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Abstract. General Schr�odinger equation is considered with a central polynomial potential

depending on 2q arbitrary coupling constants. Its exceptional solutions of the so called Mag-

yari type (i.e., exact bound states proportional to a polynomial of degree N) are sought. In

any spatial dimension D � 1, this problem leads to the Magyari's system of coupled polyno-

mial constraints, and only purely numerical solutions seem available at a generic choice of q

and N . Routinely, we solved the system by the construction of the Janet bases in a degree-

reverse-lexicographical ordering, followed by their conversion into the pure lexicographical

Gr�obner bases. For very large D we discovered that (a) the determination of the \accept-

able" (which means, real) energies becomes extremely facilitated in this language; (b) the

resulting univariate \secular" polynomial proved to factorize, utterly unexpectedly, in a fully

non-numerical manner. This means that due to the use of the Janet bases we found a new

exactly solvable class of models in quantum mechanics.

1 Anharmonic Oscillators and the Problem of Their Solution

Elementary Hamiltonian H = p2 + q2 + � q4 of the so called anharmonic oscillator in one spatial

dimension D = 1 is an example which plays a key role in quantum theory and in many of its

applications. We may recollect, for illustration, that small experimental irregularities in the vibra-

tional spectra in atomic physics are currently being attributed to the quartic anharmonicity at

a suitable and, if possible, reasonably small coupling constant, � = O(1) [1]. For the �t of some

experimental data of this type one may even employ the two-parametric family of the Hamiltonians

H = p2 + q2 + � q4 + % q6 [2], etc. In all these cases, sophisticated perturbation calculations are

usually employed in order to achieve an agreement between experiment and theory (cf., again, ref.

[1] and many other papers cited therein).

In a mathematically more ambitious setting, Magyari [3] was probably the �rst who noticed

that in one dimension, Schr�odinger equation admits non-perturbative, exceptional but exact bound-

state solutions  (Magyari)(q) for any anharmonic potential of the following special polynomial form

symmetric with respect to the origin,

V [q](r) = g0 r
2 + g1 r

4 + : : :+ g2q r
4q+2 ; g2q = 
2 > 0 ; (1)

provided only that its couplings gj satisfy certain q constraints. These constraints have the form

of the system of coupled polynomial equations (their form will be displayed and discussed below).

Unfortunately, the achievement of the practical compatibility of the couplings with the Magyari's

constraints requires the solution of his equations by a suitable more or less purely numerical

technique. The corresponding algorithm is usually based on the use of Gr�obner bases [4]. The

procedure is very standard and one would have no particular reason for its study in more detail in

general.

The �rst of the changes which proved relevant in this context appeared with the introduction of

the higher-dimensional Schr�odinger equations with polynomial interactions and with the Magyari-

type solutions [5]. For all of these models, the Magyari-type equations become dependent on the
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dimension D � 1 playing the role of a new formal parameter. The freedom in its choice will

prove most relevant in our present paper but in a historical perspective, it still took many years

before this chance has been conceived and described in ref. [6] where the choice of the potential

proved restricted, for purely technical reasons, to the \�rst nontrivial" polynomial of type (1) with

exponent q = 2.

The main inspiration of our present study of polynomial oscillators with q > 2 lies in the broad

and not yet fully explored variety of the possibilities hidden in a consequent formal analysis of

the Magyari-type equations. In this sense, the next decisive step has been made in refs. [7] where

the Magyari's equations proved tractable in semi- and/or non-numerical manner at the �rst few

lowest choices of the degree of the wave function, viz., at N = 1, N = 2, and N = 3. In these

\trivial" cases, an overall tendency emerged of a distinct separation between the real (= physical)

and complex (= apparently fully redundant) Magyari's couplings. This result o�ered an important

hint for a more general analysis of the problem [8{10] and suggested the idea of using the Janet

bases [11{13] in the similar cases. The simplicity of these low�N models enabled us to see that an

overall and more systematic study should be directed towards the domain of the very large D � 1

(cf. also refs. [14{17] in this respect).

In spite of the unique success of the mathematics of Magyari's nonlinear algebraic equations,

a number of diÆculties remained connected with their practical applications and applicability

at the �nite D. One of the key reasons (and di�erences from the harmonic oscillator and other

exactly solvable models) is that the explicit construction of the Magyari's energies remains purely

numerical. Indeed, these values (as well as the related couplings - we shall show some technical

details below) must be computed as roots of a certain \secular" polynomial. This means that the

di�erence between the variational, \generic N = 1" rule in Hilbert space seems only marginally

simpli�ed by the Magyari-type construction of any N � 1 bound state.

The main purpose of refs. [6, 15] derived precisely from the latter point. Using the idea of

perturbation expansions for Hamiltonians H = H(q;N)(D), these studies proceeded in two steps.

Firstly, a zero-order approximations H
(q;N)
0 (1) have been constructed while, secondly, a series of

corrections has been evaluated at each particular �nite and �xed dimension D <1. This opened

the market for the constructions of the Hamiltonians H
(q;N)
0 (1) in systematic manner.

In our present notation, the exact solvability of the zero-order Hamiltonians H
(q;N)
0 emerged

as an utterly unexpected result of our calculations at q = 1 in ref. [15], at q = 2 in ref. [6] and

at q = 3 in ref. [17]. In what follows we intend to address the next, more sophisticated problems

with q > 3. An emphasis is to be put on the vital role of the methods which were able to produce

the necessary �nal results within the strict bound given by the not too fancy available computers.

Hence, in what follows, the main emphasis will be laid upon the quality of the underlying software.

Still, a more detailed introductory chapter is due �rst.

2 The Derivation of the Magyari Equations

2.1 Harmonic Oscillator with q = 0 as a Methodical Guide

The partial di�erential Schr�odinger equation for harmonic oscillator in D dimensions reads�
� ~

2

2m
4+

1

2
m
2 jxj2

�
	(x) = " 	(x) (2)

and is solvable by the separation of variables in several systems of coordinates. The most common

cartesian choice may be recommended for the �rst few lowest spatial dimensions D only [18].

In contrast, the separation in spherical system remains equally transparent at any D because it

reduces eq. (2) to the same ordinary (so called radial) di�erential equation�
� d2

dr2
+
`(`+ 1)

r2
+ !2r2

�
 (r) = E  (r) (3)

with r = jxj 2 (0;1), E = 2m"=~2 and ! = m
=~ > 0. In this language we have ` = `L =

L+(D � 3)=2 where L = 0; 1; : : :. At each L the energy levels are numbered by the second integer,

E = En;L = ! (2n+ `L + 3=2); n; L = 0; 1; : : : : (4)
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The wave functions with quadratic �(r) = ! r2=2 > 0 and minimal N = n+ 1 in

 n;L(r) = r`+1 e��(r)
N�1X
m=0

hm r2m (5)

are proportional to an nth Laguerre polynomial [19]. In Hilbert space, their set is complete.

