
A Computer Algebra Based Knowledge System for

Diagnosis and Treatment of Migraine

Luis M. Laita1, Beatriz L�opez-Bravo1, Eugenio Roanes-Lozano2, Jose A. Alonso3,

Luis de Ledesma1, V��ctor Maojo1, Laura Laita4

1 Universidad Polit�ecnica de Madrid, Depto. de Inteligencia Arti�cial,

Campus de Montegancedo, Boadilla del Monte, E-28660-Madrid, Spain
2 Universidad Complutense de Madrid, Depto. de Algebra,

Edi�cio \La Almudena", c/ Rector Royo Villanova s/n, E-28040-Madrid, Spain
3 Universidad de Sevilla, Depto. de CC. de la Computaci�on e Inteligencia Arti�cial,

E.T.S.I. Inform�atica, Avda. Reina Mercedes s/n, E-41012 Sevilla, Spain
4 Universidad Complutense de Madrid, Escuela de Enfermer��a,

Ciudad Universitaria, E-28040 Madrid, Spain.

Abstract. A Rule-Based Knowledge System (RBKS), that deals with diagnosis and treat-

ment of migraine, and whose inference engine is based in Computer Algebra, is described.

The system is built up from three subsystems that deal with the possibility that a patient

su�ers migraine, the type of migraine the patient may su�er and with the treatment.

Each subsystem has a \knowledge base", containing the necessary information, and an \in-

ference engine", which enables to verify both consistency and extract consequences from the

information contained in the knowledge base. Although the RBKS described in this article

is complete and even includes a user interface, it is a prototype: the knowledge of migraine

contained in its knowledge base is a simpli�cation of experts' knowledge of this complex

illness.

The Gr�obner bases approach to RBKS described in this article could be applied to more

sophisticated knowledge bases on this illness and other illnesses and is even able to deal with

multi-valued logics.

Keywords: Medical Diagnosis, Migraine, Rule-Based Knowledge Systems, Computer Algebra

1 Introduction

The design of any Rule-Based Knowledge System, hereinafter denoted as RBKS, requires building

a \knowledge base" (to be denoted KB) and an \inference engine". If possible, a \user interface"

should also be provided.

The KB contains the experts' knowledge in form of condensed expressions (logical expressions

in our case). Apart from literature on the topic [1{4], three human experts were consulted.

The inference engine is a procedure to verify both consistency of the KB and to extract auto-

matically consequences from the information contained in the KB.

We believe that Knowledge or Expert Systems for diagnoses and treatments in medicine cannot,

so far, substitute a specialist or a team of specialists. Accordingly, our system has been designed

to be not more than a helpful tool for family doctors and sanitary personnel not specialized in

migraine, who may match their own opinion about a patient against the \opinion" (the output) of

the system, before deciding whether sending the patient to a specialist or not.

Nevertheless the interest of a system like ours is justi�ed because of the following two reasons.

1. A systematic methodology for building a KB for migraine is presented. This methodology may

be used, after appropriate but not essential changes, in the study of other illnesses.

2. The inference engine that we have developed is exact and can be used in the study of other

illnesses. Its eÆciency will be discussed in Section 5.

We have made a few pilot experiences with the system asking two family doctors to use the

system to �nd a tentative diagnosis and a tentative treatment for some persons that, allegedly,

250 Luis M. Laita et. al

su�ered migraine. The experience has been positive, in the sense that the system and the users'

opinions coincided in most cases. Nevertheless, the two family doctors considered that our KB

needed further re�nement, in the sense that it should be improved by adding more detailed in-

formation. They also insisted on the idea that the �nal judgement must be always done by a

specialist.

Our system is built up from three subsystems. The �rst subsystem outputs the possibility that a

patient su�ers migraine (based on his/her predisposing and triggering factors). If this possibility is

low or non-existent, the process stops. If the possibility is medium or high, the second subsystem is

activated. This second subsystem produces a diagnosis about the type of migraine the patient may

su�er. The third subsystem deals with the treatment of migraine. Each one of the three subsystems

has a KB and an \inference engine". We have also developed a user interface for the whole RBKS.

Our approach to RBKS, which is founded on \Normal Forms" and \Gr�obner bases" [5{7], could

be applied to more sophisticated KBs on this illness and other illnesses and is even able to deal

with multi-valued Logics.

2 Background

As this article is intended to be read by di�erent audiences, its logical and mathematical background

will be described informally. A few explanatory notes will be added when necessary and an outline

of the proof of the main theorem is added as Appendix II.

The logic-mathematical ideas to be presented in this section is based on the work of Kapur-

Narendran, Hsiang and Chazarain et al. [8{10] and our prior work on the application of Gr�obner

bases to automated deduction [11, 12], which we applied to the study of medical appropriateness

criteria [13], to the diagnosis of anorexia [14] and to other �elds (railway interlocking systems) [15].

The method of construction of the anorexia KB di�ered from the method used in the present mi-

graine study because when we built the former we had not thought of applying Karnaugh diagrams

[16], which simplify the KB. The construction of the inference engine was based on mathematical

results presented in [11, 12], but its CoCoA1 implementation was successively improved with sub-

stantial changes in the basic programs (not in the theory) to end in the implementation provided

in this article.

