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Abstract. This paper studies resultants of two homogeneous partially composed polynomi-
als. By two homogeneous partially composed polynomials we mean a pair of polynomials
of which one does not have any given composition structure and the other one is obtained
by composing a bivariate homogeneous polynomial with two bivariate homogeneous poly-
nomials. The main contribution of this paper is to show that the resultant of two partially
composed polynomials is a certain iterated resultant of the component polynomials. Fur-
thermore, experiments show that, in many cases, this iterated resultant can be computed
with dramatically increased efficiency. This paper is part of the author’s work on resultants
of composed polynomials. This paper is also the completion of a work by McKay and Wang
who considered inhomogeneous partially composed polynomials.

1 Introduction

Resultants are fundamental in solving systems of polynomial equations and therefore have been
extensively studied ([20], [4], [6], [12], [17], [21], [7], [18], [9], [2]). Recent research is focused on
utilizing structure of polynomials, naturally occurring in real life problems, for example, sparsity
([30], [11], [10], [8], [5], [31], [3], [28]) as well as composition ([22], [17], [23], [7], [19], [16], [24], [26],
[25], [27]). This paper is part of the author’s work on utilizing composition structures. The work
[24] also contains a section explaining the importance of composition structures that are considered
in this and in previous works.

Previous papers ([16], [26], [25], [27])) by the author considered “fully” composed polynomials.
That is, composed polynomials such as h1 = f1 ◦ (g1, g2, g3), h2 = f2 ◦ (g1, g2, g3) and h3 =
f3 ◦ (g1, g2, g3), where each composed polynomial hi is obtained from the polynomial fi in the
variables y1, y2, y3 by replacing yj with the bivariate polynomial gj. Note that each composed
polynomial has the same inner components g1, g2, g3. The previous works have determined the
irreducible factors of projective (Macaulay) or toric (sparse) resultants of such “fully” composed
polynomials.

The focus of the current paper is entirely different from the one of the previous papers ([16], [26],
[25], [27])). It considers “partially” composed polynomials. By two partially composed polynomials
h1 and h2, we mean a bivariate homogeneous polynomial h1 that does not have any composition
structure and a bivariate homogeneous composed polynomial h2 = f2 ◦ (g1, g2) that is obtained
from the homogeneous bivariate polynomial f2 in the variables y1 and y2 by replacing yj with the
bivariate homogeneous polynomial gj . (Of course, g1 and g2 are required to have the same total de-
grees to ensure that h2 is homogeneous.) The finding of the current paper is also quite different from
previous findings ([16], [26], [25], [27])). We find that the projective (dense, Sylvester/Macaulay)
resultant of two partially composed polynomials h1 and h2 is a certain iterated resultant. More
precisely, it is the resultant of the polynomials f1 and f2, where f1 is the resultant of certain poly-
nomials derived from the component polynomials h1, g1 and g2. Interestingly, we find two different
natural formulas for f1, one involving a projective (dense, Sylvester/Macaulay) resultant and an-
other one involving a toric (sparse) resultant. Moreover, we show in experiments that for many
cases this iterated resultant can be computed, over the integers modulo a prime, with dramatically
improved efficiency.

This work can also be considered as a completion of works ([22] and [23]) by McKay and
Wang. In [22] they study resultants of two inhomogeneous composed polynomials as well as two
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inhomogeneous partially composed polynomials (in Theorem 7 of [22]). Additionally, in [23] they
study the homogeneous generalization for the case of two composed polynomials. However, they
ignore the case of two homogeneous partially composed polynomials. Furthermore, they do not
address efficient computation of partially composed polynomials. In fact, their presentation of
their result (Theorem 7 of [22]) does not allow an immediate computational application. Also
note that Jouanolou’s work [17] that considers resultants of composed polynomials in Section 5.12
ignores the partially composed case as well.