2.2 q = 1 and Quasi-Exact (i.e., Incompletely Solvable) Sextic Oscillators

An immediate partially or quasi-exactly solvable (QES) generalization of harmonic oscillators was

discovered by Singh et al [2]. In this case one replaces

! �!W (r) = �0 + �1r
2 ; V (HO)(0) �! G

�1 +G0r
2 = U(r) (6)

and gets the general sextic potential

V (sextic)(r) = U(r) + r2W 2(r) = g0 r
2 + g1 r

4 + g2 r
6 (7)

all three couplings of which are simple functions of our initial three parameters and vice versa,

g2 = �21 > 0; g1 = 2�0�1; g0 = 2�20 +G0; G
�1 = 0 : (8)

The resulting Schr�odinger bound state problem cannot be solved in closed form. Nevertheless,

we may postulate the polynomiality of the wave functions  
(sextic)
n;L (r) for a �nite multiplet (i.e.,

N�plet) of the wave functions. Under the speci�c constraint

G0 = ��20 � �1(4N + 2`+ 1); N � 1 (9)

this N�plet of polynomial solutions (5) is made exact by the choice of a WKB-like (i.e., quartic)

exponent

�(r) =
1

2
�0r

2 +
1

4
�1r

4 : (10)

The ansatz (5) transforms then the di�erential Schr�odinger equation into a linear algebraic de�ni-

tion of the unknown N�plet of coeÆcients hm. The solution is always obtained for a mere �nite

set of the levels n 2 (n0; n1; : : : ; nN�1). In contrast to the harmonic oscillator, the QES solvability

is based on the L� and N� dependent constraint (9) so that, generically, the elementary QES

multiplet exists in a single partial wave only.

2.3 Magyari's QES Oscillators with q > 1

The explicit energy formula (4) for harmonic oscillator was replaced by an implicit de�nition in

the preceding paragraph which gives the sextic QES energies in the purely numerical form, viz., as

zeros of the Singh's secular determinant of a certain tridiagonal N by N matrix [20]. In this sense,

Magyari [3] generalized the Singh's QES construction. In our present notation we may put, simply,

V (q)(r) = U (q)(r) + r2[W (q)(r)]2 ; U (q)(r) = G0r
2 +G1r

4 + : : :+Gq�1r
2q ;

W (q)(r) = �0 + �1r
2 + : : :+ �q r

2q (11)

This formula re-parametrizes the polynomial (1) and speci�es the one-to-one correspondence be-

tween the two sets of couplings,

fg0; : : : ; g2qg () fG0; : : : ; Gq�1; �0; : : : ; �qg

where g2q = �q
2, g2q�1 = g2q�1(�q ; �q�1) = 2�q�1 �q ; : : : or, in opposite direction, �q =

p
g2q �


 > 0, �q�1 = g2q�1=(2�q) etc.
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At any q = 1; 2; : : :, equation (10) must be further modi�ed,

�(q)(r) =
1

2
�0r

2 +
1

4
�1r

4 + : : :+
1

2q + 2
�qr

2q+2 : (12)

With �q > 0, one veri�es that

 (physical)(r) � e��
(q)(r)+O(1); r � 1

which means that the correct bound-state ansatz

 (r) =

N�1X
n=0

h(N)
n r2n+`+1 exp

h
��(q)(r)

i
(13)

converts our radial equation (3) + (1) into an equivalent linear algebraic problem

Q̂[N ]
h
(N) = 0 (14)

with an asymmetric and non-square matrix

Q̂[N ] =

0
BBBBBBBBBBBBBBBBBBB@

B0 C0

A
(1)
1 B1 C1

...
. . .

. . .

A
(q)
q : : : A

(1)
q Bq Cq

. . .
. . .

. . .

A
(q)
N�2 : : : A

(1)

N�2 BN�2 CN�2

A
(q)
N�1 : : : A

(1)

N�1 BN�1

. . .
...

...

A
(q)
N+q�2 A

(q�1)
N+q�2

A
(q)
N+q�1

1
CCCCCCCCCCCCCCCCCCCA

: (15)

Its elements depend on the parameters in bilinear manner,

Cn = (2n+ 2) (2n+ 2`+ 3); Bn = E � �0 (4n+ 2`+ 3)

A
(1)
n = ��1 (4n+ 2`+ 1) + �20 � g0; A

(2)
n = ��2 (4n+ 2`� 1) + 2�0�1 � g1;

: : : ;

A
(q)
n = ��q (4n+ 2`+ 3� 2q) + (�0�q�1 + �1�q�2 + : : :+ �q�1�0)� gq�1;

n = 0; 1; : : : :

(16)

At any �xed and �nite N = 1; 2; : : : the non-square system (14) is an over-determined set of N + q

linear equations for the N non-vanishing components of the vector h(N). At q = 0 these equations

degenerate back to the recurrences and de�ne the harmonic oscillator states. At q = 1 we return to

the sextic model where the "redundant" last row �xes one of the couplings and where we are left

with a diagonalization of an N by N matrix which de�nes the N�plet of the real QES energies in

principle. The situation is more complicated at q > 1. The counting of parameters and equations

indicates that unless one broadens the class of potentials, only a very small multiplet of bound

states may remain available in closed form [21].

Using an elementary change of variables, one may transform the decadic forces into their quartic

equivalents etc. Paper [22] may be consulted for details which indicate that the study of any

potential V (r) which is a polynomial in any rational power of the coordinate r may be replaced by

the study of its present Magyari's or "canonical" QES representation V (q)(r) at a suitable integer

q. In addition, we shall also restrict our attention to the domain of large D.
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3 Magyari Equations at the Large Spatial Dimensions

Up to now, our attention has been concentrated upon the structure of the QES wave functions.

From the point of view of the evaluation of the energies, the main dividing line between the solvable

and unsolvable spectra is in fact marked by the distinction between the closed q = 0 formulae and

their implicit QES form at q = 1. The transition to the next q = 2 may be perceived as merely

technical. At all q � 1, the diÆculties grow with N . In such a setting the emergence of certain

simpli�cations at D � 1 may be crucial.

