be a subgroup

of On(R), in order to describe an embedding of the quotient Rn=G � Rm. Essential parts of

2 Note that the map � is proper.
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the proof are the existence of a closed orbit in each �ber of � (see for instance [9]) and the

existence of a G-invariant inner product ( ; ) on Rn, which is used to construct the m � m
matrix grad(v) = (d�i(v); d�j(v))i;j=1;:::;m for v 2 Cn where � = (�1; �2; : : : ; �n) is the Hilbert

map. Here we have used the identi�cation3 of Rn with its dual Hom(Rn;R). They proved that

a point z 2 V(I), where I � R[y1; y2; : : : ; ym] is the ideal of relations among �1; �2; : : : ; �m, lies
in Rn=G if and only if the matrix grad(z) is positive semide�nite. The constraint that grad(z)
must be semide�nite yields inequalities for describing Rn=G. Recall that the type of a real m�m
MatrixM equals (p; q) where p, respectively, q denote the number of positive, respectively, negative
eigenvalues counted with multiplicities. Obviously, rank (M) = p+ q.

Proposition 2. An m �m matrix M over R is positive semide�nite (denoted by M � 0) i� all

symmetric minors of M are non-negative. The matrix M is positive de�nite (denoted by M > 0)

i� all principal minors of M are positive.

Proof. We refer to, e.g., Section IX.72 in [14]. ut

In order to de�ne the matrix grad(z) on the orbit space we have to show that all entries are

invariant w.r.t. G. By d�(z) we denote the Jacobian matrix of � at z.

Proposition 3. Let G � GLn(R) be a compact Lie group. For � 2 Gv the Jacobian of the Hilbert

map � : Rn ! Rm=G satis�es d�(v) = d�(v) Æ �. In particular, the functions v 7! grad(v)ij are

invariant.

Proof. Follows from �(v) = �(� � v), the chain rule, and the fact that � is linear. ut

Therefore the matrix grad(v) is also de�ned on Cn=G and z 2 �(Rn) implies that grad(z)
is positive semide�nite. This can be checked by testing if the set of 2n � 1 symmetric minors of

grad(z) are � 0.

Theorem 1. (Procesi-Schwarz [11]) Let G � GLn(R) be a compact Lie group and let � =

(�1; �2; : : : ; �m) be such that �1; �2; : : : ; �m generate R[x1; x2; : : : ; xn]
G
. The quotient space is given

by

Rm=G = �(Rn) = fz 2 Rm j grad(z) � 0; z 2 V(I)g
where I � R[y1; y2; : : : ; ym] is the ideal of relations of �1; �2; : : : ; �m.

Proof. We refer to [11]. ut

In subsequent sections we use the theorem of Procesi and Schwarz to provide a �ner description

of the orbit space in terms of so called strata (de�ned in the following section), which are useful

for several applications.

Example 1. Consider the compact Lie group G = SO(1) � Z2 � GL3(R) (rotations around the

z-axis and a re
ection �xing the (x; y)-plane) and its complexi�cation GC (see Section 3.1). The

invariant ring of G, respectively, GC equalsK[x; y; z]G =K[x2+y2; z2] whereK = R, respectively,

K = C. The Hilbert map is given by � : K3 ! K2; (x; y; z) 7! (x2 + y2; z2). Since the two

invariants are algebraically independent, we obtain C3=GC = C2 = im(�). Over the reals, since

grad(z) =

�
z1 0

0 z2

�
, we have

R3=G = im(�) =

��
z1
z2

�
2 R2 j z1 � 0; z2 � 0

�

Remark 1. (a) For practical purposes the dependence on a G-invariant scalar product may be

problematic.

(b) It is not necessary that G � On(R) for computing inequalities if a G-invariant inner product
is given in an e�ective form.

3 Note that d�j is a di�erential form, so d�j(z) : R
n
! R is a linear form.
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2 On the Strati�cation of the Representation and Orbit Space

Consider a compact Lie groupG � GLn(R), the set of points having the same symmetry type w.r.t.

G form a partition of Rn in �nitely many distinct open sets, also called a strati�cation. We present

underlying de�nitions and properties of of strata and their closures (Zariski- or metric topology).

These properties will be used in subsequent sections to compute equations and inequalities for

describing strata and semistrata.