Note that the main theorem of the present paper (Theorem 1) can be considered a generalization
(to the homogeneous case) of Theorem 7 of the work [22] by McKay and Wang. Therefore we briefly
state Theorem 7 of [22]. For the sake of a more uniform presentation, with respect to the current
work and to previous works ([16], [26], [25], [27])) of the current author, we use different symbols
for the polynomials than in [22]. Let F2 be a univariate polynomial in the variable y and G and H1

be univariate polynomials in the variable x. Then, the projective (dense, Sylvester) resultant of H1

and H2 = F2 ◦ G is the resultant of F1 and F2 where F1 is given by a certain formula involving
the roots of H1. More precisely,

F1 = H1(0)d
∏

α

(y − G(α)), (1)

where d is the degree of G and α ranges over the roots of H1. (In Line (1) G(α) is obtained from G by
replacing the variable x of G with the value α.) Note that the polynomials F2, G and H1 can indeed
be considered as a sub-case of the homogeneous polynomials subject of the current paper. That
is, for homogeneous bivariate polynomials f2, g1, g2 and h1, we have F2 = f2(g1(x, 1), y), where
g1(x, 1) = 1, G = g2(x, 1) and H1 = h1(x, 1). (Again, as in Line (1), g1(x, 1) is obtained from
the polynomial g1 by replacing the variable x1 with x and the variable x2 with 1. Furthermore,
f2(g1(0, 1), y) and h1(x, 1) are obtained accordingly.) Note that the formula for F1 looks quite
different from the formulas for f1 in Theorem 1 of the current paper. Please, see Remark 4 for an
explanation how they are related.

The reader might wonder whether one can utilize composition structures for other fundamental
operations. In fact, this has already been done for some operations. For examples, projective
(Macaulay) resultant, Gröbner bases, SAGBI bases, subresultants and Galois groups of certain
differential operators have been studied respectively in [26], [14] and [13], [29], [15] and [1] using
various mathematical techniques. However, it seems that those techniques cannot be applied to
the study of resultants. Therefore in this paper we use mathematical methods that are essentially
different from those.

2 Main results

We assume the reader is familiar with the notions of projective (dense, Sylvester/Macaulay) resul-
tant, toric (sparse) resultant and supports of sparse polynomials (see [8], [11], [30]).

Before we state the main theorem we fix a few notations. Let’s assume that all the polynomials
h1, f2, g1, g2 in Theorem 1 are defined over the complex numbers. Let h1 be a bivariate homogeneous
polynomial in the variables x1, x2 of degree e1. Let f2 be a homogeneous bivariate polynomial in the
variables y1, y2 of degree c2. Let g1 and g2 be bivariate homogeneous polynomials in the variables
x1, x2 of equal total degrees, denoted by d. Let the composed polynomial h2 = f2 ◦ (g1, g2)
be obtained from the polynomial f2 by replacing yj with gj . Note that we had to assume that
g1 and g2 have equal total degrees in order to ensure that h2 is homogeneous. Let Resc1,c2 and
ResC1,C2,C3 respectively denote the projective (dense, Sylvester/Macaulay) resultant of two bivariate
homogeneous polynomials of respective total degrees c1 and c2, and the toric (sparse) resultant of
three not necessarily homogeneous polynomials with supports C1, C2 and C3.

Now we are ready to state the main theorem.

Theorem 1 (Main theorem)

Res e1,e2 (h1, f2 ◦ (g1, g2)) = Res c1,c2 (f1, f2) , (2)
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where f1 is given by both equalities:

f1 = Res e1,d (h1, y2 g1 − y1 g2) , and (3)

f1 = (−1)e1 Res C1,C2,C3 (h1, y1 − g1, y2 − g2) . (4)

In the above formulas, we have e2 = c2 d and c1 = e1. Furthermore, the set C1 is the support of a
dense homogeneous bivariate polynomial of degree e1. That is, C1 = {(e1, 0), (e1 − 1, 1), . . . , (0, e1)}.
Whereas the sets C2 = C3 consist of the origin and the support of a dense homogeneous bivari-
ate polynomial of degree d. That is, C2 = C3 = {(0, 0), (d, 0), (d − 1, 1), . . . , (0, d)}. Moreover, we
normalize the sign of the resultant ResC1,C2,C3 such that we have ResC1,C2,C3(x

e1
1 , xd

2, 1) = 1.