3.1 An Exceptional, Decoupled Last-Row Constraint

At any D, the last row in eq. (14) decouples from the rest of the system. At any q > 1 it may

treated as a constraint which generalizes eq. (9),

gq�1 = ��q (4n+ 2`+ 3� 2q) + (�0�q�1 + �1�q�2 + : : :+ �q�1�0) : (17)

The insertion of this explicit de�nition of the coupling gq�1 simpli�es the lowest diagonal in Q̂[N ],

A(q)
n = 4 
 (N + q � n� 1): (18)

Since A
(q)
N+q�1 = 0 we may drop the "hat"^and re-write eq. (14) in the more compact form where

the size of the non-square matrix Q[N ] is merely (N + q � 1) by N ,

Q[N ]
h
(N) = 0 : (19)

This is the proper Magyari's system and it is merely solvable non-numerically in the simplest case

with q = 0. No coupling is then �xed and the energies themselves are given by the explicit formula

(17). Also the recurrences for coeÆcients of the wave functions may be solved in compact form.

The next, q = 1 version of eq. (19) degenerates to the single, determinantal secular equation

detQ[N ] = 0: (20)

Its solution is a purely numerical problem at all the larger N � 5. Of course, one coupling is �xed

by eq. (17) and only the N�plet of energies must be calculated as represented by the real zeros of

the single secular polynomial.

At the larger exponents q � 2, some q mutually coupled N by N secular determinants must

vanish simultaneously [14]. With an auxiliary abbreviation for the energy E = �g
�1 this means

that at least one of the couplings is always energy-dependent and that its value must be deter-

mined numerically. In the other words, our non-square matrix Q[N ] = Q[N ](g
�1; g0; : : : ; gq�2) will

annihilate the vector h(N) if and only if all its q arguments are determined in a deeply nonlinear

and self-consistent, mostly purely numerical manner.

3.2 Coupled Constraints at D � 1

In our approach the guaranteed polynomiality of the wave functions will play a key role. One can

say that in our original di�erential eq. (3) the numerical value of the spatial dimension D will be

assumed large. No other simpli�cations will be assumed.

In our problem with the old matrix elements

Cn = (2n+ 2) (2n+ 2L+D); Bn = �g
�1 � �0 (4n+ 2L+D);

A
(k)
n = �gk�1 � �k (4n+ 2L+D � 2k) + (�0�k�1 + : : :+ �k�1�0) ;

k = 1; 2; : : : ; q � 1; n = 0; 1; : : : ; N + q � 2

(21)

we shall preserve the dominant components of the matrix elements only,

C [0]
n = (2n+ 2)D; B[0]

n = �g
�1 � �0D; A(k)[0]

n = �gk�1 � �kD ; k < q
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(note that A
(q)
n = A

(q)[0]
n is unchanged). Then we re-scale the coordinates and, hence, coeÆcients

according to the rule

h(N)
n = pn=�

n : (22)

Simultaneously we have to replace the energies and couplings fg
�1; g0; : : : ; gq�2g by the new re-

scaled parameters fs1; s2; : : : ; sqg using the following linear recipe,

gk�2 = ��k�1D � �

�k�1
sk; k = 1; 2; : : : ; q : (23)

where we abbreviated

� = �(D) =

�
D

2


�1=(q+1)

; � = �(D) =
�
2q+2Dq 


�1=(q+1)
: (24)

In the leading-order approximation this gives, �nally, our Magyari equations in the compact form

0
BBBBBBBBBBBBBBBB@

s1 1

s2 s1 2
...

. . .
. . .

sq
... s1 N � 2

N � 1 sq s1 N � 1

N � 2 sq
... s1

. . .
. . .

...

2 sq sq�1
1 sq

1
CCCCCCCCCCCCCCCCA

0
BBBBB@

p0
p1
...

pN�2
pN�1

1
CCCCCA

= 0 (25)

which is to be studied in what follows.

4 The Method of Solution of the D � 1 Magyari Equations

4.1 Involutive Bases

To solve polynomial systems (25) we shall construct for them the related Janet bases. Janet

bases are typical representatives of general involutive bases of polynomial ideals [23] which are

Gr�obnerian though, generally, redundant. However, just this redundancy of involutive bases makes

the structural and combinatorial information on polynomial and di�erential ideals and modules

more accessible [24{27].

And as well as the reduced Gr�obner bases, the involutive bases can be used for solving polyno-

mial systems with �nitely many solutions that correspond to the zero-dimensional ideals [28]. For

this purpose, a pure lexicographical monomial order seems best since it provides the completely

triangular basis with sequentially eliminated variables starting from the highest one with respect

to the order chosen [4]. However, computation of a lexicographical basis takes usually much more

time than computation of a degree-reverse-lexicographical basis, �rst, and conversion of this basis

into the lexicographical one, second.

We use this two-step computational procedure in our study and solving (25). In doing so we shall

deal with the minimal Janet bases [29] only. It is remarkable that a degree-reverse-lexicographical

order is inherent in minimal Janet bases of zero-dimensional ideals. What follows from the demon-

stration in [26] is this inherence to Pommaret bases, and the fact proven in [30] that a minimal

Janet basis is also a Pommaret basis whenever the latter exists, i.e., whenever it is �nite. Zero-

dimensional ideals always have �nite Pommaret bases [31].
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4.2 Janet Bases

Below we use the de�nitions and notations from [29, 30, 32, 33]: N is the set of non-negative integers;

M = fxd11 � � �xdnn j di 2 Ng is the set of monomials in the polynomial ring R = K [x1 ; : : : ; xn] over

zero characteristic �eld K ; degi(u) is the degree of xi in u 2 M ; deg(u) =
Pm

i=1 degi(u) is the total

degree of u; � is an admissible [4, 28] monomial ordering compatible with

x1 � x2 � � � � � xn :

Divisibility of monomial v by monomial u will be written as u j v. A divisor u of a monomial v

is proper if deg(u) < deg(v). lm(f) and lt(f) denote, respectively, the leading monomial and the

leading term of the polynomial f 2 R with respect to �. lm(F ) denotes the leading monomial set

for F , and Id(F ) denotes the ideal in R generated by F .

Let polynomial set F � R be �nite and f 2 F . For each 1 � i � n we partition F into groups

labeled by non-negative integers d1; : : : ; di:

[d1; : : : ; di] = f f 2 F j dj = degj(lm(f)); 1 � j � i g:

A variable xi is (Janet) multiplicative for f 2 F if i = 1 and

deg1(lm(f)) = maxfdeg1(lm(g)) j g 2 Fg;

or if i > 1, f 2 [d1; : : : ; di�1] and

degi(lm(f)) = maxfdegi(lm(g)) j g 2 [d1; : : : ; di�1]g:

If a variable is not multiplicative for f 2 F , it is nonmultiplicative for f and we write this as

xi 2 NMJ(f; F ). u 2 lm(F ) is a Janet divisor of w 2 M , if u j w and monomial w=u contains only

multiplicative variables for u. In this case we write u jJ w.
A �nite polynomial set F is Janet autoreduced if each term in every f 2 F has no Janet divisors

among lm(F ) n lm(f). A polynomial h 2 R is in the Janet normal form modulo F if every term in

h has no J� divisors in lm(F ). We denote the Janet normal form of polynomial f modulo F by

NFJ (f; F ). If the leading monomial lm(f) of f has no Janet divisors among elements in lm(F ),

then we say that f is in the Janet head normal form modulo F and write f = HNFJ (f; F ).

