
On Testing the Membership to Differential Ideals

Alexey Zobnin �

Moscow State University,
Department of Mechanics and Mathematics,
Vorobyovy Gory, Moscow, Russia, 119992

al zobnin@shade.msu.ru

Abstract. One of the open problems in differential algebra is testing the membership to
differential ideals. This problem is undecidable in general for non-recursive infinitely gener-
ated ideals. In the case of ideals of finite type it is solved only in several (but important)
cases. These are the cases of radical ideals, isobaric ideals over fields of constants, and ideals
for which it is possible to construct a finite standard basis. We give an overview of solutions
to the membership problem in these cases and propose new ideas. Some algorithms such as
Ollivier’s completion process and a reduction w.r.t. a normalizing system are implemented
in Maple. We obtain interesting results concerning certain non-isobarizable differential ideals
using computer algebra system computations.

The paper is organized as follows. In Section 1 we give necessary definitions of constructive
differential algebra that can be found in [17, 8]. Then we describe the solutions of the membership
problem in three main cases. In Section 3 we generalize these ideas and give algorithms that test
the membership to an ideal in the case of isobaric generators. We exhibit a finite standard basis of
the ideal [xp] w.r.t. the so-called β-ordering. Such orderings are more general than those used by
Ollivier [14] and Carrà Ferro [3]. After that we propose the concepts of M -basis and normalizing
system, which generalize standard bases. Finally, we consider non-isobarizable differential ideals of
the form [x2

1+αx0+β]. We show how computer algebra systems helped us to prove some interesting
results concerning these ideals.

All mentioned algorithms have been implemented in Maple by the author. They are available
online at http://shade.msu.ru/~difalg/Algorithms.

1 Differential Algebra Preliminaries

A differential ring R is a commutative ring with pairwise commuting derivation operators δ1, . . . , δm

(they must be linear and satisfy the product rule). Any derivative operator on R can be uniquely
written as

θ = δα = δα1
1 . . . δαm

m .

The order of θ is ord θ :=
∑m

i=1 αi.
Let Θ denote the monoid of all derivative operators. An ideal I ⊂ R is called differential iff

I = ΘI. If F is any subset of R then [F ] denotes the differential ideal generated by F in R.
A differential ideal is called radical or perfect if it is a radical ideal in the sense of commutative
algebra. The radical differential ideal generated by F is denoted by {F}.

Let y1, . . . , yn be differential indeterminates. Then the polynomial ring

R{y1, . . . , yn} := R[Θy1, . . . , Θyn]

in an infinite family of differential variables θyi, θ ∈ Θ, is called a ring of differential polynomials
over R. It is also a differential ring with the same set of derivation operators.

In this paper we consider only rings of ordinary differential polynomials in one variable over a
field of constants of characteristic zero, i.e., rings of the form F{x}, where Θ = {δi, i � 0} and
δF = 0. Following Ritt [17], we will denote a differential variable δix by xi.
� The work was partially supported by the Russian Foundation for Basic Research, project No. 02-01-

01033.
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Any differential polynomial is a finite sum of differential terms, i.e., expressions of the form
c ·M , where c ∈ F , c �= 0, and M is a differential monomial, M =

∏k
i=0 xαi

i , αi � 0. The coefficient
c of the monomial M in f will be denoted by cf (f, M).

Below we will often omit the word “differential” speaking about monomials and polynomials.
We will use the letters M, P, Q for monomials and f, g, h for polynomials.

Consider any monomial M =
∏k

i=0 xαi

i . The degree of M is deg M :=
∑k

i=0 αi and the weight
of M is wt M :=

∑k
i=0 iαi. As usual, a polynomial f is called isobaric if all monomials in f have

the same weight. The order of a polynomial (or a set of polynomials) is the maximal order of
variables occurring in it.

Now we recall the notions of ranking and admissible ordering.
Let Y = {y1, . . . , yn} be a set of differential indeterminates. A ranking ≺ is a total ordering on

the set of differential variables ΘY such that for all yi, yj ∈ Y, θ, θ1, θ2 ∈ Θ we have

R1. θ1yi ≺ θ2yj =⇒ θθ1yi ≺ θθ2yj ;
R2. yi � θyi.

