Test of Monomorphism for Morphisms of Finite Type
Between Affine Schemes

Sihem Mesnager

Institut de Mathématiques de Jussieu, Université de Paris VI
175 rue de Chevaleret, 75013 Paris, France
hachai@math. jussieu.fr

Abstract. In this paper, we give algorithmic criterion for morphisms of finite type between
affine schemes to be a monomorphism. As side results, this paper also contains an algo-
rithmic test for separability and an algorithmic criterion for “radiciality” in the sense of
Grothendieck.

Introduction

Since the introduction of Groebner bases, many authors have focused their interest on the con-
struction of algorithms for testing properties of polynomial applications, encountered in classical
algebraic geometry. An abbreviated list of such works is [2] [12] [15] [16] [4-7] [17].

In a preprint [4], written in 1986 but published only four years later in [5], van den Essen intro-
duced for the first time the use of Grobner bases to test invertibility of polynomial endomorphisms.
In 1992, Kwiecinski [12] generalized van den Essen’s result to test isomorphism between reduced
algebras of finite type over a commutative field. This last result was again generalized by van den
Essen in his last book [7], where he deals with the case of algebras of finite type over a commu-
tative field. Shannon and Sweedler [16] used these same bases to test whether a given polynomial
belongs to the image of a morphism between k-algebras of polynomials (k a field) of any dimension
which so allow us to test the surjectivity and hence the bijectivity of such a morphism as well as
its birationality. Ollivier [15] used Graebner bases to test the injectivity of a polynomial mapping
between two affine spaces with different dimension. In [6], van den Essen wrote algorithms allowing
to decide whether a morphism between two affine varieties is finite, or, respectively, quasi-finite.
From the test of quasi-finiteness, he deduced a test of flatness for a morphism of smooth varieties.
Vasconcelos [17] also gave a test of flatness for certain algebras in particular for graded algebras
and finitely generated algebras over a regular ring. Finally, Adjamagbo [2] recently proved how to
decide whether a morphism of affine varieties is an open imbedding or not. Taking into account all
the fore-cited works, we signal that the test of flatness has not been solved in the general case.

In this paper, we give algorithmic criterion for morphisms of finite type between affine schemes
to be a monomorphism. This has been newer settled in the literature. As side results, this paper
also contains an algorithmic test for separability and an algorithmic criterion for “radiciality” in the
sense of Grothendieck. More precisely, given Spec(f) : J := Spec(B) — X := Spec(A) a morphism
of finite type between K-affine schemes (where A and B are two finitely generated affine algebras
over the same field K'), we provide an algorithm to decide whether Spec(f) is a monomorphism
of schemes or not, namely satisfies that : for any morphisms g, h : Z — Y (where Z is any affine
scheme over K) , fog= foh=g=h.

Grothendieck [10] gave a characterization of monomorphisms of schemes. He stated that a mor-
phism of schemes is a monomorphism if and only if it is radiciel and its comorphism is unramified.
In the case of affine schemes, a morphism between two affine schemes over a field K is unramified
if and only if its comorphism is a separable morphism of K-algebras. Therefore, we first establish
an algorithm to test the separability. To this end, we use the fact that the separability is equiv-
alent to the existence of a left-inverse for a certain Jacobian matrix [18,1]. Next, we establish an
algorithm to test the property to be radiciel for morphism of finite type between K-affine schemes.
To this end, we show that the property to be radiciel for Spec(f) is equivalent with the injectivity
of the morphism obtained from Spec(f) by base change Spec(K) — Spec(K) where K denotes an
algebraic closure of K.
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Notation. Throughout this paper, given a ring A, Spec(A) denotes the set of all prime ideals of
A topologized by the Zariski topology.