The best known related work is Buchanan's and Shortli�e's classical work [17].

2.1 Some Basic Ideas about RBKS

Our KBs consist of \facts" (to be described in this section below) and logical formulae like:

:x[1] ^ :x[2] ^ x[3] ^ :x[4] ! y[3]

These types of formulae are called \production rules". The above formula is read as follows:

? IF not-x[1] and not-x[2] and x[3] and not-x[4] hold, THEN y[3] holds.

The symbols of the form x[1] and their negations, :x[1], are called \literals".

Most production rules in this article have this form; nevertheless, in some cases, a prior grouping

of subsets of rules makes the symbol _" to appear intermixed with \^".

The set of all literals that appear on the left-hand side of any production rule but not in any

right-hand side, together with the set of their contrary literals (say, x[1] is the contrary of :x[1] and

conversely) is called \the set of potential facts". The users of the RBKS can choose some subset

of facts from the set of all potential facts (taking care not to choose simultaneously two contrary

literals), in order to \�re" rules. A rule can be \�red" if all literals on its left-hand side are given

as facts. The �ring of the rule gives its right-hand side as output.

We shall brie
y describe the construction of the KBs of the �rst and third subsystems and the

the inference engines of the third subsystem.

1 CoCoA, a system for doing Computations in Commutative Algebra. Authors: A. Capani, G. Niesi, L.

Robbiano. Available via anonymous ftp from: cocoa.dima.unige.it

A Computer Algebra Based Knowledge System for Diagnosis and Treatment of Migraine 251

The inference engine works as follows: �rst, facts and production rules are automatically trans-

lated into polynomials and, second, these polynomials are treated under theoretical and computa-

tional constructs called Gr�obner bases and Normal Forms, using the Computer Algebra language

CoCoA [18, 19], in order to verify consistency and draw consequences.

2.2 Some Basic Logical and Mathematical Concepts

A logical formula A0 is a \tautological consequence" of the formulae A1,A2,...,Am if and only if

whenever A1, A2, ..., Am are true then A0 is true.

Next, the expressions of the polynomials corresponding to the four basic bivalued logical for-

mulae (those corresponding to the symbols :,_, ^ and !) are provided. The uppercase letters

represent the propositional variables that stand in the production rules and the lowercase letters

represent their corresponding polynomial variables:

� :X1 is translated into the polynomial 1 + x1

� X1 _X2 is translated into the polynomial x1 � x2 + x1 + x2

� X1 ^X2 is translated into the polynomial x1 � x2
� X1 ! X2 is translated into the polynomial x1 � x2 + x1 + 1:

These translations can be input almost directly in CoCoA (see Subsection 4.1). They allow to

translate any logical formula into a polynomial; the coeÆcients of these polynomials are just 0 and

1, and the maximum power of variables is 1.

Theorem 1. A formula A0 is a tautological consequence of the formulae in the union of the two
sets fA1; A2; :::; Amg [fB1; B2; :::; Bkg that represent, respectively, a subset of the set of potential
facts and the set of all production rules of a RBKS if and only if the polynomial translation of
the negation of A0 belongs to the sum of the three ideals I + K + J generated, respectively, by
the polynomials x

2

1
� x1; x

2

2
� x2; :::; x

2

n
� xn, by the polynomial translation of the negations of

A1; A2; :::; Am and by the polynomial translation of the negations of B1; B2; :::; Bk.

Explanatory Note 1: We are working in the quotient ring: (Z=2Z)[x1; x2; :::; xn]=I , where I is

as above. That justi�es why the coeÆcients are just 0 and 1 and the maximum power of variables

is 1. As CoCoA cannot perform calculations in residue class rings, instead of considering the ideal

K + J � (Z=2Z)[x1; x2; :::; xn]=I

we shall consider

I +K + J � (Z=2Z)[x1; x2; :::; xn] :

That A0 is a consequence of the formulae in fA1; A2; :::; Amg [fB1; B2; :::; Bkg, can be checked in

CoCoA by typing:

NF(NEG(A[0]),I+K+J);

\NF" means \Normal Form". If the output of the command is 0, the answer is \yes"; if the output

is di�erent from 0, the answer is \no". See Appendix II for details.

2.3 Application to the Study of Inconsistency

A RBKS is inconsistent if and only if any formula written in the language of the RBKS is tauto-

logical consequence of the formulae in the RBKS. In such case, contradiction is a consequence of

the information contained in the RBKS.

Inconsistency is expressed by the algebraic fact that the element 1 of the ring of polynomials

belongs to the ideal I+K+J (I and J are always the same, K depends on the patient considered).

The reason is that the ideal is the whole ring in this case, so that the theorem above would

imply that all formulae are consequences of the RBKS, so that, particularly, contradictions are

consequences of the RBKS (both if the underlying logic is Boolean or multi-valued).

This condition can be checked using Gr�obner bases by typing the CoCoA command:

252 Luis M. Laita et. al

GBasis(I+J+K);

If the output is 1 (it appears as [1] on the screen) the RBKS is inconsistent; otherwise (it may be

a large set of polynomials) the RBKS is consistent.