2.1 Strati�cation of a Group-Action

We provide the de�nition of strata, respectively, strati�cations and associated objects like orbit

type, etc. In the sequel G � GLn(R) denotes a compact Lie group and X
Z

, respectively, X
m

denote the Zariski-, respectively, metric closure of the set X .

De�nition 1. Let E � Rn be a semialgebraic set. A strati�cation of E is a �nite partition E�

of E where each E� is a semialgebraically connected locally closed4 equidimensional semialgebraic

subset (or a �nite set of points) of Rn such that E� \ E�

m 6= ; and � 6= � implies E� � E� and

dimE� < dimE�. For � 2 � the set E� is called a stratum and E
m

�
is called a semi-stratum of the

strati�cation, and if d = dimE� then E� is called a d�stratum.

Given x 2 Rn, the set G(x) = fg � x j g 2 Gg is called the orbit of x and the group Gx = fg 2
G j g � x = xg is called the stabilizer of x.

Proposition 4. Let G be an algebraic group (de�ned over the �eld K) which acts algebraically

(via �) on Kn. For x 2 Kn the stabilizer Gx and the Xd = fx 2 X j dimGx � dg are closed.

Proof. Let �2 : X�X ! X be the projection onto the second component, ix : G ,! G�X; ix(g) =
(g; x) be an injection for x 2 X and de�ne �0 : G�X ! X�X by �0(g; x) = (�(g; x); x). All maps

are continuous (w.r.t. the Zariski-topology), hence the �bers of �2 Æ�0 Æ i are closed. The stabilizer
of x is closed since Gx is isomorphic to �0�1(x; x) = f(g; x) j �(g; x) = xg. We also obtain that

Xd = fx 2 X j dim(�2 Æ �0 Æ i)�1(x) � dg hence the claim follows from upper-continuity of the

�ber dimension. ut

De�nition 2. For a subgroup H � G we denote the conjugacy class of H in G by by [H ] =

fgHg�1 j g 2 Gg. The orbit type of x 2 Rn is [x] := [Gx]. For u; v 2 Rn we de�ne [u] < [v] if
Gu � H for some H 2 [v]. The associated stratum, respectively, semi-stratum of [x] is �x := fy 2
Rn j [x] = [y]g, respectively, �x

m

.

The orbit type is a measure for the symmetry of the points of Rn. We have [x] > [y] if the
point x has more symmetries than the point y, i.e., gGyg

�1 � Gx form some g 2 G. The notation
of strata is justi�ed by the fact that these sets, respectively, their images under the Hilbert map

form a strati�cation of the representation-, respectively, orbit space.

Proposition 5. Let G � GLn(R) be a compact Lie group.

(a) There are only �nitely many di�erent orbit types, i.e,. the set f[Gx] j x 2 Rng is �nite.

(b) The orbit types form a lattice. For v 2 �p := fx0 2 Rn j rank (d�(x0)) is maximalg the orbit

type [v] is the least element.

(c) For each v 2 Rn there exists a small neighborhood U � Rn of v such that u 2 U implies

[u] � [v].

Proof. (a) see for instance Ch. IV.10 in [6].

(b) Note that rank (d�(v)) is maximal i� dimN0
v
is maximal (see Section 2.2) hence the stabilizer

of v is contained in [w] for all w 2 Rn.

(c) We refer, e.g., to [1].

ut
4 The set E� is open in its metric closure E�

m

.
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The set �p is called the principal stratum of G.

Proposition 6. Let G � GLn(R) be a compact Lie group.

(a) For a subgroup H � G of G the set Rn

H
= fx 2 Rn j H � Gxg is a vectorspace. In particular,

the set fx 2 Rn j Gx = Hg is Zariski-open in Rn

H
.

(b) For 0 6= x 2 Rn each stratum �x is open in its closure (both metric and Zariski) and G(x) is
a proper subset of �x.

Proof. (a) Let x; y 2 Rn

H
and g 2 H . Obviously, g � (x + y) and g � �x; � 2 R, are contained in

Rn

H
. The set S = fx 2 Rn

H
j Gx � Hg is of dimension less than Rn

H
and can be written as the

union of all strata �y with [y] > [H ] intersected with Rn

H
. By Proposition 2.1.5, the set S is

closed, hence Rn

H
n S is Zariski-open.

