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Abstract. An algorithm which transforms a characteristic set of a prime differential ideal
from one Riquier ranking to another is proposed. This paper completes the generalization
of the Gröbner walk algorithm to the differential case initiated in [1]. In particular, a differ-
ential analogue of the Gröbner walk step is presented. The step is performed by a modified
Rosenfeld–Gröbner algorithm, which avoids splittings of the ideal by using the fact that the
ideal is prime and a characteristic set of it is already known, as well as performs all reduc-
tions within the set of initial forms of the ideal. The statement about the finiteness of the
set of leaders of characteristic sets w.r.t. all possible rankings, which serves as a basis for the
proof of termination of the differential Gröbner walk and whose proof in [1] is unfortunately
incorrect, is reproved. The algorithm is illustrated by an example from [2].

1 Introduction

The problem of efficient transformation of characteristic sets of prime differential ideals from one
ranking to another has been addressed in [3] and [2] (actually, these papers present transformation
algorithms for regular systems which are closely related to characteristic sets). It is suggested in
[3] that the more general case of an arbitrary radical differential ideal can be reduced to that of
a prime ideal by performing the computations separately in the prime components of the radical
ideal. In this paper, we also take this viewpoint, leaving the development of efficient transformation
algorithms that would not involve the computation of prime components for future research. Indeed,
this computation is not necessary, because the problem of transformation can be solved for any
radical ideal by applying the Rosenfeld–Gröbner algorithm [4], but this straightforward solution
does not take advantage of the fact that we already know a characteristic set and, therefore, is
inefficient.

The algorithm in [2] is a variation of the Rosenfeld–Gröbner algorithm which avoids splittings
of the ideal into several components by using the possibility of checking membership in the prime
ideal. The Kähler algorithm in [3] also runs the Rosenfeld–Gröbner algorithm after introducing
new differential variables corresponding to the Kähler differentials of the original ones and adding
the Kähler differentials of the original equations to the system. The output of the Kähler algorithm
is the set of leaders of the target regular system. Alternatively, but only in case the solution of
the system depends on finitely many constants, one can apply the DFGLM algorithm [3], which is
a differential analogue of the polynomial FGLM algorithm [5]. Once the leaders are found, some
polynomials having these leaders and belonging to the differential ideal are recovered (this can also
be done only when the solution depends on finitely many constants); these recovered polynomials
may not yet constitute a regular system for I, so, in order to obtain one, they are added to the
original system, after which the Rosenfeld–Gröbner algorithm is called (the added polynomials
speed it up significantly).

The case when the solution of a differential system depends on finitely many constants is
completely similar to the case of a zero-dimensional ideal in a polynomial ring, to which the FGLM
algorithm is applicable. But even in this restricted case, the complexity of the FGLM algorithm
0 The work has been supported by the Progetto di Interesse Nazionale “Algebra Commutativa e Com-

putazionale” of the Italian “Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica Tecno-
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grows with the dimension of quotient vector space R/I. In the differential case this growth is even
more apparent; in some sense the complexity grows polynomially faster. Indeed, the complexity
of the final step of the Kähler or DFGLM algorithm depends on the number of differential terms
formed by derivatives not exceeding the found leaders; the number of these derivatives intuitively
corresponds to the number of monomials “under the staircase” in the polynomial case (i.e., the
dimension of R/I), whence the number of their products of degree m corresponds roughly to the
mth power of this dimension.

The algorithm proposed in this paper generalizes the polynomial Gröbner walk algorithm to the
differential case. The idea of the Gröbner walk is to replace the direct computation of a Gröbner
basis w.r.t. to the target ordering by several computations of homogeneous Gröbner bases. The
algorithm is applicable to any ideal and, in the zero-dimensional case, its complexity is not related
to the dimension of vector space R/I (it depends on “how far apart” the initial and the target
orderings are, as well as on the lengths of the initial homogeneous forms of the polynomials).
Experiments in [6, 7] show that, apart from very simple cases, the Gröbner walk algorithm [8] is
at least as fast as FGLM, and as the dimension of R/I grows, the Gröbner walk becomes much
faster.