Now let M denote the set of all differential monomials. An admissible ordering on M is a total
ordering ≺M that satisfies the following:

O1. The property of translation: P ≺M Q =⇒ P · M ≺M Q · M ∀P, Q, M ∈ M.
O2. The property of positivity: 1 �M P ∀P ∈ M.
O3. The property of restriction: the restriction of ≺M to the set of differential variables ΘY must

be a ranking.

It is very surprising that these properties are sufficient to guarantee that any admissible ordering
is a well-ordering (Zobnin [20]).

For a given ordering we can naturally define the leading monomial lm≺ f and the leading
coefficient of a polynomial f . We will omit the subscript ≺ if there are no misunderstandings.

In the ordinary case of one indeterminate there is only one ranking: xi ≺ xi+1. Therefore, the
lexicographic (lex) as well as the graded by degree lexicographic (deglex) ordering on monomials are
uniquely determined.

2 The Membership Problem

The membership problem is very important in constructive computer algebra. It is completely
solved, for example, for ideals in ordinary polynomial rings as well as for submodules in free
finitely generated modules over polynomial rings. The main instrument in testing the membership
in these cases is a Gröbner basis computation.

In differential polynomial rings this is not so. Since these rings are not Noetherian, the Gröbner
basis technique is in general inapplicable to the differential case. There exist infinitely generated
differential ideals. Moreover, there exist non-recursive infinitely generated ideals such that the
membership problem is algorithmically undecidable for them (the result of Gallo, Mishra and
Ollivier, 1991 [6]). Even for finitely generated ones the problem is still open.

The first attempts to solve it for certain differential ideals generated by monomials were made
in 50-es–70-es by Levi [9], O’Keefe [15], Mead [11], Newton [12] and others. As a result, a sufficient
criterion for a monomial to membership in the ideal [xp] has appeared [9, 17, 8]. The situation
is better for the ideal [uv] in the ring F{u, v}: there is a necessary and sufficient condition for a
monomial to be in this ideal [11]. It is remarkable that these criteria can be expressed only in terms
of degree and weight, and, thus, they can be applied to arbitrary monomials given by indeterminate
powers.

At present, the membership problem is solved in three main cases described below:
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2.1 Radical Differential Ideals

For this class of ideals the membership problem is completely solved by means of characteristic
decomposition. The algorithm Rosenfeld–Gröbner (based on the ideas of Ritt for prime differential
ideals) was presented by Boulier, Lazard, Ollivier and Petitot in 1995 [1, 2]. This algorithm repre-
sents a radical differential ideal {F} as a finite intersection of regular ideals (components) given
by their characteristic sets Ci:

{F} =
m⋂

i=1

[Ci] : H∞
Ci

.

The membership to a component [Ci] : H∞
Ci

can be tested by pseudoreducing a given polynomial
w.r.t. Ci. Thus, one can also test the membership to an intersection of such components.

These methods develop rapidly nowadays (for example, see [7]). But they are inapplicable
for non-radical ideals. Since solutions of differential equations in universal extensions of fields of
coefficients are described by radical ideals, the study of non-radical ones may seem useless. But
this is not so from the theoretical point of view!

Recall that in differential polynomial rings contaning Q radical differential ideals are finitely
generated [8], but they may be infinitely generated as differential ideals.

Below we will be interested only in non-radical ideals.

2.2 Isobaric Ideals

The membership can also be tested for the ideals generated by polynomials that are isobaric w.r.t.
some weight function [6].

Definition 1 ([6]). A non-zero mapping w : F{x} → N ∪ {0} is called a weight function iff

1. w(fg) = w(f) + w(g) ∀ f, g ∈ F{x} \ F ;
2. if f consists of the monomials of the same value of w then so does w(δf) ∀ f ∈ F{x} \ F ;
3. the set of differential monomials of weight k is finite for any k.

This definition leads to the following constructive description of weight functions. Let A and
B be non-negative integers, B > 0. Put w(x) = A and w(xi) = A + iB. One can prove that every
weight function is equivalent to a weight function of this type1 If A = 0, B = 1, we obtain the
classical weight wt.