(b) The �rst claim follows from Theorem 2.2.2. For the second claim note that G(x) is compact,

hence the set f�x j � 2 R; � > 0g is not contained in G(x) but in �x.

ut

2.2 Properties of Strata

We describe properties of strata and semi-strata on the representation and orbit space. In the

representation space semistrata, respectively, strata can be described by closed sets, respectively,

di�erences of closed sets. For a description of the orbit space Procesi and Schwarz have derived

inequalities (see Theorem 1.2.1). These inequalities, formed by the 2n � 1 symmetric minors of

grad(z) where n equals the dimension of the representation space, may also be used to describe

all semistrata on the orbit space and therefore also all strata by forming di�erences of closed sets.

We show in addition that a d-dimensional stratum can be described up to generic equivalence

by d inequalities and the ideal of its Zariski-closure in Rn=G. In particular, we provide e�ective

descriptions relying on equations and inequalities.

The strati�cation of the representation space of a compact Lie group is completely determined

by the matrix d�(v). Since Rn admits a G-invariant inner product ( ; )G we may de�ne the

orthogonal complement Nv to Tv(G(v)) and the decomposition N=N
0
v
� N1

v
, where N0

v
= fw 2

Nv j w is Gv-invariantg and N1
v
is the orthogonal complement of N0

v
in Nv. Note that G need not

be a subgroup of the orthogonal group.

Proposition 7. Let G � GLn(R) be a compact Lie group. We have

kerd�(x0) = Tx0G(x0)�N1
x0

and imd�(x0) �= N0
x0
:

Proof. Note that v 2 Tx0G(x0) implies v 2 kerd�(x0) since � is G-invariant. Let V be the the vec-

torspace generated by the gradients (considered as elements of Rn) d�1(x0); d�2(x0); : : : ; d�m(x0),
i.e., V = im d�(x0). Note that v 2 kerd�(x0) implies d�i(x0) � v = 0 so v 2 Nx0

. By Proposi-

tion 2.2.3 we have d�i(x0) Æ � = d�i(x0) for � 2 Gv , hence V � N0
v
. Now v 2 N0

x0
n V implies

v 2 ker d�(x0). Hence the rank of the matrix d�(x0) augmented by the column v equals the rank

of d�(x0) and so v 2 V . ut

Proposition 8. Let G � GLn(R) be a compact Lie group. We have

Tx0�x0
= Tx0G(x0)�N0

x0
:

In particular, T�(x0)�̂x0
�= N0

x0
.

Proof. One has to show that any curve through x0 and contained in �x0
has a tangent vector at

x0 which is contained in Tx0G(x0)�N0
x0
. This prove can be found in Section V of [1]. ut

Corollary 1. We have dim�x0
= dimTx0+dimN0

x0
= dimG � dimGx0

+ dimN0
x0

and

dim �̂�(x0) = dimN0
x0
.

Theorem 2. Let G � GLn(R) be a compact Lie group and � : Rn ! Rn=G � Rm be the Hilbert

map.
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(a) The union �(d) of all strata whose image under � is of dimension d equals the open semi-

algebraic set

�(d) = fv 2 Rn j rank (d�(v)) = dg :

(b) The union �d of all strata whose image under � is of dimension at most d equals the closed

semi-algebraic set

�d = fv 2 Rn j rank (d�(v)) � dg

In addition, �(d)
Z

= �(d)
m

= �d.

Proof. (a) Note that a stratum is a smooth semi-algebraic set, so by Proposition 2.2.8 we have

rank (d�(v)) = dim imd�(v) = dimT�(v)�̂�(v) = dim �̂�(v).

(b) The set �d can be de�ned by the vanishing of all (d + i)� (d + i) minors of @�

@x
where i � 1.

If d � minfn;mg then �d = Rn. Note that �(d) = �d n�d�1.

ut

So far we have only considered semistrata, respectively, strata on the representation space.

We now turn to a description of the orbit space (and its strati�cation) in terms of equations and

inequalities obtained from Procesi and Schwarz (see [11]). These inequalities are not strict, i.e.,

they involve `�'. We start with a description of strata by means of di�erences of semi-algebraic

closed sets.

Corollary 2. Let G � GLn(R) be a compact Lie group and x 2 Rn.

(a) Let Sx � Rn be a stratum. Then Ŝx = �(Sx) = fz 2 Rm j grad(z) � 0; z 2 V(J)g where

J � R[y1; y2; : : : ; ym] is the ideal of the image of Sx under �.