In the case of multi-valued logic, di�erent types of consistency can be distinguished and inter-

preted from this point of view [20]:

{ any formulae is a tautological consequence of a maximal consistent set of facts, the rules and

the integrity constraints (week logic inconsistency)

{ the conjunction of the facts in a maximal consistent set of facts, the rules and the integrity

constraints can only take the truth value \false" (strong logic inconsistency).

3 Description of the First Subsystem: Possibility of Su�ering the

Illness

The �rst subsystem studies the in
uence of predisposing factors and triggering factors on the

possibility of su�ering migraine as a chronic illness. A literal is assigned to the existence or non-

existence of each one of these factors.

3.1 Predisposing Factors

We consider the following factors as predisposition factors:

- Gender: woman, denoted as x[1]; man, denoted as :x[1] (a relation 1

2:3
man/woman exists

among persons su�ering migraine).

- Familiar antecedents: yes, denoted as x[2]; no, denoted as :x[2] (this factor occurs in about

70% of the cases).

- Hormonal related predisposing factors: yes, x[3]; no, :x[3].

- Age: 15 � age � 30, x[4]; age < 15 or age > 30, :x[4] (migraine is more frequent among

people aged between 15 and 30).

3.2 Triggering Factors

Among the six factors treated by the system, we only mention the �rst and the �fth one.

- Dietetic triggering factors (abuse of food and drinks containing ca�ein, alcoholic drinks, espe-

cially red wine, vermouth, beer and champagne, milk and milk-based food, chemical additives,

especially monosodic glutamate, some seasonings and spices, abuse of diets and irregularity in

eating times): yes, x[5]; no, :x[5].

- Hormonal related triggering factors (related to menstrual cycle, pregnancy, taking oral contra-

ceptives): yes, x[9]; no, :x[9].

We have actually made an over-simpli�cation by placing all these factors at a same level with

respect to time. This is because we only intend to build a prototype, capable to be improved in

the future.

3.3 Production Rules Corresponding to Predisposing and Triggering Factors

The production rules for predisposing factors are constructed as follows. An empty Karnaugh

diagram was built �rst (Table 1). A specialist in anorexia was asked to assign an intensity of

predisposition to the illness (y[1] = high intensity, y[2] = medium intensity, y[3] = low or null

intensity) to each conjunction formed by an element of the �rst row and an element of the �rst

column. For instance, the intensity y[3] corresponds to the conjunction :x[1]^:x[2]^x[3]^:x[4].

This way Table 1 was �lled.

Each of these conjunctions implying its corresponding predisposition intensity constitutes a

production rule. In the case of the conjunction above, this rule is:

A Computer Algebra Based Knowledge System for Diagnosis and Treatment of Migraine 253

x[3] ^ x[4] x[3] ^ :x[4] :x[3] ^ :x[4] :x[3] ^ x[4]

x[1] ^ x[2] y[1] y[2] y[2] y[1]

x[1] ^ :x[2] y[2] y[2] y[2] y[2]

:x[1] ^ :x[2] y[2] y[3] y[3] y[2]

:x[1] ^ x[2] y[2] y[2] y[2] y[2]

Table 1. Some of the production rules corresponding to predisposing and triggering factors

:x[1] ^ :x[2] ^ x[3] ^ :x[4] ! y[3]

Well known simpli�cation processes of logic allow to condense the rules to a set with fewer

elements (�ve production rules, R1 to R5, in this case). For instance, the four production rules

corresponding to the last row of the diagram are condensed into the production rule:

R5 : :x[1] ^ x[2]! y[2]

This rule represents the statement:

? IF gender = man AND familiar antecedents = yes THEN intensity of predisposition to the

illness = medium.

The construction of the set of rules corresponding to triggering factors is a little more com-

plex because of the following two reasons. First, in each of the production rules corresponding to

triggering factors, a predisposition intensity must occur in the antecedent of the rule, because the

intensity of predisposition in
uences the possibility of su�ering the illness when triggering factors

occur. Second, the number of triggering factors is 6, while the number of predisposing factors was

4.

This gives rise to four Karnaugh diagrams of size 8� 8 each, which are not included here.

Conjunctions of triggering factors and negations of triggering factors, together with their cor-

responding predisposition intensities are assigned a possibility level (the possibility of su�ering

the illness). The propositional variables w[1]; w[2] and w[3] represent \the possibility of su�ering

migraine is high/medium/low or null", respectively.

The simpli�cation of all combinations that result from the mentioned Karnaugh diagrams gives

rise to 70 production rules. For instance R6 and R40 are:

R6 : y[1] ^ x[5] ^ x[6] ^ x[7]! w[1]

R40 : y[2] ^ x[5] ^ :x[6] ^ x[7] ^ x[8] ^ (x[9] _ x[10])! w[1]

R40, for instance, represents,

? IF intensity of predisposing factors = medium AND (in
uence of) dietetic factors = yes AND

(in
uence of) ambient factors = no AND (in
uence of) emotional factors = yes AND ((in
uence

of) hormonal factors = yes) OR (other triggering factors = yes), THEN possibility of su�ering

migraine = high.