We say that a differential ideal I is isobaric w.r.t. a weight function w if, whenever a polynomial
f belongs to I, the sums of all terms in f of the same weight also belong to I.

Proposition 1 ([6]). Let F be a field of constants. A differential ideal I in F{x} is isobaric iff
it has a system of isobaric generators.

Example 1. The ideal [x2
1 + x3

0] is isobaric w.r.t. the following weight function:

w(x) = 2; w(δx) = w(x) + 1 .

Let a weight function w be fixed. Consider an isobaric differential ideal [F ] and a polynomial h.
Let

G = {θf | θ ∈ Θ, f ∈ F, w(θf) � w(h)} .

One can prove that h ∈ [F ] ⇐⇒ h ∈ (G), where (G) denotes the algebraic ideal in the ring
F [{θx | ord θ � maxg∈G ord g}]. Due to Property (3) of weight functions, the latter ring is an
ordinary polynomial ring in finitely many variables. Thus, the membership to isobaric ideals can
be checked algorithmically (see Subsection 3.1 below). But there exist differential ideals (such as
[x2

1 + x]) that are not isobarizable.
1 The equivalence of weight funcitons means that the partitions to the sets of monomials of the same

weight coincide.
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2.3 Ideals that Admit Finite Standard Bases

The first generalizations of the concept of Gröbner basis to differential algebra were made by Carrà
Ferro [3] in 1989 (differential Gröbner bases) and then by Ollivier [13, 14] in 1990 (standard bases).
These two approaches coincide in general. As well as in the algebraic case, finite standard bases
allow us to test the membership; but they may be infinite, however. This fact hampered their
studies for a long time.

We recall the definitions that can be found in [13, 14]. For simplicity, we give them for the
ordinary ring F{x}.

Let an admissible ordering ≺ be fixed. The polynomial f can be elementary reduced w.r.t. the
polynomial g, if there exists k � 0 such that M := lm δkg divides some monomial Q in f . The
result of the reduction is the polynomial

f̃ = f − cf (f, Q)
lc δkg

Q

M
δkg .

This generalizes the ordinary reduction of polynomials used in the Gröbner bases technique to the
differential case. The reduction relation is the reflexive-transitive closure of elementary reductions.
We write this relation as f −→

g
f̃ . Every chain of elementary reductions always terminates. For

given polynomials f, g it is possible to check effectively whether f can be reduced w.r.t. g and to
construct the remainder f̃ [13, 14]. One can also define a reduction w.r.t. a set of polynomials G.
We extend the algorithm of differential reduction in Subsection 3.2.

A set G is called a standard basis of a differential ideal I in the ring F{x} if G ⊂ I and every
element of I can be reduced to zero w.r.t. G. One could find equivalent definitions in [14].

In contrast to the differential case, an ordinary Gröbner basis of a non-differential ideal will be
called an algebraic standard basis.

A standard basis G of an ideal I is called minimal if no proper subset of G is a standard basis
of I. A basis is reduced if no element g ∈ G can be reduced w.r.t. G \ {g}.
Theorem 1 (Carrà Ferro [4]). A differential polynomial f forms a standard basis of the differ-
ential ideal [f ] w.r.t. the lexicographic ordering iff f = I0 + I1xk, where I1 ∈ F and xk = lm f .

If a standard basis is finite and known then it is possible to solve the membership problem
effectively. For example, this is the case of linear polynomials, when a standard basis is always
finite. In the general case, however, standard bases are infinite. The simplest example is a standard
basis of the ideal [x2] w.r.t. the lexicographical ordering.

Ollivier [13, 14] suggested a completion process that returns a minimal standard basis of an
ideal if by chance it stops. We improved this algorithm and implemented it in Maple 7. One can
download it from http://shade.msu.ru~difalg/Algorithms/DGB.mws.

3 Algorithms and Theoretical Generalizations

3.1 The Membership to Isobaric Ideals

The following algorithms allow one to test the ideal membership in the case of isobaric generators.
They have been implemented in Maple 7. For simplicity, we give them for the case of ordinary
polynomials in one differential indeterminate. They can be naturally extended to the partial dif-
ferential case of several ideterminates, since testing of isobarizability leads to solving a system of
linear equations. By Proposition 1 the source polynomials must have constant coefficients.