(b) Let Sx = �x[Bx be a disjoint union (Bx is a �nite union of semistrata). Then �̂x = �(�x) =

�(Sx)� �(Bx), i.e.,

�̂x = fz 2 Rm j z 2 �(Sx); z 62 �(Bx); grad(z) � 0g

Unfortunately, we need at most 2n � 1 inequalities, obtained from the symmetric minors of

grad(z). A direct description of a d-dimensional stratum by means of equations and (strict) in-

equalities can be obtained from the constraint that the type of grad(z) equals (d; 0).

Proposition 9. Let G � GLn(R) be a compact Lie group and d be the dimension of Rn=G. Then,
for i > 0, all (d+ i)� (d+ i)-minors of grad z vanish identically.

Proof. Note that d = maxfrank (d)�(v) j v 2 Rn=Gg. Hence all (d+ i)� (d+ i) minors of grad z
vanish identically in v. ut

Remark 2. By using Theorem 1.2.1 and Proposition 1.2.9 we obtain (at most) 2d � 1 inequalities,

where d = dimRn=G. Since each semistratum (and in particular the orbit space) is a basic closed

set in V(I) � Rm it can be de�ned by 1
2
d(d + 1) inequalities, see [13].

In case one is interested in 'generic' properties of a stratum �y, respectively, semistratum Ŝy
(or of the orbit space) a set of dim(Ŝy) inequalities suÆce and can be easily obtained from the

matrix grad(z). We call two semialgebraic sets S; T � V generically equivalent in the algebraic set

V if dim ((S n T ) [ (T n S)) < dim(V ).

Proposition 10. Let x 2 Rn; d = dim Ŝ�(x) = �(Sx) and let �1; �2; : : : ; �2d�1 be all k � k
symmetric minors of grad(z); 1 � k � d. There exist i1; i2; : : : ; id such that �ik

is a k � k-

minor and the semialgebraic set Ŝ�(x) is generically equivalent to fz 2 Rm j z 2 V(I); �i1
(z) >

0; : : : ; �id
(z) > 0g where I = I(Ŝ�(x)). In particular, the orbit space Rn=G is generically equivalent

to fz 2 Rm j z 2 V(I); �1(z) � 0; : : : ; �n(z) � 0g where I = I(�(Rn)).
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Proof. Note that v 2 Ŝx implies rank (grad(z)) � d, hence for i > 0 all (d + i) � (d + i)-minors

of grad(z) vanish identically on Ŝ�(x). Suppose that P (z) is so arranged that the �rst d principal

minors of P (z) do not vanish identically on Ŝ�(x). Let S = fz 2 Ŝx j P (z) � 0g and T = fz 2
Ŝx j �1(z) > 0; : : : ; �d(z) > 0g. Note that z 2 T implies that P (z) has rank equal to d. Hence
there exists a symmetric matrix Ai1;i2;:::;id

whose entry at position (r; s) equals P (z)ir;is , such that

rank (Ai1;i2;:::;id
) = d and all other submatrices of P (z) of rank d are conjugated to Ai1;i2;:::;id

(see

for instance Section IX in [14]). Since A1;2;:::;d is positive de�nite, we have rank (A1;2;:::;d) = d and
therefore P (z) is of type (d; 0) whenever z 2 T , hence T � S. Since the di�erence S nT is contained

in the algebraic set fz 2 Ŝ�(x) j
Q

d

i=1�i(z) = 0g which is of dimension less than d (no minor

vanishes identically and Ŝ�(x) is irreducible), the claim follows. Note that strict inequalities may

be relaxed (to inequalities of the form f � 0) without changing the generic equivalence class. ut

3 Constructing the Strati�cation

As shown in Section 2.2 the d-dimensional components of the strata can be computed by conditions

on the rank of the matrix d�(v). In this section we provide an algorithm together with necessary

tools for the construction of a strati�cation of the representation- and the orbit space.

More precisely, given a d-dimensional connected component C of a stratum (obtained from

rank conditions), the corresponding stratum is given by the orbit of C. The same holds true for

the associated semistrata. In this way we construct the strati�cation of the orbit space out of the

strati�cation of the representation space by computing the image of � (recall Corollary 2.2.2). It

remains to add a set of inequalities obtained from the Theorem of Procesi and Schwarz (Theorem

1.2.1, Corollary 2.2.2 and Proposition 3.2.12). We also present an algorithm for computing the

stabilizer of a given vector subspace of Kn, which may be used to distinguish the symmetry type

of strata5 of the same dimension.