4 Third Subsystem: Treatment

When a patient has been diagnosed chronic migraine, specialists may suggest �rst a change in

the style of life or elimination, when possible, of triggering factors. In addition, depending on the

frequency and intensity of the episodes (propositional variables x[1] and x[2] below), di�erent types

of medicines are usually recommended (we have classi�ed them in three generic types t[1], t[2],

t[3]).

Some counter-indications are dealt with later: self-medication and medication abuse is frequent

among persons su�ering migraine.

The production rules in this third subsystem are based on the information provided in [1{4]

and on the advice of experts.

254 Luis M. Laita et. al

- Frequency of episodes: occasional, x[1]; frequent, :x[1].

- Intensity of episode2: low/moderate, x[2]; moderate/severe, x[3].

- Medicines of type I (mostly analgesics and/or anti-in
ammatories): yes, t[1]; no, :t[1].

- Medicines of type II (tryptans or ergotamines): yes, t[2]; no = :t[2].

- Medicines of type III (prophylactic treatment, as treatment with �-blockers): yes, t[3]; no,

:t[3].

Combining (some of) these literals, the following three production rules represent a classi�cation

of the generic type of medicines which can be recommended to a patient.

R1 : x[1] ^ x[2] ! t[1]

R2 : x[1] ^ x[3] ! t[2]

R3 : :x[1] ^ x[3]:! t[3]

R2, for instance, says:

? IF frequency of episodes: occasional = yes AND intensity of episode: moderate/severe = yes,

THEN medicines of type II = yes.

Facts x[1]; x[2]; x[3] have been already treated. Next 13 factors are considered in the system,

represented by literals x[i] or :x[i] (i = 4; :::; 16). They express counter-indications to some medi-

cations. For the sake of space we only refer to the �rst four ones.

- Asthma: yes, x[4]; no = :x[4].

- Congestive hearth insuÆciency: yes, x[5]; no, :x[5].

- Diabetes: yes, x[6]; no, :x[6].

- Peripheral arteriopathy: yes, x[7]; no, :x[7].

The di�erent possible combinations of the literals x[i] or :x[i] (i = 4; :::; 16) with the literals

t[j] or :t[j] (j = 1; :::; 3), imply one of the following prophylactic treatments.

- Prophylactic treatment with �-blockers: yes, y[1]; no. :y[1].

- Prophylactic treatment with anti-convulsives: yes, y[2]; no, :y[2].

- Prophylactic treatment with anti-depressives: yes, y[3]; no, :y[3].

- Prophylactic treatment with blockers of channels of calcium: yes, y[4]; no, :y[4].

- Prophylactic treatment with agonists of serotonine re-captation: yes, y[5]; no, :y[5].

The implications between combinations of the x[i], :x[i] (i = 4; :::; 16) with t[j], :t[j] (j =

1; :::; 3) in the antecedents and y[k], :y[k] (k=1,..,5) in the consequents, give rise to the following

production rules, which refer to the prophylactic treatment with �-blockers.

R4 : t[3] ^ :x[4] ^ :x[5] ^ :x[6] ^ :x[7] ! y[1]

R5 : :t[3] _ x[4] _ x[5] _ x[6] _ x[7]! :y[1]

For instance, R4 represents:

? IF medicines of type III (prophylactic treatment) = yes AND asthma = no AND congestive

hearth insuÆciency = no AND diabetes = no AND peripheral arteriopathy = no THEN

prophylactic treatment with �-blockers = yes.

Production rules R6 and R7 refer to the prophylactic treatment with anti-convulsives.

R6 : t[3] ^ :x[8] ! y[2]

R7 : :t[3]! :y[2]

For instance, R6 represents:

2 A literal and its negation haven't been used in this case because the two possibilities are not exclusive.

A Computer Algebra Based Knowledge System for Diagnosis and Treatment of Migraine 255

? IF medicines of type III (prophylactic treatment) = yes AND altered hepatic function = no,

THEN prophylactic treatment with anti-convulsives = yes

Only two among all the production rules referring to the prophylactic treatments with anti-

depressives, blockers of calcium channels and agonists of serotonine re-captation are transcribed

next. Their meaning, similar to the ones just given for R4 and R6, is straightforward.

R8 : t[3] ^ :x[6] ^ :x[8] ^ :x[9] ^ :x[10] ^ :x[11] ^ :x[12]! y[3]

R13 : :t[3] _ x[8] _ x[16]! :y[5]

The next two production rules state a relation of a partial incompatibility of t[1] and t[2] with

t[3]. They must be understood as, �rst, if it is enough to treat a patient's migraine with medicines

of type I or II, do not prescribe medicines of type III and, second, if the patient does not react

positively to medicines of type I and II, he/she should be treated with medicines of type III. For

the sake of simplicity we do not include any statement that would translate the possibility of being

treated with medicines of type III and, at the same time, being recommended to use medicines of

both or one of the two other types.