1 Preliminaries

Throughout this section, A and B are rings which we assume to be commutative, with an identity.
Let X and Y be affine schemes so that X := Spec(A) and Y = Spec(B). Let Spec(f) : Y — X be a
morphism of finite type so that it induces a homomorphism of rings f : A — B. The homomorphism
f makes B into an A-algebra. Let B ® 4 B be the tensor product of B with itself over A. Let 7
be the multiplication homomorphism from B ® 4 B to B : m(b®4 b') = bb’ for all (b,b') € B2. We
begin with introducing some definitions needed to express the characterizations of Grothendieck.
The first definitions are the property of separability for two finitely generated algebras.

Definition 1. We say that B is a separable A-algebra if one of the following equivalent conditions
is satisfied:

1. 7 induces on B a structure of projective B ® 4 B-module.
2. The exact sequence

0—kerm - B®sB5B—0

of B ® 4 B-modules splits (where B is endowed with its B ® B-module structure induced by
).

3. There exists an element idempotent e in B ® 4 B such that w(e) = 1 and (kerm)e = {0} (or
alsom(e) =1l and e(b® 1) =e(l®b) for all b € B).

Ezample 2. The homomorphism f : F,[X] — F,[Y] which maps X to Y? +Y (F, stands for
the finite field with prime characteristic p ) is separable. On the other hand, the homomorphism
f': Fp[X] — F,[Y] which maps X to Y? (associated to the Freebenius morphism F, — F, which
maps x to zP) is not separable.

Next we define the property to be unramified.

Definition 3. We say that B is a unramified A-algebra if and only if B is a separable A-algebra
and ker 7 is a finitely generated ideal of B ® 4 B.

Remark 4. When B is a finitely generated A-algebra (up to an isomorphism), the condition on
ker 7 in the definition 3 is always fulfilled and thus we have

B is an unramified A-algebra <= B is a separable A-algebra

Next we recall the notion of radiciel morphism [10].

Definition 5. A morphism of schemes f : X — ) is said to be radiciel if f is universally injective,
i.e. for every ) — ), the morphism f’: X’ — )’ obtained from f by base change is injective.

We now state some characterizations of radiciel morphisms which shall help us in our study.

Proposition 6. Let f: X — Y be a morphism of schemes. Then the below assertions are equiva-
lent

1. f is radiciel.

2. For any field K', the map f(K') : Y(K') — X(K') is injective where X(K') (resp. Y(K'))
denotes Hom(K', X) (resp. Hom(K’,Y)), i.e the set of all morphisms from K’ to X (resp. V).

3. The diagonal morphism Ay : Y — Y xx Y is onto (where Y xx Y denotes the fiber product of
X -schemes)

Ezample 7. The freebenius morphism f : E, — [, which maps = to 2P defined on the algebraic
closure ), of I, is radiciel.
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Ezample 8. The R-morphism of schemes f : Spec(C) = Spec (R[t]/(t* + 1)) — Spec(R) is injective
but not radiciel. Indeed, the C-morphism of bchemes Spec(C[t]/(t*> + 1)) — Spec(C) obtained from
f by base change Spec(C) — Spec(R) is not injective.

Grothendieck [10] stated the below characterization of monomorphism

Theorem 9. Let X and Y be affine schemes and let Spec(f) : Y — X of schemes. Then f is a
monomorphism if and only if it is radiciel and its comorphism is unramified.

Using remark 4, we reformulate the above characterization as

Corollary 10. Let A and B be two finitely generated K-algebras (where K is any commutative
field). The morphism of affine schemes Spec(f) : Spec(B) — Spec(A) is a monomorphism if and
only if the morphism Spec(f) is radiciel and its comorphism f: A — B is separable.

2 Test of Monomorphism for Morphism Between Affine Schemes over
the Same Field

In this section, we base on Corollary 10 and provide a computational method to decide whether or
not a morphism Spec(f) : Spec(B) — Spec(A), where A and B are finitely generated algebras over
the same field K, is a monomorphism or not. We first establish a test of separability in subsection
2.1 using a Jacobian criterion of separability taken from [1]. Next, we show how to reduce the
problem of testing if Spec(f) is radiciel to test if the morphism obtained from Spec(f) by base
change Spec(K) — Spec(K) is injective. This leads us to a computational test for “radiciality”
exposed in Proposition 15.