The key concepts needed for the Gröbner walk are the representation of monomial orderings
by weight matrices [9, 10], monomial preorders defined by weight vectors [9–11], and the Gröbner
fan [12, 10] of a polynomial ideal. In the differential case, the problem of parameterization of
rankings, in general, is very complex [11, 13]. Therefore, we restrict ourselves to the case of Riquier
rankings [14, 11], which include orderly and elimination rankings [15, 3]. Theorem of Mora and
Robbiano about the finiteness of the Gröbner fan [12, 10] cannot be generalized to the differential
case—in fact, the differential analogue of the Gröbner fan can be infinite (see an example in [1]).
Nevertheless, the number of steps of the Gröbner walk is always finite, which is also shown in [1]
modulo the statement about the finiteness of the set of leaders of characteristic sets w.r.t. different
rankings. The proof of this statement in [1] is unfortunately incorrect and, therefore, another proof
is presented here.

We generalize the key Gröbner walk lemmas [8, Lemmas 3.1–3.3] to the differential case, where
they acquire a significantly different form. In particular, the polynomial ideal generated by the set
of initial forms, which plays a key role for the polynomial Gröbner walk, cannot be simply replaced
by the differential ideal generated by the initial forms (or its radical). Instead, we notice that
the step of the polynomial Gröbner walk algorithm, i.e. computation of a homogeneous Gröbner
basis, performs all operations within the set of initial forms (which is not an ideal). We modify the
Rosenfeld–Gröbner algorithm accordingly, so that all differential reductions are performed within
the set of initial forms.

2 Basic Concepts of Differential Algebra

Here we give a short summary of the basic concepts of differential algebra, referring the reader to
[16, 17, 15] for a more complete exposition.

Let R be a commutative ring. A derivation over R is a mapping δ : R → R which for every
a, b ∈ R satisfies

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b) .

A differential ring is a commutative ring endowed with a finite set of derivations ∆ = {δ1, . . . , δm}
which commute pairwise. The commutative monoid generated by the derivations is denoted by
Θ. Its elements are derivation operators θ = δi1

1 · · · δim
m , where i1, . . . , im are nonnegative integer

numbers.
A differential ideal I of differential ring R is an ideal of R stable under derivations, i.e.

∀A ∈ I, δ ∈ ∆ δA ∈ I .

For a subset A ⊂ R, denote by [A] the smallest differential ideal containing A; the smallest ideal
containing A is denoted by (A). For a set S, S∞ denotes the set of finite products of elements of
S. For a (differential) ideal I, I : S∞ denotes the following (differential) ideal:

I : S∞ = {a ∈ R | ∃ s ∈ S∞ as ∈ I} .
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An ideal is called prime, if

∀a, b ∈ R ab ∈ I ⇒ a ∈ I or b ∈ I .

Let U = {u1, . . . , un} be a finite set whose elements are called differential indeterminates.
Derivation operators apply to differential indeterminates giving derivatives θu. Denote by ΘU
the set of all derivatives. Let K be a differential field of characteristic zero. The differential ring
of differential polynomials K{U} is the ring of polynomials of infinitely many variables K[ΘU ]
endowed with set of derivations ∆.

Let m be a nonnegative integer and n be a positive integer. Let

N = {0, 1, 2, . . .}, Nn = {1, . . . , n} .

A ranking is a total order ≤ of N
m × Nn such that for all a, b, c ∈ N

m, i, j ∈ Nn,

– (a, i) ≤ (b, j) ⇐⇒ (a + c, i) ≤ (b + c, j)
– (a, i) ≥ (0, i).

Rankings on N
m × Nn correspond to rankings on the set of derivatives ΘU :

δi1
1 · · · δim

m uj ≤ δk1
1 · · · δkm

m ul ⇐⇒ (i1, . . . , im, j) ≤ (k1, . . . , km, l) .