R14 : t[1] _ t[2]! :t[3]

R15 : :t[1] ^ :t[2]! t[3]

4.1 CoCoA Implementation of the Inference Engine of the Third Subsystem

First steps

The commands are written in ``typewriter'' font, while the explanations are written in

normal font.

The polynomial ring A with coeÆcients in Z=2Z (that is, allowing coeÆcients 0 and 1), 16

variables x, three variables t and �ve variables y and the ideal I are declared as follows.

A::=Z/(2)[x[1..16],t[1..3],y[1..5]];

USE A;

I:=Ideal(x[1]^2-x[1],...,x[16]^2-x[16],t[1]^2-t[1],...,t[3]^2-t[3],y[1]^2-y[1],

...,y[4]^2-y[4],y[5]^2-y[5]);

(note that \.." is an abbreviation accepted by CoCoA, unlike \,...," that is used here to save

space and is not acceptable code).

The following commands (see Section 2.2 above) produce the polynomial translation of bivalued

logical formulae. CoCoA does not admit the de�nition of in�x operators, so that it requires that

logical formulae be written in pre�x form. NEG, OR1, AND1, IMP will denote :, _, ^, !, respectively.

NEG(M):=NF(1+M,I);

OR1(M,N):=NF(M+N+M*N,I);

AND1(M,N):=NF(M*N,I);

IMP(M,N):=NF(1+M+M*N,I);

Entering the Rule-Based Knowledge System

All 15 production rules of the third subsystem should be entered �rst. As said above, CoCoA

requires that formulae are written in pre�x form. For instance,

R1 : x[1] ^ x[2] ! t[1]

is rewritten as:

R1:=NF(IMP(AND1(x[1],x[2]),t[1]),I);

256 Luis M. Laita et. al

The set of potential facts should be entered. Each patient is characterized by the factors and

symptoms that form a subset of the whole set of potential facts, subject to the condition that such

a subset contains one and only one element of each pair formed by a fact Fi and its contrary FiN

(i 2 f1; 4; :::; 16g); and either F2 or F3.

F1:=x[1]; F1N:=NEG(x[1]);

F2:=x[2];

F3:=x[3];

F2:=x[4]; F1N:=NEG(x[4]);

F2:=x[5]; F1N:=NEG(x[5]);

... ...

... ...

F16:=x[16]; F16N:=NEG(x[16]);

The ideal J , generated by the 15 production rules of the systems is:

J:=Ideal(NEG(R1),NEG(R2),NEG(R3),NEG(R4),NEG(R5),NEG(R6),NEG(R7),NEG(R8),NEG(R9),

NEG(R10),NEG(R11),NEG(R12),NEG(R13),NEG(R14),NEG(R15));

(recall that Theorem 1 implies the need of entering NEG before the rules; the same holds for the

ideal K below).

Let us consider, as illustration, the following ideal K that characterizes a patient by factors

:x[1], x[3], x[4], x[5], :x[6], x[7], :x[8], :x[9], :x[10], :x[11], :x[12], x[13], x[14], x[15], :x[16].

K:=Ideal(NEG(F1N),NEG(F3),NEG(F4),NEG(F5),NEG(F6N),NEG(F7),NEG(F8N),NEG(F9N),

NEG(F10N),NEG(F11N),NEG(F12N),NEG(F13),NEG(F14),NEG(F15),NEG(F16N));

Checking for Consistency

Once the whole set of rules and potential facts has been written down, it is necessary to check

its consistency. Recall that consistency is checked by using the command GBasis.

Checking for consistency helps not only to suppress inconsistencies, but also to improve the KB

(always interacting with the experts).

In the example above, typing:

GBasis(I+K+J);

no inconsistency was found ([1] was not returned). In the way the set of production rules has been

built here, with only one literal as consequent, it is not probable to �nd inconsistencies other that

those resulting from misprints.

Explanatory Note 2: Observe that the complete consistency checking of this RBKS would need

to check that each possible (maximal consistent) set of facts together with the rules does not

produce any inconsistency. As this is a huge task (there are 215 = 32768 maximal sets in this

case), we have decided to check the consistency for the data of each patient before applying the

knowledge extraction for him/her. So the consistency is checked for the information contained in

I + K + J (for di�erent ideals K). If any inconsistency was found it should be reported to the

authors for debugging.

Explanatory Note 3: Nevertheless, other types of inconsistencies may occur due to what are

known as \integrity constraints", denoted \IC". An integrity constraint is a conjunction of literals

which the experts judge that can never hold simultaneously.

For instance, an IC can be the conjunction :� ^ � of two literals. Thus, the negation \NIC"

of the integrity constraint, in our example :(:� ^ �), ought to be added to the expert system as

new information.

If by �ring some rules from the given facts, one �nds all the literals in the IC, in our case

both :� and �, an inconsistency takes place, in our case :� ^ � and :(:� ^ �). For example, if,

instead of including in medicines of type II, both tryptans and ergotamines, the third subsystem

A Computer Algebra Based Knowledge System for Diagnosis and Treatment of Migraine 257

separated them into two types, an IC \tryptans AND ergots" should be introduced, because they

are incompatible (as simultaneous treatments).