Let K be a commutative field. Let K[X] (resp. K[Y]) the K-algebra of polynomials generated
by a system X = (X1,...,Xy) (resp. Y = (¥1,...,Y,,)) of indeterminates over R. Let Py, ...,

T

P, (resp @1, ...,Qs) elements of K[X] (resp. K[Y]). Set A := K[X]/ZPiK[X] = Klz1, ..., 2]

where z; = X; —|—ZPK for1 < j<mnand B :=K[Y /ZQK Ky, ..., ym] where
=1
Yy =Y;+ Z Q;K[X] for 1 < j < m. Consider a homomorphism f between K-algebras from A to
=1

T S
B defined as f (Xj + ZPJ([X]) =Fj+ Y QiK[Y] with F; € K[Y] for 1 < j <n.
i=1 =

We finally introduce some miscellaneous notation needed to express our results. We denote 6;;
the Kronecker symbol : §;; = 1 and d;; = 0 if ¢ # j; given a vector, we add a superscript of the
form (i) to indicate the i-th component of this vector; we put a superscript ¢ before to denote the
transpose matrix.

2.1 Test of Separability

Although there exists other necessary and sufficient criterions for characterizing the separability
for two finitely presented algebras, we put emphasis, with the aim of a computational use, on
the criterion known by the name of Jacobian criterion for separability given by Wang [18]. He
considered B := A[Ty,...,Ty]/(hi)icr (T4, ..., T, are indeterminates over A, I is a finite set of
indices and h;, i € I, are polynomials in A[T, ..., T,]. He proved that the separability of B over A
is equivalent to the existence of a row-finite left-inverse in B for the Jacobian matrix of relations.
This criterion has been reworded for finitely presented algebras in [2]. The statement in [2] relies



352 Sihem Mesnager

on the Jacobian matrix of (F1, ..., Fy,, Q1, ..., Qs) with respect to Y

OF,  OR,
Yy T oYy,

FEQ = | I G (1)
0Q. Q.
oy, oY,

The criterion of separability for two finitely presented algebras exposed in [2] is then
Proposition 11. The following assertions are equivalent

1. The A-algebra B induced by f is separable.
2. m <n+s and the canonical image in Mptsm(B) of Jv (F,Q) is left-invertible.

Proposition 11 thus connects the separability of B over A to the left-invertibility of the canonical
image in My, 4sm(B) of Jy(F,Q). We are thus brought to establish a computational criterion
to decide if the canonical image in M4, (B) of Jy (F,Q) is left-invertible or not. Before, we
introduce the notion of syzygy module of a matrix : Let M be a matrix in My, (K[Y1, ..., Yin)]);
Denote Ci, ..., Cy the columns of M; The syzygy module of M is the set of all (aq,...,aq) €
(K[Y1, ..., Ymm])? such that a;Cy + ... + a,Cy = 0; It is a K[V, ..., Y,y ]-submodule of (K[Y1, ..., Y;,])?
and is denoted syz(M).

Proposition 12. Let < be a term order on K[Y1,...,Yn]. Let {Hx,...,Hy,} be a generating set of

m(n+s)+m2s+1 2 2
the syzygy K[Y1, ..., Y ]-submodule of (K[Y1, ..., Yi]) of the m* x m(n+s)+m*s+1-
matrix

L |0 Qr . Qe 0
| | | | P
| | I I I
EQ oL 0 |
| | | |
| | | —01m | L
——————— 4] - — ] | |
| | I I I
L L L
- |
| | | | 0 - 0
0O 110 | | L (2)
| | | | | |
| | I I [
[ [ I I [
——————— L e | |
| | | —8p1 | I
| | | | | |
o It L o
0 : 0 :jY(F7Q) : :_ _____ _:___: _______
I
! ! |6 | 0 I1Q1 - Qs