Remark 2 Note that the resultants in Lines (3) and (4) eliminate that variables x1, x2 rather
than y1, y2.

Notation 3 Let us fix the following notation for the rest of this paper. If p is a bivariate polynomial
in the variables x1 and x2 then p(c1, c2) is obtained from p by replacing xi with ci.

Remark 4 The formula in Line (3) can be viewed as a generalization of McKay’s and Wang’s
formula of Line (1). That is, Line (1) implies that, using the notation of Section 1,

F1 = Res e1,d (H1, y − G) = Res e1,d (h1, y2 g1 − y1 g2) ,

where y2 = y, y1 = 1, g1(x, 1) = 1, g2(x, 1) = G and h1(x, 1) = H1.
Also note that McKay’s and Wang’s formula in Line (1) cannot be easily used for computations

because it involves the roots of the polynomial H1. On the contrary to this, the formula in Line (3)
does not involve roots and thus can be easily used for computations.

Furthermore note an interesting difference between the proofs of Line (1) and Line (3). That
is, the proof of Line (1) of [22] proceeds with polynomials with arbitrary complex coefficients.
Whereas the proof of Line (3) in Section 3 of the current paper relies on polynomials with symbolic
(algebraically independent) coefficients. Only after showing Line (3) for polynomials with symbolic
coefficients, we observe that Line (3) is stable under specialization and thus Line (3) is valid for
polynomials with any complex coefficients. This approach allows avoiding case distinctions in the
proof.

Remark 5 Since this paper considers projective (dense, Sylvester/Macaulay) resultants of par-
tially composed polynomials, the reader might find it surprising that the polynomial f1 is expressed
in terms of a toric (sparse) resultant (see Line 4) and not in terms of a projective (dense, Macaulay)
resultant. Indeed, one can show that f1 is also related to a projective resultant. That is, Corollary 5
of [28] implies that the power fd

1 is the projective (dense, Macaulay) resultant of h1, y1 − g1 and
g2 − g2 with respect to the total degrees e1, d and d.

Remark 6 Naturally, one asks how Theorem 1 is related to the well-known formula for resultants
of composed polynomials derived by [23] in the homogeneous bivariate case. It turns out that
one can rewrite resultants of composed polynomials in terms of resultants of linearly combined
polynomials by applying Theorem 1 twice. However, it seems that one cannot derive the main
result of [23] only by applying Theorem 1.

To illustrate the previous paragraph, in the following we apply Theorem 1 to resultants of ho-
mogeneous bivariate composed polynomials twice. Let f1 and f2 be homogeneous bivariate polyno-
mial in the variables y1, y2 of respective degrees c1 and c2. Let g1 and g2 be bivariate homogeneous
polynomials in the variables x1, x2 of equal total degrees, denoted by d. Then, by Theorem 1,

Res c1d,c2d (f1 ◦ (g1, g2) , f2 ◦ (g1, g2)) = Res c1d,c2d (p, f2) , (5)

where p = Res c1d,d (f1 ◦ (g1, g2) , y2g1 − y1g2) which equals, by Corollary 5 of [23], the formula
(−1)c1d2

Res c1d,d (y2g1 − y1g2, f1 ◦ (g1, g2)). Furthermore, by Theorem 1, p = Res d,c1 (q, f1), where
q = Res d,d (y2g1 − y1g2, z2g1 − z1g2), where z1 and z2 are new distinct variables. Therefore, in-
deed, one can use Theorem 1 to rewrite the resultant of two composed polynomials in terms of the
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resultant of two linearly combined polynomials. If one factors q into (−y2z1−y1z2)d Res d,d (g1, g2),
applying Lemma 7 of [23], and if one utilizes the bi-homogeneity of the resultant, one can simplify
Line (5) to obtain McKay’s and Wang’s formula

Res c1d,c2d (f1 ◦ (g1, g2) , f2 ◦ (g1, g2)) = Res c1,c2 (f1, f2)
d Res d,d (g1, g2)

c1c2

for resultants of two homogeneous bivariate composed polynomials ([23]).