Extraction of Consequences

Let us consider, as illustration, the ideal K de�ned above. Let us ask if any of the prophylactic

treatments y[i] (i = 1; :::; 5) should be recommended to the patient characterized by the ideal K.

The following commands:

NF(NEG(y[1]),I+K+J);

NF(NEG(y[2]),I+K+J);

NF(NEG(y[3]),I+K+J);

NF(NEG(y[4]),I+K+J);

NF(NEG(y[5]),I+K+J);

give, as output, 1, 0, 0, 1 and 0, respectively. It means that any of the prophylactic treatments

y[2], y[3] and y[5] could be recommended.

As a matter of fact, as the system does not substitute the expert, who must have the last word

about treatment.

5 Considerations on the Use of a Gr�obner Bases Approach

In [21], a propositional Gr�obner proof system is discussed. It is shown that this system polynomially

simulates Horn clause resolution and weakly exponentially simulates resolution. The authors say

that this suggests that the Gr�obner bases algorithm might replace resolution as a basis for heuristics

for NP-complete problems (Kapur and Narendran already stated in [8] that using a Gr�obner bases

approach subsumes resolution). Let us observe that there is an important di�erence between the

average case and worst case complexities of Gr�obner bases computations. In [21] there is also a

comparison with other methods, which result only slightly superior. Thus, from the point of view

of complexity, using a Gr�obner bases approach seems reasonable.

This was also the opinion of the referee of [11], an expert in automated theorem proving, who

judged our approach as competitive even though not the best ([11], page 8).

Our choice is mainly based on our previous experience in developing medium size RBKSs and

other related simulations. We have developed the theoretical aspects of an algebraic approach to

the veri�cation and knowledge extraction in RBKS with Boolean or multi-valued modal underlying

logic, that uses Gr�obner bases [11, 12]. We have used it to study:

{ veri�cation and decision taking in medical appropriateness criteria for revascularization in case

of coronary deseases [13] (it uses three-valued and modal logic)

{ early detection, diagnoses and treatment of anorexia [14] (it uses Boolean propositional logic)

{ ...

We have also developed a Gr�obner bases approach to topology-independent railway interlocking

systems [15]. We had studied the problem both using Prolog and with a matrix approach [22],

obtaining slightly worse although comparable timings. Nevertheless, the order of magnitude of the

problems that can be treated is the same.

In fact, after developing a passengers
ow simulation package for the Spanish Airport Authority

(AENA), we are now developing a Gr�obner bases based model for Advanced Surface Movement

Guidance and Control Systems (A-SMGCS).

An advantage of this approach is the possibility of reusing the G�robner basis corresponding to

the part of the KB that contains the set of production rules. Therefore, an update does not require

to start the computation from the beginning.

There are two more advantages in our approach:

{ it can deal with multi-valued logics

{ logical formulae can be written without any restrictions (they do not have to be Horn clauses;

_ symbols can appear in the consequent).

258 Luis M. Laita et. al

A future extension made possible by this approach is the application of the method of hy-

potheses completion used in automatic discovery in Geometry [23{25] to knowledge completion in

RBKSs.

Summarizing, our approach seems to be competitive when dealing with problems of small and

medium size (e.g. RBKS with 80 variables and 120 rules, railway stations with 25 or 40 sections...)

or in bigger problems that can be divided into subsystems.

6 Conclusions

We have presented a prototype of a RBKS for the study of migraine. At the present state, the

RBKS is able to produce automatically a diagnosis of the illness. In addition, the system evaluates

the di�erent treatments of migraine.

Obviously the goal is not to substitute the specialist. There are two possible uses: �rst, to help

in the detection of the illness by non-specialists (that must send the patient to a specialist!) and,

second, to allow the specialist to compare his diagnosis and prescription with that one suggested

by the system.

Its KB could be improved, detailed or updated without modifying its inference engine and

knowledge treatment, as described in the paper.

Acknowledgements

This work is partially supported by the research projects TIC2000-1368-C03-01 and TIC2000-1368-

C03-03 (Ministry of Science and Technology, Spain).

We would like to express our gratitude to the referees of this article, whose most valuable

comments and suggestions have made possible to improve it considerably.

References

1. T. B. Smith, La prevenci�on de la migra~na ha dejado de ser un quebradero de cabeza, Tiempos M�edicos

560 (1999) 23-29.

2. URL: http://www.ama-assn.org/special/migraine/migraine.htm

3. URL: http://www.amerifarma.com

4. URL: http://www.iladiba.com

5. W.W. Adams, P. Loustaunau, An Introduction to Gr�obner Bases (Graduate Studies in Mathematics,

American Mathematical Society, Providence, RI, 1994).

6. T. Becker, V. Weisspfenning, Gr�obner bases (Springer, New York, 1993).

7. F. Winkler, Polynomial Algorithms in Computer Algebra (Springer-Verlag, Vienna, 1996).

8. D. Kapur, P. Narendran, An Equational Approach to Theorem Proving in First-Order Predicate

Calculus (General Electric Corporate Research and Development Report 84CRD296, Schenectady,

NY, March 1984, rev. December 1984). Also in: Proceedings of IJCAI-85 (1985) 1146-1153.