Then, B is a separable A-algebra if and only if
le Z Hi(m(n—I—s)—I—l)K[Y}
i=1

Proof. According to Proposition 11, the separability of B over A as A-algebra is equivalent to
the existence of a row-finite left-inverse of the canonical image Jy (F,Q) in My4sm(B) of the
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Jacobian matrix Jy (F, Q) given by (1). Now, by definition, the matrix Jy (F, Q) is left-invertible

if and only if there exists a matrix Ky (F, Q) € M, nts(B) such that
Ky (F,Q) Jy(F,Q) = In
where I,,, denotes the identity matrix of M,,(B). This is equivalent to
Iy (F,Q) 'Ky (F.Q) = I (3)

Denote then C1, ..., C,,, the columns of I,,, and (i, ..., {,, the columns of ‘KCy (F, Q). Then (3) can
be reformulated as

Vi S {1a "'am}a th(F7Q) QT’L = Cj’L (4)
or in block-matrix form
' ' G Cy
‘FEQ Lo 0 |
_______ T__T_______
0 [ 0 = (5)
_______ J___JI_______
0 10 1"Jy(F, - -
v (F.Q) a o
This latter system is equivalent to say that there exists ay, ..., Qm2(n4s) in K[Y] such that
G
Gm
N 1 =0 (tC17...,tCm7LOz17...,amz(n+s)) ESyZ(N)
(€3] T
(m(n + s) + 1)th-coordinate
Am?2(n+s)

where N is the matrix of M2 1 (nts)+14m2(nts) (K[Y1, ..., Yin]) defined by (2). Let {Hy, ..., Hy}
be a generating set of the syzygy K[Y1, ..., Y;,]-submodule of (K[Y1, ....,Ym])m("+s)+1+m2("+s) of
the matrix N. Then, we can conclude that Jy (F, Q) is left-invertible if the ideal generated by the

(m(n + s) + 1)th-coordinates of the elements of {H, ..., H, } contains 1.

2.2 A Test of Universal Injectivity

First of all, we show that the problem of deciding whether the morphism Spec(f) is radiciel or
not can be reduced to test the injectivity of the morphism obtained from Spec(f) be base change
Spec(K) — Spec(K).

Proposition 13. Let K be a commutative field. Let K be an algebraic closure of K. Let X and
Y be K-affine schemes of finite type. Let Spec(f) : Y — X be a morphism of finite type. Let
u : Spec(K) — Spec(K) be a base change. Denote f' : Y — X' the morphism of K -affine
schemes obtained from Spec(f) by the base change u. Then

(Spec(f) is radiciel) <= (f’ is injective) (6)
Proof. Firstly, note that it suffices to show the below equivalence to show (6).
<f’ is radiciel) & <f’ is injective) (7)

Indeed, if f’ is injective then, according to (7), f is radiciel. Now, since the base change u :
Spec(K) — Spec(K) is onto, [10, proposition 26.1 p. 27] states that if f’ is radiciel then Spec(f)
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est radiciel. Conversely, the definition of the property to be radiciel means that if Spec(f) is radiciel,
then any morphism obtained from Spec(f) by base change is injective. Thus, in particular, [’ is
injective.

Let us now show (7). Clearly, a radiciel morphism is in particular injective. We hence only need
to show that if f' is injective then f’ is radiciel. Assume from now on that f’ is injective. We then
show show to that the diagonal morphism A ; PE : YV — V' Xy ) is onto which implies that f’ is
radiciel according to proposition 6.

Under the terms of [11, corollary 3.6.3 p. 245], it suffices to show that, for any extension

K’ of K, the map A (K V(K') — Y xx Y'(K') inducted by Az is onto. Let K’ be any
extension of K. Since f is a morphism of affine schemes and accordmg to [11, proposition 5.2.2
p. 277, f’ is separated, i.e. its diagonal A j s a closed subscheme of )’ xx+ ). Now, f is a
morphism of finite type, the complement of the image of the diagonal A ; 7K relative to the

product V' X x- y’(K’) has then a structure of open K- subscheme of V' xx Y'(K'). Moreover,
since the morphism f’ is injective, the map f! (K): V(K) — &' gK ) is injective. Therefore, the
diagonal map Az gy : V'(K) — V' xx V' (K) = V'(K) X x() Y'(K) is onto which is equivalent to
say that the complement of the image of the diagonal Af,(f{) relative to the product )’ x x+ V' (K) is
empty. Hence, the complement of the image of the diagonal A 71K is an open K-subscheme which

has no points on K. The Hilbert Nullstellensatz ensures that this open set is empty. Therefore,
A P is onto and thus f’ is radiciel which completes the proof.