A Janet autoreduced set F is a Janet basis of Id(F ) if any nonmultiplicative prolongation

( multiplication by a nonmultiplicative variable ) of any polynomial in F has vanishing Janet

normal form modulo F :

(8f 2 F ) (8x 2 NMJ(f; F )) [ NFJ (f � x; F ) = 0 ] : (26)

A Janet basis G of ideal Id(G) is minimal if for any other Janet basis F of the ideal the inclusion

lm(G) � lm(F ) holds. A monic minimal Janet basis is uniquely de�ned by an ideal and a mono-

mial order. In what follows we deal with the minimal Janet bases only and often omit the word

\minimal".

4.3 Algorithm for Computing Janet Bases

We present now the algorithm JanetBasis which is a special form of the general Gerdt{Blinkov

algorithm [9, 29] for computing minimal involutive bases concretized for Janet division. This con-

cretization in its more detailed form relied on the appropriate data structures { Janet trees { and

is described in [32, 33]. Note that, recently, the Gerdt{Blinkov algorithm in its form presented in

[9, 25] was implemented in Maple for both the polynomial and the linear di�erential ideals [12, 13].

To provide minimality of the output Janet basis [29] the intermediate data, i.e. initial poly-

nomials and their prolongations and reductions, are partitioned into two subsets T and Q. Set T

contains a part of the intermediate basis. Another part of the intermediate data contained in set Q

also includes all the nonmultiplicative prolongations of polynomials in T which must be examined

in accordance with the de�nition of Janet bases.
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To apply the involutive analogues of the Buchberger criteria and to avoid repeated prolongations

we endow with every polynomial f 2 F the triple structure

p = ff; u; varsg
such that

pol(p) = f is polynomial f itself;

anc(p) = u is the leading monomial of a polynomial ancestor of f in F;

nmp(p) = vars is a (possible empty) subset of variables:

Here the ancestor of f is a polynomial g 2 F with u = lm(g) and such that u j lm(p). Moreover, if

deg(u) < deg(lm(p)), then every variable occurring in the monomial lm(p)=u is nonmultiplicative

for g. Besides, for the ancestor g the equality anc(g) = lm(g) must hold. These conditions mean that

polynomial p was obtained from g, in the course of the below algorithm JanetBasis, by a sequence

of nonmultiplicative prolongations. This tracking of the history in the algorithm allows one to use

the involutive analogues of Buchberger's criteria to detect and avoid unnecessary reductions.

The set vars contains those nonmultiplicative variables which have been already used in the al-

gorithm for construction of nonmultiplicative prolongations. This set serves to prevent the repeated

prolongations.

After every insertion of a new element p in T all elements r 2 T such that lm(r) � lm(p) are

moved from T to Q in line 13. Such a displacement provides minimality of the output basis.

It should also be noted that for any triple p 2 T the set vars must always be a subset of the

set of nonmultiplicative variables of pol(p). Line 21 controls this condition.

Algorithm JanetBasis(F;�)

Input: F 2 R n f0g, a �nite polynomial set

�, an admissible ordering

Output: G, a minimal Janet basis of Id(F )

1: choose f 2 F with the lowest lm(f) w.r.t. �

2: T := ff; lm(f); ;g

3: Q := ffq; lm(q); ;g j q 2 F n ffgg

4: Q :=JanetHeadReduce(Q;T )

5: while Q 6= ; do

6: choose p 2 Q such that lm(pol(p)) has no proper divisors among flm(pol(q)) j q 2 Q n fpgg

7: if lm(pol(p)) = 1 then

8: return f1g

9: else

10: Q := Q n fpg

11: if lm(pol(p)) = anc(p) then

12: for all fr 2 T j lm(pol(r)) � lm(pol(p))g do

13: Q := Q [ frg; T := T n frg

14: od

15: �

16: pol(p) := NFJ(pol(p); T )

17: �

18: T := T [ fpg

19: for all q 2 T and x 2 NMJ (pol(q); T ) n nmp(q) do

20: Q := Q [ ffpol(q) � x; anc(q); ;gg

21: nmp(q) := nmp(q) \NMJ (pol(q); T ) [ fxg

22: od

23: Q :=JanetHeadReduce(Q;T )

24: od

25: return G := fpol(f) j f 2 Tg

The initialization step is done in lines 1{4. The subalgorithm JanetHeadReduce performs

Janet reduction of the leading terms of polynomials in Q modulo polynomials in T .
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In the main loop 5{24 an element in Q is selected in line 6. The correctness of this selection

strategy proved in [34]. In practice the cardinality Q at intermediate steps of the algorithm is

rather large and easily runs up to hundreds and thousands. At the same time there may be di�erent

polynomials in Q with identical leading monomials. Therefore, the restriction in line 6 still admits

some arbitrariness. In our implementation in [33] for the degree-reverse-lexicographical ordering a

triple p 2 Q with the minimal deg(lm(pol(p))) was chosen. In the case of several such polynomials

in Q, the one with the minimal number of terms was picked up.

Line 8 breaks computations in the case when inconsistency is revealed during the head term

reduction in Q and returns the unit basis. In line 16 the tail Janet reduction is done, then the Janet

reduced polynomial in p is inserted in T and all the higher ranked polynomials are moved to Q (loop

12-14). Actually this displacement takes place only if a polynomial in p has been subjected by the

head term reduction in line 23. Otherwise, pol(p) � pol(r) holds for any r 2 T . The insertion of a

new polynomial in T may generate new nonmultiplicative prolongations of elements in T which are

added to Q in line 20. To avoid repeated prolongations the set nmp(q) of Janet nonmultiplicative

variables for q has been used to construct its prolongations is enlarged with x in line 21.

The subalgorithm JanetHeadReduce computes the Janet head normal form of polynomials

in Q modulo polynomials in T

Subalgorithm JanetHeadReduce(Q; T )

Input: Q and T , sets of triples

Output: Janet head reduced set Q modulo T

1: S := Q

2: Q := ;

3: while S 6= ; do

4: choose p 2 S

5: S := S n fpg

6: h := HNFJ(p; T )

7: if h 6= 0 then

8: if lm(pol(p)) 6= lm(h) then

9: Q := Q [ fh; lm(h); ;g

10: else

11: Q := Q [ fpg

12: �

13: �

14: od

15: return Q

and invokes in line 6 subalgorithm HNFJ(p; T ) that does head reduction of a single polynomial p.