9. J. Hsiang, Refutational Theorem Proving using Term-Rewriting Systems, Artif. Intell. 25 (1985) 255-

300.

10. J. Chazarain, A. Riscos, J.A. Alonso, E. Briales, Multivalued Logic and Gr�obner Bases with Applica-

tions to Modal Logic, J. Symb. Comp. 11 (1991) 181-194.

11. L.M. Laita, E. Roanes-Lozano, L. de Ledesma, J. A. Alonso, A Computer Algebra Approach to Veri-

�cation and Deduction in Many-Valued Knowledge Systems, Soft Comp. 3/1 (1999) 7-19.

12. E. Roanes-Lozano, L.M. Laita, E. Roanes-Mac�ias, A Polynomial Model for Multivalued Logics with a

Touch of Algebraic Geometry and Computer Algebra, Math. Comp. Simul. 45/1 (1998) 83-99.

13. L.M. Laita, E. Roanes-Lozano, V. Maojo, L. de Ledesma, L. Laita, An Expert System for Managing

Medical Appropriateness Criteria Based on Computer Algebra Techniques, Comp. Math. Appl. 42/12

(2001) 1505-1522.

14. C. P�erez. L.M. Laita, E. Roanes-Lozano, L. L�azaro, J. Gonz�alez, L. Laita, A Logic and Computer

Algebra-Based Expert System for Diagnosis of Anorexia, Math. Comp. Simul. 58 (2002) 183-202.

15. E. Roanes-Lozano, E. Roanes-Mac��as, Luis M. Laita, Railway Interlocking Systems and Gr�obner bases,

Math. Comp. Simul. 51 (2000) 473-481.

16. E. Mendelson, Boolean Algebra and Switching Circuits (Schaum, McGraw-Hill, New York, 1970).

A Computer Algebra Based Knowledge System for Diagnosis and Treatment of Migraine 259

17. B. Buchanan, E.H. Shortli�e, Editors, Rule Based Expert Systems: the MYCIN Experiments of the

Stanford Heuristic Programming Project (Addison Wesley, New York, 1984).

18. A. Capani, G. Niesi, CoCoA User's Manual v. 3.0b (Dept. of Mathematics, University of Genova,

Genova, 1996).

19. D. Perkinson, CoCoA 4.0 Online Help-electronic �le acompanying CoCoA v.4.0 (2000).

20. E. Roanes-Lozano, E. Roanes-Mac��as and L.M. Laita, Geometric Interpretation of Strong Consistency

of Knowledge Based Systems, Procs. of CASC'99 (Springer-Verlag, Berlin-Heidelberg, 1999) 349-364.

21. M. Clegg , J. Edmonds , R. Impagliazzo, Using the Groebner basis algorithm to �nd proofs of un-

satis�ability, Procs. of the twenty-eighth annual ACM Symp. on Theory of Computing (Philadelphia,

Pennsylvania, 1996) 174-183.

22. E. Roanes-Lozano, Luis M. Laita, An applicable topology-independent model for railway interlocking

systems, Math. Comp. Simul. 45 (1998) 175-183.

23. D. Kapur, J.L. Mundy, Wu's method and its application to perspective viewing, in: Geometric Rea-

soning (MIT Press, 1989).

24. T. Recio, M.P. V�elez, Automatic Discovery of Theorems in Elementary Geometry, J. Aut. Reas. 23

(1999) 63-82.

25. E. Roanes-Mac��as, E. Roanes-Lozano, Automatic Determination of Geometric Loci. 3D-Extension of

Simson-Steiner Theorem, in: Arti�cial Intelligence and Symbolic Computation, Procs. of AISC'2000

(Springer-Verlag, LNCS 1930, Berlin-Heidelberg, 2001) 157-173.

7 Appendix I: Example of Screenshot of the GUI

The screenshot in Fig. 1, refers to triggering factors. The user selects the keys corresponding to the

patient, that are translated into literals. The GUI is in Spanish, but the English terms are similar.

8 Appendix II: Some Notes on the Theoretical Background of the

Inference Engine

Although the underlying logic in the RBKS described in the article is Boolean logic, we shall detail

here the general case of any p-valued logic (p prime).

We use the following restricted notion of propositional logic. It consists of

(i) a set X = fX1; X2; :::; Xng of propositional variables and a set C = fc1; c2; :::; ctg of connec-

tives, from which well formed propositional formulae, denoted by the letter A (with or without

subscripts) are constructed. These formulae form another set denoted PC(X1; X2; :::; Xn).

(ii) a set L = f0; 1; :::; p�1g (where p is a prime number). The elements 0; 1; :::; p�1 are considered

as the truth values of the p-valued logic. The number p � 1 represents the value \true", 0

represents \false", and the other elements represent intermediate truth values.