Before stating our test of universal injectivity, we recall first the following helpful result exposed
in [3]

Proposition 14. Let K be a commutative field. Let I be the ideal of K[X1,..., X,] generated by
the polynomials f1, ..., fs of K[X1,...,Xy]. Let f € K[X1,...,X,]. Let Y be another indeterminate
over K and let I be the ideal of K[X1, ..., X,,,Y] generated by f1, ..., fs and 1 =Y f. Then f € /T
if and only if 1 € I.

We then establish the below computational criterion based on Groebuner basis to decide if Spec(f)
is radiciel or not

Proposition 15. Let Z1, ..., Zy and W be new indeterminates over K. Let < be an admissible
term order on K[Y,Z, W] := K[Y1,...,Y;m, Z1, ..., Zm, W]. For each i € {1,...,m}, denote D; the
ideal of K|Y, Z, W] generated by the polynomials Fy(Y)— F1(Z), ..., Fo,(Y) = Fo(Z), Q1(Y), ...,

Q:(Y), Q1(2), ..., Qs(Z) and 1 = W(Y; — Z;).
Then Spec(f) is radiciel if and only if, for each i € {1,...,m}, the reduced greebner basis of D;
with respect to < is equal to {1}.

Proof. Let f’j X' = Spec(B) Xspec(i) Spec(K) — V' := Spec(A) Xspec(k) Spec(K K) be the
morphism of K-affine scheme obtained from Spec(f) by the base change Spec(K) — Spec(K).
Proposition 13 connects the problem of testing that f is radiciel to test the injectivity of f’ . By
definition, fis injective if and only if, whenever (y1,...,ym) € K™ and (21, ..., 2m) € K™ and
Wiy ey ym) = (21, vy 2m), it always turns out that (y1,...,ym) = (21, ---, 2m ). Note now

Spec(A) Xspec(i) Spec(K ) = Spec (A QK K)

:Spec< [(X1,.., X ZPK X1,...X ])

and

Spec(B) Xspec() Spec(K) = Spec (B @ K)
= Spec ( Yi,...,Yn /ZQz [Y1,...Y, ])

Let I be the ideal of K[Y1,..., Y, Z1,..., Zm| generated by all the polynomials Fy (Y7, ...,Y,) —
Fi(Zy,oos Zn)y ooy Fn (Y1, o, Yo ) = F (215 ooy Zin ), Q1(Y15 oo, Yo )y o, Qs (Y1, 00, Y ), Q1( 21 o0y Zim),
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ey Qs(Z1, oy Zpn) and let J be the ideal of K[Y1,...,Y,,, Z1, ..., Zy] which generators are Y1 — 71,
vy Yin — Zpm. Denote then V(I) and V(J) the varieties of K*™ defined, respectively, by the ideals
I and J. Then

f' is injective < V(I) Cc V(J) & VI D VIi=VIsoTg

(by Nullstellensatz theorem, K being algebraically closed). Conversely, if VI > J then VJ c VI
Therefore, f’ is injective if and only if VIoJ , namely, if and only if Y; — Z; € VT for every
i € {1,...,m}. Now, according to Proposition 14, say that Y; — Z; € VT for every ¢ € {1,...,m} is
equivalent to say that, for every i € {1,...,m}, 1 belongs to the ideal of K[Y1, ..., Y, Z1, ..., Zm, W]
generated by the generators of I and by 1 — W(Y; — Z;).