Remark 7 In the following subsection, “Computational application of the main theorem”, we will
use Theorem 1 for efficiently computing resultants of partially composed polynomials. The reader
will notice that we will not utilize Line (4). It is important to point out that we have stated Line (4)
because it is of independent theoretical interest. That is, it makes an explicit connection between
projective (dense, Sylvester/Macaulay) resultants of two polynomials and bivariable toric (sparse)
resultants of three polynomials.

Computational application of the main theorem

In this subsection we describe how one can apply Theorem 1 to efficiently compute resultants of
partially composed polynomials.

Step 1: Computation of f1 We ask the reader to examine the resultant in Line (3) in Theorem 1.
Note that the bi-homogeneity of this resultant implies that the polynomial f1 is homogeneous in
the variables y1 and y2. Furthermore the total degree of f1 is e1. Thus, in order to compute f1 it
is sufficient to compute the polynomial p(y1) = Res e1,d (h1(y1, 1), g1 − y1g2). This polynomial p
can be computed via interpolation letting y1 range over the values 0, 1, . . . , e1.

Step 2: Computation of Resc1,c2(f1, f2) Note that f1 and f2 are bivariate homogeneous
polynomials. Therefore the resultant Resc1,c2(f1, f2) can be computed as the univariable (Sylvester)
resultant Resc1,c2(f1(y1, 1), f2(y1, 1)).

Running Time experiments Now, we discuss some practical running time experiments carried
out under Maple 9 on a PC with a 2.2 GHz processor and 3 GB main memory. For this subsection,
we assume that all the polynomials h1, f2, g1, g2 have integer coefficients modulo a fixed 32
bit prime number. The author has measured how the running times of the method described
in Step 1 and Step 2 above compare to the running times of computing resultants of partially
composed polynomials without utilizing the composition structure of f2 ◦ (g1, g2). For the rest of
this subsection, in order to be able to easily compare both methods, we refer to the first method
with “UseStruc” (use the structure via Step 1 and Step 2) and to the second one with “NoStruc”
(do not use the structure, expand the composed polynomial and compute the resultant).

The measurements have been taken for random dense g1’s and g2’s of equal degrees ranging
from 10 to 30 and for random dense h1’s and f2’s of degrees independently ranging from 10 to
30 as well. This choice of inputs results in a large amount of computations and running times
measured. That is, the degrees (c2, d, e1) of the inputs range over the set {10, . . . , 30}3 and for
each triple in the latter set we get running time measurements. In order to make the presentation
of the timings more compact, we compute averages of the running times in a systematic way
described as follows. For fixed degree e1 of h1, we partition the set {10, . . . , 30}2 × {e1} into small
sets of four triples. That is, these partitioning sets are Pl,e1 = {10 + 2l, 10 + (2l + 1)}2 × {e1} =
{(10+2l, 10+2l, e1), (10+2l, 10+(2l+1), e1), (10+(2l+1), 10+2l, e1), (10+(2l+1), 10+(2l+1), e1)}.
For each triple in Pl,e1 , we generate random polynomials of corresponding degrees and measure
the running times of methods UseStruc and NoStruc. Then we compute the averages timeUseStruc

l,e1

and timeNoStruc
l,e1

, of these measured times for the four triples in Pl,e1 . One can observe that these
averages vary not very much as e1 ranges from 10 to 30. Thus we compute the averages timeUseStruc