The first algorithm tries to choose an appropriate weight function to isobarize a given polyno-
mial.

Algorithm 1: IsIsobaric
Input: f ∈ F{x}, a differential polynomial with constant coefficients.
Output: a pair of non-negative integers A, B such that either
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• f is isobaric w.r.t. the weight function w given by w(x) = A and w(δx) = B > 0, or
• f is not isobarizable, and then B = 0.

1: M := the list of all monomials occuring in f ;
2: if M �= ∅ then
3: for i from 2 to cardM do
4: if degM[i] = degM[1] and wtM[i] = wtM[1] then
5: exclude M[i] from M;
6: end if ;
7: next i;
8: end if ;
9: if cardM � 1 then

10: A := 0; B := 1;
11: else
12: A := wtM[2] − wtM [1]; B := degM[2]− degM[1];
13: if B �= 0 then
14: for i from 3 to cardM do
15: w := wtM[i]− wtM [1]; d := degM[i] − degM[1];
16: if Ad �= Bw then
17: B := 0; break;
18: end if ;
19: next i;
20: end if ;
21: if B �= 0 then
22: C := gcd(A, B); A := A/C; B := B/C;
23: end if ;
24: end if ;

Obviously, this algorithm terminates. The correctness follows from the following proposition.

Proposition 2. Let M1 =
∏m

i=0 xαi

i and M2 =
∏n

j=0 x
βj

j be monomials in F{x}. Consider a
weight function w such that w(x0) = A and w(x1) = A + B, A � 0, B � 1. Then

w(M1) = w(M2) ⇐⇒ A(deg M1 − deg M2) = B(wt M2 − wtM1) .

Proof. We have

w(M1) =
m∑

i=0

αi(A + iB) = A

n∑
i=0

αi + B

n∑
i=0

iαi = Adeg M1 + B wtM1 ,

and the same for w(M2). Now the proof is evident.

The next algorithm tries to find a common weight function to isobarize a set of polynomials.

Algorithm 2: IsIsobaricSet
Input: G ⊂ F{x}, a finite set of differential polynomials with constant coefficients not in F ;
Output: a pair of non-negative integers A, B such that either

• elements of G are isobaric w.r.t. the weight function w
given by w(x) = A and w(δx) = B > 0, or

• G is not isobarizable, and then B = 0.
1: M := ∅; F := G;
2: for all f ∈ F do
3: if f is a monomial then
4: M := M∪ {f}; F := F \ {f};
5: end if ;
6: next f ;
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7: if F �= ∅ then
8: choose f ∈ F ;
9: F := F \ {f};

10: (A, B) := IsIsobaric (f);
11: else
12: A := 0; B := 1;
13: end if ;
14: while F �= ∅ and B �= 0 do
15: choose f ∈ F ;
16: F := F \ {f};
17: if (A, B) �= IsIsobaric (f) then
18: B := 0; break;
19: end if ;
20: end do;

Algorithm 3 tests the membership to a differential ideal in the case of isobaric generators.
We denote by Weight (A, B, f) the algorithm that computes the weight function (given as in
Proposition 2) of the polynomial f .

Algorithm 3: IsobaricIdealMembership
Input: f ∈ F{x}, a differential polynomial with constant coefficients;

F = {f1, . . . , fs}, a finite set of differential polynomials with constant coefficients;
≺, an admissible ordering.

Output: ’YES’, if f ∈ [F ];
’NO’, if f /∈ [F ];
’Non-isobarizable generators’, if F is not isobarizable.

1: if F contains a constant polynomial then
2: print ’YES’; exit;
3: end if ;
4: (A, B) := IsIsobaricSet (F );
5: if B �= 0 then
6: G := ∅;
7: w := Weight(A, B, f);
8: for all g ∈ F do
9: G := G ∪ {θg | Weight (A, B, θg) � w};

10: next g;
11: G̃ := GröbnerBasis (G,≺);
12: f̃ := NormalForm (f, G̃,≺);
13: if f̃ = 0 then print (’YES’);
14: else print (’NO’);
15: end if ;
16: else print ’Non-isobarizable generators’;
17: end if ;

It is clear that Algorithms 2 and 3 terminate. One can easily check their correctness.