(iii) for each connective cj 2 C, a set of truth tables de�ned by functions Hj : L
sj �! L (sj is the

arity of the connective cj). The expression cj(A1; :::; Asj
) represents the formula constructed

by applying the connective cj to the formulae A1; :::; Asj
:

(iv) a function v called \valuation" v : X �! L :

(v) for each v another function v
0 : PC(X1; X2; :::; Xn) �! L, recursively de�ned as follows:

v
0(A) = v(A) if A 2 X

v
0(A) = Hj(v

0(A1); :::; v
0(Asj

)) if A is well formed from cj and A1; :::; Asj
:

(vi) a relation named \tautological consequence": givenA0 andA1; A2; :::; Am in PC(X1; X2; :::; Xn),

A0 is a tautological consequence of A1; A2; :::; Am, whenever if v
0(A1) = p�1, v0(A2) = p�1,...,

v
0(Am) = p� 1 then v

0(A0) = p� 1. Intuitively, a formula A0 is a tautological consequence of

other formulae A1; A2; :::; Am if and only if whenever A1; A2; :::; Am are true, A0 is also true.

fA1; A2; :::; Amg j= A0 denotes that A0 is a tautological consequence of A1; A2; :::; Am :

Let us assign a polynomial to each logical formula. This is achieved by assigning to each

propositional variable Xi a monomial xi and de�ning, for each connective cj , a function:

fj : ((Z=pZ)[x1; x2; :::; xn]=I)
sj
�! (Z=pZ)[x1; x2; :::; xn]=I :

260 Luis M. Laita et. al

Fig. 1. A screenshot of the GUI

A Computer Algebra Based Knowledge System for Diagnosis and Treatment of Migraine 261

The symbol I represents the ideal generated by the polynomials x
p

1
� x1; x

p

2
� x2; :::; x

p

n
� xn:

I = hx
p

1
� x1; x

p

2
� x2; :::; x

p

n
� xni

As the process has been published by the authors elsewhere [11, 12], we simply transcribe as

illustration the �nal expressions for the function f! for Boolean logic:

f!(q; r) = (1 + q + q � r) + I

and for Kleene's three-valued and modal logic:

f!(q; r) = (q2 � r2 + q
2
� r + q � r

2 + 2 � q + 2) + I

(the complexity of the polinomial expressions increase with the value of p).

The functions fj translate the basic propositional formulae :Xi,Xi^Xk; Xi_Xk,Xi ! Xk (and

�Xi, �Xi in the case of three-valued modal logic) into (classes of) polynomials. The next de�nition

determines a function � that, interacting with the functions fj , translates any propositional formula,

in particular the rules and other items of any RBS, into (classes of) polynomials.

� : PC(X1; X2; :::; Xn) �! (Z=pZ)[x1; x2; :::; xn]=I

is a function from propositions to (classes of) polynomials, recursively de�ned as follows:

�(Xi) = xi + I , for all i = 1; :::; n

�(A) = fj(�(A1); :::; �(Asj
)) if A is cj(A1; :::; Asj

) :

For each valuation v, v� is the homomorphism:

v
� : (Z=pZ)[x1; x2; :::; xn]=I �! Z=pZ

such that v�(xi + I) = v(Xi) for i = 0; :::; n.

It can be proved that for any valuation v, v0 = v
�
� � :

Lemma 1. f0g+ I = (
T

i=1;::;k
ker(v�

i
))\ (�(PC(X1; X2; :::; Xn))), where k = p

n is the number of
all valuations, the v0

i
s range over all possible valuations.

Lemma 2. Let A1; A2;:::;Am; A0 2 PC(X1; X2; :::; Xn): The following two assertions are equiva-
lent:

(i) for all valuations vi(i = 1; :::; k) such that v�
i
(�(A1)) = v

�

i
(�(A2)) = ::: = v

�

i
(�(Am)) = 0 it

follows that v�
i
(�(A0)) = 0.

(ii) �(A0) 2 h�(A1); �(A2); :::; �(Am)i :

Theorem 1. (revisited) Let A0; A1; :::; Am 2 PC(X1; X2; :::; Xn). The following assertions are
equivalent:

(i) fA1; A2; :::; Amg j= A0,
(ii) f:(�(A0)) 2 hf:(�(A1)); :::; f:(�((Am))i :

Proof.- fA1; A2; :::; Amg j= A0 i� for any v, v0(A1) = p � 1; :::; v0(Am) = p � 1 implies v0(A0) =

p � 1 (remember that p � 1 is the value \true"). This is equivalent to the condition: (p � 1) �

v
0(A1) = 0; :::; (p� 1)� v

0(Am) = 0 implies (p� 1)� v
0(A0) = 0 which is equivalent to v

0(:A1) =

0; :::; v0(:Am) = 0 implies v0(:A0) = 0.

This implication is equivalent to that, for any v,

v
�

i
(�(:A1)) = 0; :::; v�

i
(�(:Am)) = 0 implies v�

i
(�(:A0)) = 0

which is equivalent to

v
�

i
(f:(�(A1))) = 0; :::; v�

i
(f:(�(Am))) = 0 implies v�

i
(f:(�(A0)) = 0 :

By the Lemma 2 above, the last implication is equivalent to

f:(�(A0)) 2 hf:(�(A1)); :::; f:(�(Am)i :