All used algorithms but the computation of inequalities rely on algebraically closed ground

�elds. For this reason we present properties of complexi�cations of real varieties below.

3.1 On the Complexi�cation of a Group-Action

We brie
y mention some relations between a compact Lie group G and its complexi�cation and

the real- and complex orbit space. More precisely, given fundamental invariants �1; �2; : : : ; �m 2
R[x1; x2; : : : ; xn] of G, in order to describe the orbit space we have to compute the image of the

morphism � by Elimination Theory, i.e., one computes the ideal I of relations among �1; �2; : : : ; �m,
which requires an algebraically closed ground �eld. As we have already seen, the orbit space of G
may be properly be contained in the real algebraic set V(I) � Rm. Therefore we have to take care

if the computations performed over an algebraically closed �eld are valid overR. Several important

results are based on Kempf-Ness Theory. We refer, e.g., to [15].

Let G � GLn(R) be a compact Lie group de�ned by the ideal6 IG � R[s1; s2; : : : ; sm]. The
complexi�cation of G is the zero set of IG over the complex numbers, denoted by GC. Note that GC
is a complex reductive group with coordinate ringC[s1; s2; : : : ; sm]=IG = R[s1; s2; : : : ; sm]=IG
RC
and that G is Zariski-dense in GC. The ideals de�ning the (real) orbit and the stabilizer of a point

v 2 Rn can be computed by Elimination Theory from the ideal IG and the necessary constructions.

By Hilbert's Finiteness Theorem the invariant ring of G is �nitely generated, hence it follows

R[t1; t2; : : : ; tn]
G = R[h1; h2; : : : ; hm] for some homogeneous invariants h1; h2; : : : ; hm. The action

of G complexi�es to an action of GC onCn and the invariant ring of GC equalsC[t1; t2; : : : ; tn]
GC =

R[h1; h2; : : : ; hm] 
R C. Hence the Hilbert map � : Rn ! Rm complexi�es to �C : Cn ! Cm

and �C(C
n) = �(Rn)

Z

(closure in Cm). Let I be the ideal of relations of h1; h2; : : : ; hm. Since
V(I) = �(Rm)

Z

over R, by Procesi and Schwarz (see Theorem 1.2.1) we have Rn=G = fz 2
V(I) \Rm j grad(z) � 0g where the latter closure is taken in Rm.

5 Strata of the same dimension may have di�erent stabilizers of the same dimension but di�erent number

of connected components
6 Compact Lie groups are algebraic groups, see for instance [10].
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3.2 Strati�cation of the Representation Space

By using the results stated in Section 2 we are now able to provide an algorithm for com-

puting a strati�cation �1; �2; : : : ; �r of the representation space of a compact Lie group G.
The strati�cation of the orbit space Rm=G is obtained by computing the ideals of the images

�(�1); �(�2); : : : ; �(�r) and adding appropriate inequalities to each set of equations.

Algorithm 1 RepSpaceSemisstrata(IG;  )
In: Ideal de�ning a compact Lie group G � GLnR,  a list of polynomials in

R[s1; s2; : : : ; sk; t1; t2; : : : ; tn] de�ning the action of G.
Out: list of equations de�ning the semistrata �1; �2; : : : ; �r of G and their generic stabilizer .

begin

� = (�1; �2; : : : ; �r); // algebra generators of R[t1; t2; : : : ; tn]
G
;

d = dimRm=G // dimension of the orbit space

for i = 1 to d do
Jd = d� d minors of d�; // all d� d minors of the Jacobian

collectedSpaces = primary decomposition of
p
Jd.

c := 1;

for each V 2 collectSpaces[i] do
orbitV =  (G; V ); // orbit of V

if orbitV 62 Sc�1

j=1 Semistrata[d][j] then begin

Semistrata[d][c] = Semistrata[d][c] [ orbitV ;
stabilizer[d][c] = Stabilizer(IG;  ; V ); // representative of the orbit-type

c = c+ 1;

end

end-for;

end-for;

return([Semistrata; stabilizer]);
end RepSpaceSemisstrata.

A set of fundamental invariants for G may be computed by the algorithm given in [4], which

works for all reductive groups. Algorithms restricted to compact Lie groups can be found in [7].