3.2 Standard Bases and δ-stability of Admissible Orderings

Let us write δ≺P := lm≺ δP for any monomial P . This notation allows us to define the action of δ
on monomials.

Definition 2. We say that an admissible ordering ≺ is δ-stable ( strictly δ-stable) if from P � Q
it follows that δ≺P � δ≺Q (P ≺ Q =⇒ δ≺P ≺ δ≺Q, respectively).
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Obviously, lex and deglex are strictly δ-stable orderings.
Introducing standard bases in differential polynomial rings, Ollivier [13] requires the properties

of translation and positivity, strict δ-stability and the inequality P ≺ δ≺P for any monomial P
(domination of differentiations). One can easily check that the latter inequality is satisfied auto-
matically if it is required just for differential variables. Thus, to satisfy this property it is sufficient
to require the ordering to be admissible. Note that in general this property is not satisfied for
polynomials.

Proposition 3 (Zobnin [22]). Let M =
∏d

i=1 xai , where a1 � a2 � . . . � ad. If the ordering ≺
is strictly δ-stable then

lm≺ δM = (
d−1∏
i=1

xai)xad+1.

In other words, lm≺ δM = lmlex δM .

Corollary 1 (Zobnin [22]). Let ≺ be a strictly δ-stable ordering, f be a polynomial, deg lm f > 1
and xi be the smallest variable in lm f . Then xi occurs in every lm δkf .

Thus, strictly δ-stable orderings resemble lexicographic orderings in some sense (compare with [19]).

One of the possible generalizations of standard bases can be obtained by considering only
essential properties (O1)–(O3) of admissible orderings. Chains of reductions will terminate as well,
since these three axioms guarantee that the set of all monomials is well ordered (see [20]).

Definition 3. The ordering degrevlex on differential monomials is such that the degrees of mono-
mials are compared first, and if

∑k
i=0 αi =

∑k
i=0 βi then

k∏
i=0

xαi

i ≺degrevlex

k∏
i=0

xβi

i ⇐⇒

⇐⇒ the left-most non-zero entry of the vector α − β is positive.

In contrast to the algebraic case [5], here we compare the vectors α and β starting from the left to
provide the admissibility.

Let us define a more general class of orderings:

Definition 4 (Levi [9]). A monomial M =
∏k

i=0 xαi

i is called a β-term (w.r.t. an integer p) if
there exists i, 1 � i � k such that αi−1 + αi � p. All other monomials are called α-terms.

Definition 5 (Zobnin [22]). An admissible ordering such that the leading monomial lm δmxp is
a β-term w.r.t. p for all m > 0 is called a β-ordering.

One can check that for all k � 0 the polynomial δkxp contains only one β-term w.r.t. p. If
k = ap + b, where 0 � b < p, then this β-term is equal to xp−b

a xb
a+1. Of course, if b = 0 we get the

monomials xp
a.

The examples of β-orderigns are degrevlex and wt-degrevlex (monomials are compared first by
weight).

It turns out that some differential ideals acquire a finite standard basis w.r.t. generalized or-
derings. Using Levi’s work [9], the author proved in [22] that {xp} is a standard basis of the ideal
[xp] for any p � 1 and any β-ordering. It should be pointed out that it is not only finite, but it
consists of one element.

At the same time we stress that β-orderings are not strictly δ-stable:

lm x0x2 ≺β lm x2
1, but lm δ(x0x2) = x1x2 = lm δx2

1 .

In this connection the following proposition can be proved.

Proposition 4 (Zobnin [22]). For any strictly δ-stable ordering the ideal [xp] has no finite stan-
dard basis.



492 Alexey Zobnin

Certainly, this fact is not very challenging from the computational viewpoint, as the membership
to the ideal generated by isobaric polynomials2 can always be effectively checked [13]. But in one
way or another it can shed light on the solution of the membership problem for finitely generated
differential ideals. It occurs that Olliver’s standard basis is not such a hopeless theoretical tool in
the non-linear case as it may seem at first sight. Nevertheless, there are a lot of problems.