l

and timeNoStruc
l , for e1 ranging from 10 to 30, further simplifying the presentation of the running

times but still remaining faithful to the experimental measurements. Finally, these values are listed
in Table 1.
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The author believes that intuitively it is not surprising that the averages timeUseStruc
l,e1

and
timeNoStruc

l,e1
vary little for varying e1. That is, e1, the degree of the unstructured h1, is relatively

small in comparison to the degree of the composed polynomial f2◦(g1, g2). Therefore, changes of e1

have little impact on the running time. Furthermore, note that in this case utilizing the composition
structure is also very efficient computationally. If e1 becomes larger then the efficiency of Step 1
and Step 2 decreases. This behavior is expected because, intuitively, for large e1, in comparison to
the degree of the composed polynomial f2 ◦ (g1, g2), one expects to achieve only little or even no
gain in efficiency through utilizing the composition structure of f2 ◦ (g1, g2).

l timeNoStruc
l in sec. timeUseStruc

l in sec.
Application of Theorem 1

0 0.763 .025
1 1.320 .027
2 3.059 .027
3 4.902 .028
4 7.675 .030
5 12.414 .031
6 18.843 .031
7 31.393 .033
8 58.322 .035
9 99.768 .036

Fig. 1. Running times for increasing degrees of f2, g1, g2. Averages for (c2, d, e1) in {10 + 2l, 10 + 2l + 1}2×
{10, 11, . . . , 30}.

In Table 1 one can see that the speedup of Method UseStruc (Theorem 1 applied in Step 1 and
Step 2) is quite dramatic as l, i.e. the degrees of f2, g1 and g2, increases.

3 Proof of the main theorem

The main theorem, Theorem 1, consists of two parts. In this paper we only prove the first part
and leave out the proof of the second part. That is, we prove Line (2) and Line (3). The author
intends to prove the second part, Line (4), in a subsequent publication.

Proof of Line (2) and Line (3) of Theorem 1 We start with an auxiliary lemma.

Lemma 8 Suppose Res e1,d (h1, g2) �= 0. Then the leading coefficient, with respect to the variable
z, of the polynomial Res e1,d (h1, g1 − z g2) equals the resultant Res e1,d (h1, g2) and the degree in z
of the polynomial is e1.

Proof: Let p(z) = Res e1,d (h1, g1 − z g2). By the bi-homogeneity of the resultant, the degree of p is
at most e1. Therefore, if ph(1, 0) �= 0, where ph(y1, y2) = ye1

2 p(y1
y2

), then the leading coefficient of
p is ph(1, 0) and its degree is e1. Since ph(1, 0) = Res e1,d (h1, g2) �= 0, we have shown the lemma. �

Now we are ready for the next lemma, Lemma 9, which shows Line (2) and Line (3) of Theo-
rem 1.

The proof of Lemma 9 extends and generalizes the proof of Theorem 7 of [22]. Note that there
is an interesting difference between the two proofs. The proof of Lemma 9 in a first step shows
the lemma for polynomials with symbolic (algebraically independent) coefficients and only in a
second step it shows the lemma for polynomials with arbitrary coefficients. Whereas, the proof of
Theorem 7 of [22] shows the theorem for polynomials with arbitrary coefficients without any first
step dealing with symbolic coefficients (compare Remark 4). This approach allows avoiding case
distinctions in the proof.
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It is also important to point out that one can find a different extension of the proof of Theorem 7
of [22] in the literature. That is, in [23], McKay and Wang extend the techniques presented in [22]
in order to derive a product formula for resultants of two homogeneous composed polynomials (see
Remark 6). This extension is different from the one included in the proof of Lemma 9. Moreover,
it seems not possible to utilize the extended proof techniques presented in [23] to prove Lemma 9
of the current paper.

Furthermore, note that the proof of Lemma 9 is different from the proofs of the results of
other papers ([17], [7], [19], [16], [26], [25], [27]) deriving product formulas for various resultants of
composed polynomials.