We are left with the problem of computing a representative of an orbit type [v], i.e, given
a semistratum Sx, �nd equations for the 'generic' stabilizer G� of Sx. By computing a primary

decomposition of the ideal of G� we obtain the index G�=(G�)0

Proposition 11. Let G be an algebraic group de�ned by the ideal IG � K[s1; s2; : : : ; sm], let

� : G � Kn ! Kn be a linear action, let V � Kn be a subspace of dimension d and let

� = (�1; �2; : : : ; �n); �i 2 K[a1; a2; : : : ; ad], be a parameterization of V . De�ne the ideals I =

hIG; �i(s; t)� ti; ti � �i : 1 � i � ni � K(a1; a2; : : : ; ak)[s1; s2; : : : ; sm; t1; t2; : : : ; tn] and J = I \
K(a1; a2; : : : ; ak)[s1; s2; : : : ; sm] and the (partial) substitution map 'b : K(a1; a2; : : : ; an) ! K;

ai 7�! bi for (b1; b2; : : : ; bn) 2 Kn. There exists a non-empty Zariski-open set U � V such that

u 2 U =) 'u(J) �= I(Gu):

Proof. After a �nite number of steps we obtain a Gr�obner basis of I . In each step we collect the

following data: If multiplication by a polynomial f occurs then let Pf be the set of all coeÆcients

of monomials in f which contain some ai. When computing f�g then add all rational functions in

a1; a2; : : : ; an which are obtained from solving f � g = 0 by comparing coeÆcients. Exclude these

sets from Kn. ut

Algorithm 2 Stabilizer(IG;  ; IV )
In: ideal IG of a compact group G, ideal IV of a vectorspace V.

Out: equations of the stabilizer

Note: Basering is K(a1; a2; : : : ; ak)[s1; s2; : : : ; sk; t1; t2; : : : ; tn].
begin

I = std(IV ); // Gr�obner Basis of V
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c = 0;

for i = 1 to n do

if deg(NormalForm(ti; I)) > 0 then begin

c := c+ 1;

I = std(I [ fti � acg);
end-if

end-for

I = I [ f i � ti : 1 � i � ng;
J = std(I) \K(a1; a2; : : : ; ak)[s1; s2; : : : ; sk];
return(J);
end Stabilizer.

Remark 3. An alternative way to compute the number of connected components of the stabilizer

is as follows. Compute the generic orbit G(�) of V and determine a primary decomposition and

the multiplicity of G(�) (see [3]).

3.3 Strati�cation of the Orbit Space

Given a (semi-)strati�cation of the representation space, the computation of the strati�cation of

the orbit space is essentially the computation of the matrix grad(z) and its symmetric minors. If

G is not �nite then the dimension of the representation space is greater than the dimension of the

orbit space, which yields a reduction on the number of inequalities.

Proposition 12. Let G � GLn(R) be a compact Lie group and �1; �2; : : : ; �m be homogeneous

generators of the invariant ring of G. Suppose that �1; �2; : : : ; �d are algebraically independent and

d = dimRn=G. Inequalities de�ning Rn=G are given by the symmetric minors of grad0(z), which
is the matrix obtained from grad(z) by deleting all d+ i-th rows and columns for i � 1.

Proof. Note that d = dimRm=G = rank (d�(v)) hence any (d+ i)� (d+ i) minor, i � 1, of d�(v)
vanishes identically on Rm=G. ut

The algorithm returns a list of strata of the orbit space of G sorted by dimension. Each stratum

�̂d;i is described as a triple [[f1; f2; : : : ; fr]; [g1; g2; : : : ; g2d�1]; [h1; h2; : : : ; hs]] where �̂d;i = fz 2
Rm j f1(z) = 0; : : : ; fr(z) = 0; g1(z) > 0; : : : ; g2d�1(z) > 0; h1(z) 6= 0; : : : ; hs(z) 6= 0g.

Algorithm 3 OrbitSpaceStrata(�; semistrata)
In: � = �1; �2; : : : ; �m fundamental invariants of G � On(R),list of semistrata of the representation

space. Assume that �1; �2; : : : ; �d are algebraically independent and d = dimRn=G.
Out: list of strata of the orbit space (given by equations and inequalities)

begin

grad(z) = (d�i; d�j)
j=1::n

i=1::n
;

c = 0;

for d = 1 to jsemistrataj do
I = set of d� d minors of grad0(z); // see Proposition 3.2.12

J = set of k � k minors of grad0(z); 1 � k < d;
for i = 1 to jsemistrata[d]j do

strata[d][i] = [semistratum[d][i]; I; J ];
end-for

end-for

return(strata);
end OrbitSpaceStrata.