Firstly, Ollivier’s process for construction of standard bases (suggested in [14]), applied to the
ideal [xp] with any β-ordering, never stops, though it returns at each step of the loop the set {xp}.
(In fact, it does not always stop even for strictly δ-stable orderings.) It is necessary to obtain an
effective criterion for this process to stop.

Secondly, it is quite possible that there may exist finitely generated differential ideals that do
not admit finite standard bases for any ordering.

3.3 Cancellation of Monomials in Derivatives

It is clear that if all coefficients of f are of the same sign then no cancellations of monomials in
derivatives of f can occur. This means that sooner or later all monomials of degree d and weight
n + w in variables starting from xn0 will be presented in δnf for some n0. Nevertheless, if the
coefficients of f have different signs, disappearing sequences can exist. For example, let

f = 2 x0x
2
2 − x0x1x3 − x2

1x2 .

As it is proved in [22], in the derivatives of this polynomial no β-term of the form {x3
r} occurs. The

monomials Mr := xr−1x
2
r also cancel in the derivatives of f because we can obtain the monomials

x3
r only differentiating Mr.

As a consequence, we obtain the following result: if strict δ-stability is not required then, in
general, the operators δi and lm do not commute. This distinguishes Ollivier’s standard bases
from the algebraic ones. If G is a standard basis of a differential ideal I then the result of the
autoreduction of G may be not a standard basis of I at all! In fact, the reduction of lower terms of
some element in G w.r.t. the other elements may result in a polynomial with another set of leading
monomials of derivatives. Thus, although a reduced basis still can be defined as before, not every
basis can be turned into a reduced one.

Let us present a modified differential reduction algorithm that is adapted to the most general
orderings satisfying just main properties O1–O3. The main improvement is that possible cancel-
lations of leading monomials in derivatives are taken into account. Denote by min deg g and by
min wt g the minimal degree and the minimal weight of the monomials occuring in g, respectively.

Algorithm 4: DifferentialReduction
Input: f ∈ F{x}, a differential polynomial;

G = {g1, . . . , gs}, a finite set of differential polynomials;
≺, an admissible ordering.

Output: h = f̃ , a differential remainder of f w.r.t. G and ≺.
1: G̃ := ∅;
2: for all g ∈ G do
3: if min deg g � deg f and min wt g � wt f then
4: for all θ ∈ Θ such that ord θ � wt f − min wt g do
5: G̃ := G̃ ∪ {θg};
6: next θ
7: end if ;
8: next g;
9: while exist g ∈ G̃ and a term c · Q of h such that lm≺ g divides Q do

10: choose the first such g;
11: h := h − cf (f,Q)

lc≺ g
Q

lm≺ gg;
12: end do;

2 Recall that ideals generated by a monomial are isobaric w.r.t. any weight function.
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Lines 1–8 fill the set G̃ with the derivatives of the source polynomials gi that may be used
in reductions of f . Lines 9–12 are similar to those of ordinary reduction algorithms used in the
Gröbner bases technique.

3.4 M-Bases and Normalizing Systems

Standard bases in F{X} can be viewed as a suitable parametric representation of infinite Gröbner
bases in the algebraic ring F [ΘX ]. This representation is provided by derivation operators and is
compatible with the structure of the differential ring F{X}. Therefore, we deal with one element f
instead of the family Θf . In other words, we can define a differential standard basis in the following
way:

Definition 6. A pair (G,≺), where G ⊂ I is a set of polynomials and ≺ is an admissible ordering,
is a differential standard basis of an ideal I, if ΘG forms an algebraic standard basis of I.

How can we generalize such suitable representations? Here we give some ideas.

Definition 7. Let us call a system (G, H,≺), where G and H are finite sets of polynomials and
≺ is an admissible ordering, an M -basis3 of the set F , if ΘG · ΘH forms an algebraic standard
basis of F .

Definition 8. Let S be any subset of F{x}. An ordered set of M -bases

G = {(G1, H1,≺1), (G2, H2,≺2), . . .} ,

where Gi and Hi are finite subsets and ≺i are admissible orderings, is said to be a normalizing
system of S if

f ∈ S ⇐⇒ ∃ k � 1 :

f −−−−−−−−→
{G1,H1,≺1}

h1, h1 −−−−−−−−→
{G2,H2,≺2}

h2, . . . , hk−1 −−−−−−→
Gk,Hk,≺k

0 .