3 Characteristic Sets

Let ≤ be a ranking on the set of derivatives ΘU , and let f ∈ K{U}, f 
∈ K. The derivative θuj of
the highest rank present in f is called the leader of f (denoted ld≤ f or uf when the ranking is clear
from the context). Let d = deguf

f . Then f =
∑d

j=0 gju
j
f , where g0, . . . , gd are uniquely defined

polynomials free of uf . Differential polynomial if = gd is called the initial of f , and differential
polynomial sf =

∑d
j=1 jgjuj−1 is called the separant of f . The rank rk≤ f is the monomial (uf )d.

For a set A ⊂ K{U}, the set of initials (separants) of elements of A is denoted iA (sA).
A ranking on the set of derivatives induces a linear order on the set of ranks, if we consider a rank

td (t ∈ θU, d > 0) as a pair (t, d) and compare two such pairs lexicographically. Let f, p ∈ K{U},
p 
∈ K. Differential polynomial f is partially reduced w.r.t. p, if f is free of all proper derivatives
θup (i.e. θ 
= 1) of the leader of p. If f is partially reduced w.r.t. p and degup

f < degup
p, then f

is said to be (fully) reduced w.r.t. p. A polynomial f is called (partially) reducible w.r.t. p, if it is
not (partially) reduced w.r.t. p.

A differential polynomial f is called (partially) reduced w.r.t. a set of differential polynomials
A ⊂ K{U}, if it is (partially) reduced w.r.t. every polynomial p ∈ A.

A nonempty subset A ⊂ K{U} is called (partially) autoreduced if every f ∈ A is (partially)
reduced w.r.t. A \ {f}.

Every autoreduced set is finite [17, Chapter I, Section 9]. If A = {p1, . . . , pk} is an autoreduced
set, then any two leaders upi , upj for 1 ≤ i 
= j ≤ r are distinct; we assume that elements of any
autoreduced set are arranged in order of increasing rank of their leaders up1 < up2 < . . . < upk

.
Let A = {f1, . . . , fk}, B = {g1, . . . , gl} be two autoreduced sets. We say that A has lower rank

than B and write rk≤ A < rk≤ B, if either there exists j ∈ N such that rk≤ fi = rk≤ gi (1 ≤ i < j)
and rk≤ fj < rk≤ gj, or k > l and rk≤ fi = rk≤ gi (1 ≤ i ≤ l). If k = l and rk≤ fi = rk≤ gi

(1 ≤ i ≤ k), then, by definition, rk≤ A = rk≤ B.
Any nonempty family of autoreduced sets contains an autoreduced set of the lowest rank [17,

Chapter I, Section 10]. For a subset X ⊂ K{U}, an autoreduced subset of X of the lowest rank is
called a characteristic set of X . Clearly, all characteristic sets of X w.r.t. ≤ have the same rank. An
autoreduced set A is a characteristic set of X if and only if all nonzero elements of X are reducible
w.r.t. A.
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4 Riquier Rankings and Weight Vectors

A ranking is called a Riquier ranking, if for all a, b ∈ N
m, i, j ∈ Nn

(a, i) ≤ (b, i) ⇐⇒ (a, j) ≤ (b, j) .

Note that N
m × Nn may be embedded into N

n+m as follows:

(i1, . . . , im, j) �−→ (i1, . . . , im, 0, . . . ,
(m+j)

1 , . . . , 0) .

Using this embedding, we can characterize Riquier rankings by matrices:

Theorem 1. [11, Theorem 6] A Riquier ranking is a ranking ≤ for which there exists a positive
integer s and an s × (m + n) real matrix M such that

– for k = 1, . . . , m, kth column ck of M satisfies ck ≥lex (0, . . . , 0);
– (i1, . . . , im, j) ≤ (k1, . . . , km, l) if and only if

M
(
i1, . . . , im, 0, . . . ,

(m+j)

1 , . . . , 0
) ≤lex M

(
k1, . . . , km, 0, . . . ,

(m+l)

1 , . . . , 0
)
.

Vice versa, any s× (m+n) real matrix M of rank m+n satisfying the above conditions defines
a Riquier ranking ≤M .