For a head reducible input polynomial pol(f) the two involutive analogues of the Buchberger

criteria [4] criteria are veri�ed in line 8 of subalgorithm HNFJ:

{ Criterion I(f; g) is true i� anc(f) � anc(g) j lm(pol(f)).
{ Criterion II(f; g) is true i� deg(lcm(anc(f) � anc(g))) < deg(lm(pol(f)).

If any of the two criteria is true, then HNF (pol(f); T ) = 0 [33]. Though as shown in [35]Criterion

II does not fully replace the Buchberger chain criterion, in practice Criterion II works pretty

well as our computer experiments demonstrate [33].

The last subalgorithm NFJ performs the Janet tail reduction of a polynomial with irreducible

leading term. It outputs the full Janet normal form NFJ(f; T ) of the input polynomial f modulo

polynomial set containing in T . This subalgorithm is called in line 16 of the main algorithm

JanetBasis and performs a chain of elementary involutive reductions until every term in the

obtained polynomial becomes Janet irreducible modulo polynomials in T .

It should be noted that both the full Janet normal form and the Janet head normal form are

uniquely de�ned and, hence, uniquely computed by the above subalgorithms. This uniqueness is

a consequence of a Janet divisor among the leading terms of polynomials in T at every step of

intermediate computations [29].
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Subalgorithm HNFJ(f; T )

Input: f = fpol(f); anc(f); nmp(f)g, a triple

T , a set of triples

Output: h = HNFJ(pol(f); T ), the Janet head normal form of the polynomial in f modulo polynomial

set in T

1: G := fpol(g) j g 2 Tg

2: if lm(pol(f)) is involutively irreducible modulo G then

3: return f

4: else

5: h := pol(f)

6: choose g 2 T such that lm(pol(g)) jJ lm(h)

7: if lm(h) 6= anc(f) then

8: if CriterionI(f; g) or CriterionII(f; g) then

9: return 0

10: �

11: else

12: while h 6= 0 and lm(h) is L�reducible modulo G do

13: choose q 2 G such that lm(q) jJ lm(h)

14: h := h� q � lt(h)= lt(q)

15: od

16: �

17: �

18: return h

NFJ(f; T )

Input: f , a polynomial such that f := HNFJ(f; T );

T , a set of triples

Output: h = NFJ (f; T ), the full Janet normal form of h

modulo polynomial set in T

1: G := fpol(g) j g 2 Tg

2: h := f

3: while h 6= 0 and h has a term t Janet reducible modulo G do

4: choose g 2 G such that lm(g) jJ t

5: h := h� g � t= lt(g)

6: od

7: return h
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4.4 Converting Bases and Finding Roots

As we emphasize in the previous section, to �nd common roots of polynomials in a given system it

is worthwhile to compute a pure lexicographical involutive or reduced Gr�obner basis. We do this

computation in the following three steps:

1. Computation of a minimal degree-reverse-lexicographical Janet basis by the above described

algorithm.

2. Extraction from the Janet basis obtained the reduced Gr�obner basis.

3. Conversion of the degree-reverse-lexicographical Gr�obner basis into the pure lexicographical

one by the famous FGLM algorithm [36].

Step 2 is done immediately due to the history of prolongations stored in the polynomial triples (Sect.

4.3). Since the reduced Gr�obner basis is a subset of the Janet basis computed [29] and this subset

is irreducible with respect to the conventional (noninvolutive) reductions, a triple p = ff; u; varsg
in the Janet basis contains an element f of the reduced Gr�obner basis if and only if lm(f) = u.

This relation means that an element of the reduced Gr�obner basis is such an element in the Janet

basis that it has no ancestors in the last basis. Indeed, the leading term of this element cannot be

a prolongation of the leading term of other element in the basis. In addition to the use of criteria

(Section 5.2) this is one more byproduct of the triple representation.

The conversion of the degree-reverse-lexicographical Gr�obner basis extracted (old basis) into

the pure lexicographical basis (new basis) is done as follows [36, 37]. First, a sequence of monomials

is generated, starting from the least ones w.r.t. to the new ordering and then their normal forms

are computed modulo the old basis until there appears a monomial whose normal form is a linear

combination of normal forms of the preceding monomials. In this case, we add the polynomial

given by this relation to the new basis. This process is continued by constructing other elements

in the new basis by treatment of the next variables in accordance with the new monomial order.

Computation of the normal form for a monomial is simpli�ed if one takes into account the fact

that the normal forms of all its proper divisors have been computed.

A degree-reverse-lexicographical Gr�obner basis admits to �nd roots of the initial polynomial

system by the sequential solving of univariate polynomial equations. Given a univariate polynomial,

we tried �rst to factorize it and used the built-in factorization routines of computer algebra system

Reduce 3.7 [38] for this purpose. If the factorization failed to give exact roots we used a special

software package ROOTs written on the top of PARI-GP system [39] to �nd the roots numerically

for the factors obtained.

5 The Results for Polynomial Potentials with q � 3

5.1 Sextic QES Oscillator with q = 1 and Any N

Starting from the �rst nontrivial sextic-oscillator potential (7) with q = 1 and with the binding

energies re-parametrized in accord with eq. (23) where s1 = s,

E =
1

2

g1p
g2
D + (64 g2)

1=4
p
Ds ;

full attention must be paid to the selfconsistency problem represented by the set of equations (25).

At every N , its �rst nontrivial q = 1 version

0
BBBBBBB@

s 1

N � 1 s 2

N � 2 s 3
. . .

. . .
. . .

2 s N � 1

1 s

1
CCCCCCCA

0
BBBBB@

p0
p1
...

pN�2
pN�1

1
CCCCCA

= 0 (27)
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has the form of an asymmetric eigenvalue problem. In standard manner it leads to the secular

equation (20) expressible as the following sequence of the polynomial conditions,

s3 � 4 s = 0; N = 3;

s4 � 10 s2 + 9 = 0; N = 4;

s5 � 20 s3 + 64 s = 0; N = 5;

etc. By mathematical induction, all the in�nite hierarchy of these equations has been recently

derived and solved in ref. [15].

Quite remarkably, all of the real (i.e., \physical") energy roots s = s(j) proved to be equal to

integers. Moreover, all of them may be determined by the single and compact formula

s = s(j) = �N � 1 + 2j; j = 1; 2; : : : ; N: (28)

One imagines that all the coeÆcients p
(j)
n may be normalized to integers,

p
(1)
0 = 1; N = 1;

p
(1)
0 = p

(1)
1 = p

(2)
0 = �p(2)1 = 1; N = 2;

p
(1)
0 = p

(1)
2 = p

(2)
0 = �p(2)2 = p

(3)
0 = p

(3)
2 = 1; p

(1)
1 = �p(3)1 = 2; p

(2)
1 = 0; N = 3;

etc.