Remark 4. A strati�cation up to generic equivalence can be obtained by replacing the line de�ning

I by the line

I = set of �rst d� d principal minors of grad0(z); // grad0(z) arranged as in Proposition 2.2.10

and de�ning J = ;. In several occasions the sets de�ned by the modi�ed algorithm (where the
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inequalities are taken to be strict) provide descriptions of the corresponding strata. In general, this

is not true as can be seen by considering the action of G = Z4 � SO(3) on R6 (see example 3 in

[1]).

Example 2. We consider the compact Lie group G = O(1)�Z2 � GL2(R) (O(1) acting on the �rst

two coordinates, Z2 acting on the third coordinate) de�ned by the equations s21 + s22 � 1; s23+ s24�
1; s1s3 + s2s4; s

2
5 � 1. The Jacobian of � : R3 ! R2; (x; y; z) 7! (x2 + y2; z2) equals

�
2x 2y 0

0 0 2z

�
,

hence we have (all variables range over R)

�0 = fv = (a; b; c) j rank (d�(v)) = 0g = f(0; 0; 0)g
�1;1 [�1;2 = fv = (a; b; c) j rank (d�(v)) = 1g = f(a; b; 0) j a 6= 0 or b 6= 0g [ f(0; 0; c) j c 6= 0g

�2 = fv = (a; b; c) j rank (d�(v)) = 2g = f(a; b; c) j ac 6= 0 or bc 6= 0g

By using the algorithm Stabilizer we obtain for the associated stabilizers the table

Stratum �0 �1;1 �1;2 �2

Stabilizer G Z2 � Z2 O(1) Z2

As an example, the ideal I � R(a1; a2)[s1; s2; : : : ; s5] de�ning the generic stabilizer of �1;1 is given

by

I = ha1s3 + a2s4 � a2; a
3
1s2 + a1a

2
2s3 + a21a2 + a32s4 � a21a2 � a32;

a1s1 + a2s2 � a1; s
2
5 � 1; a21 + a22s

2
4 + a1a2s3 � a22s4 � a21i

Substitution of (a; b) 2 �1;1 for (a1; a2) yields the the ideal of the stabilizer of the point (a; b). The

matrix grad(z) =

�
z1 0

0 z2

�
is as in Example 1.2.1, hence we obtain the following description of the

strata:

�̂0 = f(0; 0)g
�̂1;1 [�1;2 = f(z1; 0) j z1 > 0g [ f(0; z2) j z2 > 0g

�̂2 = f(z1; z2) j z1 > 0; z1z2 > 0g

3.4 On the Construction of Smooth Potentials

As mentioned in the introduction, a strati�cation is useful for the modeling of spontaneous sym-

metry breaking. In many applications one has to construct a G-invariant potential7 V (whence V
de�nes a potential V̂ on the orbit space Rn=G) which assumes extrema on various strata8.

If V must be smooth following observation due to Abud and Satori [1].

Proposition 13. The condition that V (x) has an extremum on a stratum �x is equivalent to the

condition that V̂ (z) has conditional extremum on �̂z.

Note that a conditional extremum can be determined by Lagrange multipliers.

If V is a polynomial potential then we may omit inequalities by considering the Zariski-closure

of �̂z.

Proposition 14. Let �x � Rn be a stratum of G. The (real) Zariski-closure of �̂x is given by

the (real) zero set of the ideal I � R[t1; t2; : : : ; tm] which de�nes the semistratum Ŝx.

7 The potential V often depends on additional parameters like temperature, time, etc.
8 The strata where extrema of V must appear rely on the physics of the underlying model and may depend

on the parameters of V , see for instance [18].
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Conclusion and Future Work

We have presented an alternative approach for the computation of strati�cations of compact Lie

groups and have pointed out, that d inequalities suÆce in order to describe a d-dimensional stratum

of the orbit space up to generic equivalence. The advantage of the approach lies in the fact,

that several applications (like the construction of polynomial potentials) do not necessarily need

inequalities de�ning the orbit space and that primary decomposition is faster on the representation

space than on the orbit space. Additionally, if the representation of G is not orthogonal, out

approach may be used to compute the Zariski-closures of the strata of the orbit space. From a

practical point of view, the dependence on orthogonal representations should be avoided. Also of

interest is the study of an optimal lower- and upper bound for the number of inequalities needed

to de�ne strata and the orbit space.
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