2.3 Algorithm

We provide in this section an algorithm based on Proposition 12 and Proposition 15 to test whether
a finitely generated morphism of affine schemes is a monomorphism or not. For the sake of clarity,
we begin with an algorithm written in pseudo-computer style.

Algorithm 16 IsMonomorphism Spec(f) : Spec(B) — Spec(A)
Require: m < n + s.
Let N be the matrix of M,,.2 1(n4s)+m2s41 (K[Y]) defined by (2).
Compute a generating set G of the syzygy K|[Yi, ..., Yim]-submodule of (K[Y1,..., Ym])m(’”'SH'M2S+1 of
N.
if 1 € G then
Return Spec(f) is not a monomorphism.
else
Let G = {1}.
Let ¢ = 1.
while G = {1} do
Compute a reduced Greebner basis G of D; with respect to an admissible term order (where D;
denotes the ideal defined in the body of proposition 15)
Lett=7+1
end while
if G = {1} then
Return Spec(f) is a monomorphism.
else
Return Spec(f) is not a monomorphism.
end if
end if

Assume m = 1,n=2,r=1,5=0, Pi(X1,X2) = X? — X3, (V1) := Y1, Fi(Y7) = Y2
We assume that K = Q. In order to illustrate our algorithm, we check that the morphism of K-
schemes f : Spec(B) — Spec(A) is an monomorphism or not. Throughout this example, we use the
Computer Algebra system SINGULAR [8,9] and we adopt the following typographical conventions :
text in typewriter denotes SINGULAR input and output (moreover, we add an arrow -> to specify
SINGULAR output). We provide first an implementation of algorithm 16 in the computer algebra
system SINGULAR :

proc IsMonomorphism(map f)

{

string Current=nameof (basering) ;

int m=nvars(basering);

int n=size(ideal(f));

if (typeof (basering)=="qring")

{ideal Q=ideal(basering); int s=size(Q);} else
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{ ideal Q=ideal(0); int s=0; }

if (m<=n+s)

{

int i;

int j;

matrix jac[n+s] [m];

for (i=1;i<=n;i++) {for(j=1;j<=m;j++) {
jacli,jl=diff(£[i],var(j));}}

for (i=1;i<=s;i++) {for(j=1;j<=m;j++) {
jac[n+i, jl=diff (£[i],var(j));}}

matrix N[m~2] [m*(n+s)+1];

for (i=1;i<=m;i++) {N[(i-1)*m+1..i*m, (i-1)*(n+s)+1..ix(n+s)]=transpose(jac);}

N[1..m*m,m*(n+s)+1]=-unitmat(m);

for (i=1;i<=s;i++) {N=concat(N,Q[i]*unitmat(m*m));}

matrix H=syz(N);

if (reduce(poly(1),std(ideal (H[m*(n+s)+1,1..ncols(H)])))==poly(0))

{

extendring("C",m+1,"Z(","1p",1,basering) ;

i=1;

execute("map g=fetch("+Current+",f)");

execute("map phi=C,Z(1.."+string(m)+");");

execute("ideal Q2=fetch("+Current+",Q)");

ideal I=ideal(g);

if (s==0) {ideal J=I-phi(I);} else {ideal J=I-phi(I),Q2,phi(Q2);}

ideal K;

int ok=1;
while ((i<=m) and (ok==1))
{

ok=(reduce(poly(1) ,groebner (J+ideal (1-var (2*m+1)*(var(i)-var(m+i)))))==poly(0));
i=i+1;

}

if (ok==1) {return (1);} else {return (0);} } else { return (0); } } else

{

return (0);

}

execute("keepring "+Current) ;

}

Note. The above procedure returns the integer values 0 and 1 which represent the boolean values
FALSE and TRUE.
Then, we check thanks to this procedure that f is a monomorphism of schemes.

LIB "matrix.lib";
option(redSB) ;

ring R=0, (X(1..2)),1p;

gring A=std(X(1)"3-X(2)°3);
ring B=0,Y(1),1p;

map f=A,Y(1)72,Y(1);
IsMonomorphism(f);

-> 1 /* f is a monomorphism */
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