The �rst result of our subsequent computations using the symbolic manipulation techniques

proved equally encouraging since we succeeded in compacti�cation of the set of the above recurrent

solutions to the single leading-order form of the related wave functions,

 (j)(r) = r`+1

�
1 +

r2

�

�N�j �
1� r2

�

�j�1
exp

�
�1

2
�0r

2 � 1

4
�1r

4

�
;

j = 1; 2; : : : ; N : (29)

A few more comments may be added. Firstly, the large and degenerate nodal zeros in eq. (29) are

a mere artifact of the zero-order construction. This means that the apparently interesting exact

summability of all the separate O(r2=�) error terms is not too relevant, indeed. Although it leads

to the zero-order nodes at r = O(p�) = O(D1=4), these nodes have no real physical meaning.

Secondly, the leading-order perturbative approximation provides a reliable information about

the energies. They are asymptotically degenerate, due to the large overall shift of the energy scale

as explained in section 3.2. In addition, the next-order corrections may be easily obtained by the

recipes of the textbook perturbation theory. As long as the coeÆcients pn are de�ned in integer

arithmetics, the latter strategy gives, by construction, all the above-mentioned energy corrections

without any rounding errors in a way outlined in more detail in ref. [15].

In the other words, we may say that formula (29) may either be truncated to its leading-

order form  (j)(r) = r`+1 exp
���(2)(r)� or, better, its full form may be used as a generating

function which facilitates the explicit evaluation of the coeÆcients p
(j)
n . In comparison, both the

oversimpli�ed harmonic oscillator and the q = 1 wave functions may be characterized by the similar

coordinate dependence which becomes spurious (i.e., dependent on the selected normalization)

everywhere beyond the perturbatively accessible domain of r.

The energies speci�ed by eq. (28) form an amazingly regular multiplet. A natural question

arises whether a similar regularity could re-emerge at the larger integer indices q > 1. We are now

going to demonstrate that in spite of the growth of the technical obstacles in dealing with the

corresponding key equation (25), the answer is, de�nitely, aÆrmative.
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5.2 Decadic Oscillators with q = 2 and Any N

The decadic anharmonic oscillator exhibits certain solvability features which motivated its deeper

study in non-Hermitian context [40]. The changes of variables make this oscillator very closely

related to the common quartic problem [14, 6]. Paying attention to the D � 1 domain and abbre-

viating the parameters s1 = s and s2 = t of the respective decadic-oscillator energy and coupling

in eq. (23), we arrive at the four-diagonal version of our solvability condition (25) at q = 2,

0
BBBBBBBBBBB@

s 1

t s 2

N � 1 t s 3

N � 2 t s 4
. . .

. . .
. . .

. . .

3 t s N � 1

2 t s

1 t

1
CCCCCCCCCCCA

0
BBBBB@

p0
p1
...

pN�2
pN�1

1
CCCCCA

= 0 : (30)

This is the �rst really nontrivial equation of the class (25). In order to understand its algebraic

structure in more detail, let us �rst choose the trivial case with N = 2 and imagine that the

resulting problem (with p1 6= 0 due to the de�nition of N) may be solved by the determination

of the unknown ratio of the wave-function coeÆcients p0=p1 = �t from the last line, and by

the subsequent elimination of t = 1=s using the �rst line. The insertion of these two quantities

transforms the remaining middle line into the cubic algebraic equation s3 = 1 with the single real

root s = 1.

The next equation at N = 3 is still worth mentioning because it shows that the strategy

accepted in the previous step is not optimal. Indeed, the same elimination of p1=p2 = �t and of

p0=p2 = (t2 � s)=2 from the third line leads to the apparently ugly result

st2 � s2 � 2t = 0;

t3 � 3st+ 4 = 0:

An alternative strategy starting from the elimination of p0 and p2 leads to the much more symmetric

pair of the conditions
t2 � s2t+ 2s = 0;

s2 � t2s+ 2t = 0

the respective pre-multiplication of which by t and s gives the di�erence t3 = s3. This means that

t = " s where the three eligible proportionality constants exist such that "3 = 1. Thus, our problem

degenerates to a quadratic equation with the pair of the real roots s = t = s(1;2) such that

s(1) = 2; s(2) = �1: (31)

The \ugliness" of the procedure of elimination is inessential as long as we can produce the results

by any \brute-force" symbolic manipulations on the computer [8].

Once we encountered the limitations of the naive algorithms, we were forced to pay attention to

all the above-described sophistications of our algorithms. Fortunately, this overall strategy proved

successful. Using the methods described in preceding sections we revealed that the step-by-step

elimination of the redundant unknowns gives the best form of the results when one uses the Janet

bases.

One of the main and most important byproducts of our approach is that the resulting �nal

e�ective or \secular" polynomial equations for the single unknown quantity s depend in practice

on its power sq+1 only. The clear illustration is provided by the present q = 2 case at N = 3 giving

the rule

s6 � 7 s3 � 8 = 0; N = 3: (32)

This equation possesses the same complete set of the real roots (31) of course. Still, what is

important is that any root r = s30 of eq. (32) itself still represents just the third (and in the more

general cases, (q + 1)st) power of the �nal relevant quantity with the physical meaning of the
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energy. Thus, we still have to solve the relation r = s30 where merely the value of r is known and

where, therefore, at most one �nal parameter s0 is real (= acceptable).

One may conclude that the real energies of the \strongly spiked" decadic oscillator are very

easily determined even without a detailed speci�cation of an \optimal" elimination pattern, and

that it is very easy to get rid of the redundant non-real roots s0 at the very end of the algorithm. Of

course, the numerous complex roots should not be discarded a priori as they might prove important

in some other applications like a systematic computation of the corrections [15] which were not

mentioned in our present paper at all.

Our conclusions extracted at N = 3 are con�rmed at the next N leading to the e�ective

polynomial equation

s10 � 27 s7 + 27 s4 � 729 s = 0 ; N = 4 :

Being tractable by our newly developed computer software and playing still the role of a test, it

results in the set of the mere two real roots again,

s(1) = 3; s(2) = 0; N = 4; q = 2:

One �nds that the q = 2 problem may be reduced to a single polynomial equation with

�
N + 1

2

�

complex roots s at any N . The explicit calculations may be summarized in a statement that all

the general physical (i.e., real) spectrum of energies proves to be quite rich and appears described

by the closed and amazingly simple and transparent formula again,

s(j) = N + 2� 3j; j = 1; 2; : : : ; jmax; jmax = entier

�
N + 1

2

�
: (33)

After one applies our Janet-basis procedure at the higher and higher dimensions N , one repeatedly

arrives at the con�rmation of the N�independent empirical observation (33) and extends it by

another rule that at all the values of the dimension N , there exist only such real roots that s(j) =

t(j). This means that each "solvability admitting" real energy s requires, purely constructively, the

choice of its own "solvability admitting" real coupling constant t.