We see that if an ideal I has a finite standard basis G w.r.t. ≺ then I also has the M -basis
(G, {1},≺) as well as a finite normalizing system. Evidently, the concepts of M -basis and normal-
izing system are wider than that of standard basis.

Since the orderings ≺i might be different, one cannot guarantee that hi+1 � hi for f ∈ F{x}.
But if all ≺i are equal, Hi = {1} and the union of all Gi is finite then the reduction w.r.t. G can
be viewed as a special normal form algorithm for the standard basis ∪iGi of S.

Any differential ideal [F ] admits the following infinite normalizing system: the orderings ≺i are
arbitrary but fixed and Gi are the Gröbner bases (w.r.t. ≺i) of the algebraic ideals Ji generated
by the elements and the derivatives of F of order lower than i.

Consider the following basic examples.

Example 2. Let I = [{x2
i | i � 0}]. This is the simplest example of an infinitely generated differ-

ential ideal [6]. For any admissible ordering ≺ the system ({x0}, {x0},≺) is an M -basis of I.

Example 3. Consider the ideal I = [x0x1] obtained from [x2] simply by differentiating the gener-
ator. It seems that this ideal does not have a finite standard basis for any ordering [22]. But one
can prove that a system

({x0x1}, {1},≺degrevlex)

reduces every element of this ideal to the form x2
0f , where every term of f contains some xi, i � 1.

On the other hand the monomials x2
0xi belong to I for all i � 1 [22]. Thus,

{({x0x1}, {1},≺degrevlex), ({x2
0}, {x1},≺)}

is a normalizing system of I for any ≺.

It is not clear yet whether there exist finitely generated differential ideals that have no finite
normalizing systems. Even more so that we do not know how to construct such systems effectively.
But they could become a good theoretical generalization of standard bases in the future research.
3 M stands for “multiplicative”.
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4 Ideals of the Form [x2
1 + α x0 + β]

The simplest example of a non-isobarizable ideal is I := [x2
1 +x0]. It is interesting to study ideals of

this kind. First of all, one can prove that I is non-radical: x2
3 ∈ I, but x3 /∈ I. The natural problem

is to represent x2
3 via the generator f1 := x2

1 + x0 and its derivatives. For purposes of this kind,
the extended Buchberger algorithm has been implemented in Maple. It allows one to express new
elements of the Gröbner basis via the source elements. Therefore, one can compute the Gröbner
basis of (f1, . . . , fk) where fi := δi−1f1, for a sufficiently large k. It turns out that for x2

3 one can
choose k = 5. Unfortunately, the representation given by the extended Buchberger algorithm is
often too complicated. In our case it consists of more than 100 summands.

At the same time there exist more simple representations for x2
3. For instance, Prof. M.V.

Kondratieva has found the following one:

x2
3 = (−10 x2x3x4 − 5

3
x3x4 − 1

3
x2x5 + 30 x3

3) f2 +

+ (10 x1x3x4 − 9 x2
3 +

1
3

x1x5) f3 +

+ (x3 + 3 x2x3 − 10 x1x
2
3) f4 −

− 1
3

x1x3 f5.

It appears that all monomials of the form xixj , i, j � 3 are in I. In fact, the ideal [{xixj}] coin-
cides with [{x2

i }] considered above. These statements were proved and generalized after numerous
computations of Gröbner bases of (f1, . . . , fk) for different k.

Lemma 1. The families of differential polynomials

1. g1 := x0x3,
2. g2 := x2

0x4,
3. h := 2 x2

2 + x2 − 2 x0 x4,
4. h0

k := 4 x0xk + (k − 2)(k − 3)xk−2, k � 5,
5. h1

k := 2 x1xk − (k − 2)xk−1, k � 4,
6. h2

k := 2 x2xk + xk, k � 3,
7. h3

k := x3xk−1, k � 4

belong to the ideal [x2
1 + x0].