Lemma 9 We have
Res e1,e2 (h1, f2 ◦ (g1, g2)) = Res c1,c2 (f1, f2) ,

where f1 = Res e1,d (h1, y2 g1 − y1 g2).

Proof: Let us first assume that all the polynomials h1, f2, g1 and g2 have distinct symbolic coef-
ficients. Let x be a new variable. Then we have by well known properties of the resultant ([20])
that Res e1,e2 (h1, f2 ◦ (g1, g2)) = Res e1,e2 (h1(x, 1), f2 ◦ (g1, g2) (x, 1)). Note that the resultant on
the left-hand side of this equality eliminates the variables x1 and x2 from two homogeneous poly-
nomials. Whereas, on the right-hand side it eliminates the variable x from two univariate (not
necessarily homogeneous) polynomials. Furthermore, let α range over the roots of h1(x, 1). Then,
since g2(α, 1) �= 0 and by well known properties of the resultant (see [22], [20]), we have

Res e1,e2 (h1, f2 ◦ (g1, g2)) = h1(0, 1)c2d
∏

α

f2 ◦ (g1, g2) (α, 1)

= h1(0, 1)c2d
∏

α

f2(g1(α, 1), g2(α, 1))

= h1(0, 1)c2d
∏

α

g1(α, 1)c2
∏

α

f2(
g1(α, 1)
g2(α, 1)

, 1)

= (Res e1,d (h1, g2))
c2

∏

α

f2(
g1(α, 1)
g2(α, 1)

, 1).

Now, observe that β = g1(α,1)
g2(α,1) for some α iff

∏

α

(g1(α, 1) − β g2(α, 1)) = 0.

Since h1(1, 0), the leading coefficient of h1(x, 1), does not vanish, the latter is equivalent to

Res e1,d (h1(x, 1), g1(x, 1) − β g2(x, 1)) = 0,

which is equivalent to Res e1,d (h1, g1 − β g2) = 0. Therefore and by Lemma 8,

Res e1,e2 (h1, f2 ◦ (g1, g2)) =

(Res e1,d (h1, g2))
c2 ×

∏

β

Res e1,d(h1, g1−β g2) = 0

f2(β, 1) =

(Res e1,d (h1, g2))
c2 × Res e1,c2 (Res e1,d (h1, g1 − y g2) , f2(y, 1))

(Res e1,d (h1, g2))
c2 =

Res c1,c2 (f1, f2) .

Therefore we have shown Lemma 9 for polynomials with symbolic coefficients.
Next, observe that the formulas of Lemma 9 are stable under specialization. Therefore Lemma 9

also holds for polynomials with arbitrary coefficients. �
Thus we have shown Line (2) and Line (3), that is, the first part of Theorem 1.
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4 Conclusion

This paper has studied resultants of partially composed polynomials. We have found that these
resultants are certain iterated resultants of the component polynomials. Furthermore, we saw in
experiments that, in many cases, these iterated resultants can be computed with dramatically
increased efficiency.

Future research might address multi-variable generalizations of the results of this paper.
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thesis, Université Paris VI, 1990.

7. C. C. Cheng, J. H. McKay, and S. S. Wang. A chain rule for multivariable resultants. Proceedings of
the American Mathematical Society, 123(4):1037–1047, April 1995.

8. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer Verlag, New York, Berlin,
Heidelberg, 1998.

9. C. D’Andrea and A. Dickenstein. Explicit formulas for the multivariate resultant. Pure Appl. Algebra,
164(1-2):59–86, 2001.

10. I. Z. Emiris and V. Pan. The structure of sparse resultant matrices. In Proc. Int. Symp. on Symbolic
and Algebraic Computation (ISSAC). ACM Press, 1997.

11. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants and Multidimensional
Determinants. Birkhäuser, Boston, 1994.
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