5.3 Oscillators with q = 3 and Their Solution at Any N

At q = 3 we have to solve the �ve-diagonal eq. (25),

0
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t s r 3

N � 1 t s r 4

N � 2 t s r 5
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2 t s
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CCCCCCCCCCCCCCCA

0
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1
CCCCCA

= 0 (34)

which may be reduced, by means of the similar symbolic computations as above, to the single

polynomial problem

t9 � 12 t5 � 64 t = 0

at N = 3, to the next similar condition

t16 � 68 t12 � 442 t8 � 50116 t4 + 50625 = 0

at N = 4, to the conditions of vanishing of the secular polynomial

t25 � 260 t21 + 7280 t17 � 1039040 t13 � 152089600 t9+ 2030239744 t5+ 10485760000 t
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at N = 5, or to the perceivably longer equation

t36 � 777 t32 + 135716 t28� 17189460 t24� 3513570690 t20�

�1198527160446 t16+ 103857100871252 t12+ 873415814269404 t8+

+74500845455535625 t4� 75476916312890625 = 0

at N = 6 etc. These computations represent a diÆcult technical task but at the end they reveal

again a clear pattern in the structure of the secular polynomials as well as in their solutions. One

arrives at the similar �nal closed formulae as above. Now one only deals with more variables so

that we need two indices to prescribe the complete classi�cation scheme

s = s(j) = N + 3� 4j;

r = r(j;k) = t = t(j;k) = �N � 3 + 2j + 2k; (35)

k = 1; 2; : : : ; kmax(j); kmax(j) = N + 2� 2j ;

j = 1; 2; : : : ; jmax ; jmax = entier

�
N + 1

2

�
:

We may re-emphasize that all the real roots share the symmetry r = t but admit now a di�erent

second root s. The physical meaning of these roots is obvious. Thus, the energies of the oscillations

in the polynomial well

V (q=3;k=1)(r) = a r2 + b r4 + : : :+ g r14

will be proportional to the roots r(j;k). After the change of variables, the roots s(j) will represent

energies for the alternative, \charged" polynomial potentials

V (q=3;k=2)(r) =
e

r
+ a r + b r2 + : : :+ f r6

etc [22].

6 The Results with q = 4 and q = 5 for N � Nmax

6.1 Non-Integer Roots Emerging at q = 4 and N � 6

In our present formulation of the problem (25), we denote the descending diagonals as sm with

m = 1; 2; 3; 4 and get the equation

0
BBBBBBBBBBBBB@

s1 1

s2
. . .

. . .

s3
. . .

. . . N � 1

s4
. . .

. . . s1

N � 1
. . .

. . . s2
. . .

. . . s3
1 s4

1
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0
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p0
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...

pN�1

1
CCCA = 0 : (36)

Its systematic solution does not parallel completely the above-described procedures. In fact, the

reduction of the problem to the search for the roots of a single polynomial secular equation P (x) = 0

(in the selected auxiliary variable x = �s4) enables us only to factorize P (x) on an extension of

the domain of integers,

P (x) = (x+ 3)
�
2x+ 1�

p
5
��

2x+ 1 +
p
5
�

�
2x2 � 3x+ 3

p
5x+ 18

��
2x2 � 3x� 3

p
5x+ 18

�
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�
2x2 � 3x�

p
5x+ 8 + 2

p
5
��

2x2 � 3x+
p
5x+ 8� 2

p
5
�

�
x2 + x+

p
5x+ 4 +

p
5
��

x2 + x�
p
5x+ 4�

p
5
�

�
�2
p
5 + 8� 3x+ 3

p
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2
p
5 + 8� 3x� 3

p
5x+ 2x2

�
�
�2
p
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p
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��
2
p
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p
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�
�
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p
5
��
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p
5
�

�p
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p
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��
�
p
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p
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�
�
2
p
5 + 8� 3x+

p
5x+ 2x2

��
�2
p
5 + 8� 3x�

p
5x+ 2x2

�
:

From this lengthy formula it follows that we get

s
(1)
4 = 3; s

(2)
4 =

p
5 + 1

2
� 1:618; s

(3)
4 =

p
5� 1

2
� �0:618 :

There only exist these three real roots s4 in this case.

The similar computerized procedure gave us the real roots also atN = 5 and N = 6. The details

may be found in ref. [17]. The inspection of these results leads to the conclusion that s2 = s3 and

s1 = s4. We did not succeed in an application of our algorithms beyond N = 6 yet. The reason is

that even the N = 5 version of eq. (36) in its reduction to the condition

x70 � 936x65 + 67116x60 � 95924361x55� 74979131949x50+ 8568894879002x45�
: : :� 17459472274501870222336x5+ 142630535951654322176= 0

of the vanishing auxiliary polynomial required a fairly long computation for its (still closed and

compact) symbolic-manipulation factorization summarized in Table 1 of ref. [17].

6.2 A Mind-Boggling Return of Integer Roots at q = 5

N = 6 At q = 5 and N = 6 the symbolic manipulations using the Gr�obner bases [4] generate the

secular polynomial in x = s5 which has the slightly deterring form

x91 � 16120x85 + 49490694x79� 286066906320x73� 3553475147614293x67�
: : :� 319213100611990814833843025405983064064000000x= 0 :

Fortunately, it proves proportional to the polynomial with the mere equidistant and simple real

zeros,

P
(6)
1 (x) = x

�
x2 � 1

� �
x2 � 22

� �
x2 � 32

� �
x2 � 42

� �
x2 � 52

�
:

The rest of the secular polynomial is a product of the other two elementary and positive de�nite

polynomial factors

P
(6)
2 (x) =

2Y
k=1

�
x2 � 3k x+ 3k2

� �
x2 + 3k2

� �
x2 + 3k x+ 3k2

�

and

P
(6)
3 =

5Y
k=1

�
x2 � k x+ k2

� �
x2 + k x+ k2

�
;

with another positive de�nite polynomial

P
(6)
4 =

12Y
k=1

�
x2 � bk x+ ck

� �
x2 + bk x+ ck

�

where the structure of the two series of coeÆcients (see their list in ref. [17]) is entirely enigmatic.