Proof. Let us use the induction on k. One can directly check that the reduced Gröbner basis of
(f1, f2, f3, f4, f5) w.r.t. the deglex ordering contains the polynomials g1, g2, h and (4) – (7) for
admissible k � 5. We have

δh0
k = 4 x1xk + 4 x0xk+1 + (k − 2)(k − 3)xk−1 = h0

k+1 + 4 x1xk − 2(k − 2)xk−1 = h0
k+1 + 2h1

k .

Hence, h0
k+1 ∈ I. Similarly, δh1

k = h1
k+1 + h2

k and h1
k+1 ∈ I.

Consider the S-polynomial x2δh
2
k−xk+1h = 2 x2x3xk +2 x0x4xk+1 ∈ I. Reducing it w.r.t. h0

k+1

and h2
k, we obtain

x3xk +
(k − 1)(k − 2)

2
x4xk−1 ∈ I .

At the same time δh3
k = x3xk + x4xk−1 ∈ I. From this for k � 4 we get x4xk−1 ∈ I and, therefore,

h3
k+1 = x3xk+1 ∈ I.

Thus, h2
k+1 = δh2

k − 2 x3xk ∈ I. The inductive step is completed and the lemma is proved.

Proposition 5. [x2
1 + x0] ∩ F{x3} = [xi xj , i, j � 3].
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Proof. By the previous lemma, x3xk ∈ I for all k � 3. Assume that xixj ∈ I for given i and all
j � 3. Then we have xi+1xj = δ(xixj) − xixj+1 ∈ I for all j � 3. By induction we conclude that
xixj ∈ I ∀ i, j � 3, i.e., [xi xj , i, j � 3] ⊂ [x2

1 + x0] ∩ F{x3}.
The converse inclusion holds true due to the following proposition.

Proposition 6. Polynomials (1) – (7) given above, the polynomials xixj , i, j � 3, and the polyno-
mials f1, f2 and δg1 = x0x4 + x1x3 form the reduced algebraic standard basis w.r.t. the degrevlex
ordering of the ideal I = [x2

1 + x0] in the non-differential ring F [{xi | i � 0}].

Proof. One can write down explicitly all essential S-polynomials of these elements and check that
they reduce to zero.

Theorem 2. For all α, β ∈ F , α �= 0, we have [x2
1 + α x0 + β] ∩ F{x3} = [xi xj , i, j � 3].

Proof. Consider a differential automorphism φ of the ring F{x}:

φ(x0) = α x0 + b ;

φ(δ) =
1
a

δ .

This automorphism maps the ideal I = [x2
1 + x0] to the ideal φ(I) = [x2

1 + α x0 + β]. Moreover,
φ(xi) = a1−i xi for i � 1. Thus, ai+j−2 φ(xixj) = xixj ∈ φ(I) for i, j � 3 by Proposition 5.

Proposition 7. If β �= 0 then [x2
1 + β] ∩ F{x2} = [x2].

Proof. For f = x2
1 + β we have 2 x2f − x1δf = 2 β x2 ∈ [f ].

5 Conclusions

We gave an overview of the membership problem for differential ideals in ordinary differential
polynomial rings in one variable. This puzzling problem is far from being solved except for several
important cases. Since the case of radical ideals has been well studied, we were interested in ideals
of the form [F ] given by their differential generators. We presented the algorithms to test whether
the set F is isobarizable. In the case of the positive answer it is possible to test the membership
to [F ].

We extended the notion of differential Gröbner basis to the more general class of admissible
orderings and presented the advantages and disadvantages of this extension. In order to work with
these general orderings we improved the algorithm of differential reduction.

We suggested the concepts of M -basis and normalizing system that generalize Ollivier’s stan-
dard bases. Using computations in Maple we studied certain non-isobarizable differential ideals
such that [x2

1 + x].
The author hopes that the ideas described in this paper can be generalized to the case of any

finitely generated ideals and lead to the complete solution of the membership problem.
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10. Mansfield, E.: Differential Gröbner Bases, Ph.D. Thesis, University of Sydney (1991)
11. Mead, D.G.: A necessary and sufficient condition for membership in [uv]. Proc. AMS 17 (1966) 470–473
12. Mead, D.G., Newton, M.E.: Syzygies in [ypz]. Proc. AMS 43 (2) (1974) 301–305
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