The subsequent symbolic manipulations reveal a symmetry s2 = s4 and s1 = s5 of all the

real eigenvalues. In the N = 6 pattern summarized in ref. [17] we recognize a clear indication

of a tendency of a return to the transparency of the q � 3 results which may be written and

manipulated in integer arithmetics. For obtaining a deeper insight we must move to the higher N .
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N = 7 One should note that in spite of its utterly transparent form, the latter result required a

fairly long computing time for its derivation. One encounters new technical challenges here. Indeed,

the comparison of the N = 6 secular polynomial equation with its immediate N = 7 descendant

x127 � 60071x121 + 1021190617x115� 11387407144495x109� : : :+ c x � 106 = 0

shows that the last coeÆcient

c = 125371220122726667620073789326658415654595883041274311330630729728

�lls now almost the whole line. This case failed to be tractable by our current computer code and

o�ers the best illustration of the quick growth of the complexity of the q � 5 constructions with

the growth of the QES dimension parameter N .

Fortunately, we are still able to keep the trace of the pattern revealed at N = 6. Indeed, our

new secular N = 7 polynomial factorizes again in the product of the four factors Pj(x), j = 1; 2; 3; 4

where only the �rst one has the real zeros,

P
(7)
1 (x) = P

(6)
1 (x) � �x2 � 62

�
:

The further three factors �t the structure of their respective predecessors very well,

P
(7)
2 (x) = P

(6)
2 (x) � �x2 � 9x+ 27

� �
x2 + 27

� �
x2 + 9x+ 27

�
and

P
(7)
3 = P

(6)
3 � �x2 � 6x+ 36

� �
x2 + 6x+ 36

�
while

P
(7)
4 = P

(6)
4 �

6Y
k=1

�
x2 � fk x+ gk

� �
x2 + fk x+ gk

�
:

The subscript-dependence of the new coeÆcients may be found in ref. [17] again. The key impor-

tance of the explicit knowledge of these coeÆcients lies in the possibility of a rigorous proof that

the related roots are all complex and, hence, irrelevant from our present point of view.

N = 8 and N = 9 The growth of the degree of our secular univariate polynomials makes it

quite diÆcult to move too far with N . One may be more explicit in this respect: In place of the

numerous irregularities encountered at q = 4, we may now be surprised by the re-emergence of the

following closed and very transparent elementary formula for the q = 5 \energies",

s5 2 (�N + 1;�N + 2; : : : ; N � 2; N � 1) : (37)

which is valid again for any integer N in a way which parallels and complements the above-

mentioned results which were available and published in our previous papers [15], [6] and [17]

for the Magyari's D � 1 potentials with q = 1, q = 2 and q = 3, respectively. In this context,

their extension (37) is a brand new result which has not been published yet. Its unexplained

equidistance property may be added to the list of the unresolved puzzles related to the Magyari

equations. Indeed, the equidistance exempli�ed by eq. (37) would re
ect a hidden algebra in linear

cases but what is most intriguing here is the fact that the present Magyari equations are non-linear!

Another challenging feature of the problem lies in its exact solvability which is based on the

factorization of polynomials of a very large degree D which grows, moreover, very quickly with

N . Empirically, this degree may be even speci�ed by the closed formula at q = 5 where D =

3N2 � 3N + 1 in a way illustrated by the next two explicit secular equations

s1695 � 186238 s1635 + 11768813199 s1575 � : : : = 0; N = 8; (38)

s2175 � 502386 s2115 + 94933635261 s2055 � : : : = 0; N = 9: (39)

On the basis of these observations we may conclude that an overall pattern of the smooth N�de-
pendence of the equations survives, mutatis mutandis, smoothly the transition to the higher N .
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One can also prove (at least up to N � 9 at present) by construction that all the other factors

of the secular polynomial have an elementary quadratic-polynomial form and remain positive for

all the real \re-scaled energies" s5. Their coeÆcients are elementary (we skip the examples here)

so that the strict proof that they possess no real zeros is also elementary and very quick (one

just evaluates the discriminants). A full parallelism between all N � 9 is achieved and we might

conjecture, on this background, the possibility of its extension to all the non-negative integers N .

A strict proof of this conjecture could probably be based on mathematical induction but we do

not feel it really urgent at the moment.

7 Summary

It is rather amusing to imagine that the majority of quantitative predictions in nuclear, atomic,

molecular and condensed matter physics must rely on a more or less purely numerical model. The

completely non-numerically tractable quantum systems are rare though, at the same time, useful

and transparent (cf., e.g., the above-mentioned description of vibrations in molecules mimicked

by harmonic oscillators). In our present paper we revealed that in the domain of the large spatial

dimension D � 1, the class of the exactly solvable models becomes, in a certain sense, broader.

Thus, one might call all the polynomially anharmonic oscillators \asymptotically solvable".

This is an important and also not yet fully appreciated observation obtained due to the lasting

advancement of the computer algebra and related software as described in more detail in Sections

4 and 5. A fairly universal apparatus of these sections was reported in close connection with its

application to our Magyari-type equations (25).

In a certain perspective we found new closed solutions of Schr�odinger equation with polynomial

potentials in the domain of the large angular momenta `� 1 where alternative techniques are also

available (cf., e.g., their review [41] and/or very recent discussion [42]). Our results revealed the

existence and provided the construction of certain fairly large multiplets of \exceptional" ` � 1

bound states for a very broad class of polynomial oscillators. We believe that they might �nd an

immediate application in some phenomenological D � 1 models.

From the mathematical point of view, the most innovative and characteristic feature of our new

D � 1 QES multiplets lies in the existence of the new closed and compact formulae for the QES

energies and/or couplings at all N . For this reason, the corresponding partially solvable polynomial

oscillator Hamiltonians H
(q;N)
0 might even be understood as lying in the QES class as its new and

fairly speci�c subclass.

Due to an exceptional transparency of our constructions of H
(q;N)
0 , a facilitated return to the

\more realistic" �nite spatial dimensions D = O(1) might prove tractable by perturbation tech-

niques. Two reasons may be given in favor of such a strategy. First, due to the speci�c character

of our present \unperturbed" spectra and eigenvectors, the perturbation algorithm might be im-

plemented in integer arithmetics (i.e., without rounding errors) in a way outlined, preliminarily, in

ref. [15] at q = 1. Second, the evaluation of the few lowest orders might suÆce. This expectation

follows from the enhanced 
exibility of the available zero-order Hamiltonians. A priori, a better

convergence of the corrections might be expected to result from a better quality of a \guaranteed

smallness" of the di�erence between a given Hamiltonian H at a �nite D and one of its present

D =1 QES approximants H0.
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