A vector w ∈ (Rm+n)+ is called a weight vector. For a derivative u = δi1
1 · · · δim

m uj , the w-degree
of u is defined as the following inner product:

degw u = w · (i1, . . . , im, 0, . . . ,
(m+j)

1 , . . . , 0) .

For a differential monomial τ = c
∏

α uα 
∈ K, define

degw τ = max
α

degw uα .

Let f = τ1 + . . .+τk be a differential polynomial represented as a sum of differential monomials.
Let J = {i1, . . . , il} be a subset of {1, . . . , k} such that for all j, j′ ∈ J, i ∈ {1, . . . , k} \ J ,

degw τj = degw τj′ > degw τi .

We call differential polynomial
inw f =

∑
j∈J

τj

the w-initial form of f . In other words, inw f is the sum of all differential monomials present in f
having the highest w-degree.

For a subset A ⊂ K{U}, define

inw A = {inw(f) | f ∈ A} .

A differential polynomial f is called w-homogeneous, if inw f = f ; the w-degree of a homoge-
neous polynomial f is defined to be equal to the w-degree of any of its monomials. For an arbitrary
polynomial f , define degw f = degw(inw f).

Below we formulate some properties of weight vectors and initial forms (proofs are omitted)

Lemma 1. If f, g ∈ K{U} are two homogeneous polynomials such that degw f = degw g and
f + g 
= 0, then f + g is homogeneous and degw(f + g) = degw f .
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Lemma 2. Let f, h ∈ K{U} be two polynomials such that degw h < degw f . Then inw(hf) =
h inw f.

Lemma 3. Let f ∈ K{U} be an arbitrary polynomial, and let h be a w-homogeneous polynomial.
Then

inw(hf) =
{

h inw f, degw h < degw f
hf, degw h ≥ degw f

.

Lemma 4. Let f ∈ K{U} and let θ ∈ Θ. Then

inw(θf) = inw(θ inw f) .

A weight vector w and a ranking ≤ are compatible, if for all derivatives t1, t2 ∈ ΘU , degw t1 <
degw t2 implies t1 < t2.

Lemma 5. If ≤ is a Riquier ranking such that the first row of M≤ is proportional to weight vector
w, then w and ≤ are compatible.

Lemma 6. [1, Lemma 2] If w is compatible with ≤ and f ∈ K{U}, then

ld≤ f = ld≤(inw f), rk≤ f = rk≤(inw f), if = iinw f , sf = sinw f .

5 The Step of the Differential Gröbner Walk

Let w be a weight vector whose first m components are strictly positive1, and let ≤,≤′ be two
rankings compatible with w. Let A be a characteristic set of a prime differential ideal I w.r.t. ≤. A
single step of the differential Gröbner walk transforms A into a characteristic set A′ of I w.r.t. ≤′.
The algorithm takes advantage of the fact that both rankings are compatible with w and performs
all reductions in inw I; only the non-zero results of reductions are “lifted” to the ideal I. The
algorithm also avoids splittings of the ideal I using the fact that I is prime and that membership
in it can be checked, since a characteristic set of I is known.

Our algorithm is a modification of the Rosenfeld–Gröbner algorithm [4] which works not with
characteristic sets but with regular systems of equations and inequalities. Below we introduce the
corresponding definitions.

Let {f, g} be two polynomials reduced w.r.t. each other (assume that f > g) such that ld≤ f =
θ1u, ld≤ g = θ2u for some u ∈ U , θ1, θ2 ∈ Θ. Denote by θu the least common derivative of θ1u and
θ2u. The pair {f, g} is called a critical pair with parameter θu and its ∆-polynomial is defined as

∆(f, g) = sg
θ

θ1
f − sf

θ

θ2
g .

For a set A ⊂ K{U}, denote by ∆(A) the set of all ∆-polynomials of critical pairs formed by the
elements of A. For two w-homogeneous polynomials f̄ , ḡ, let ∆w(f̄ , ḡ) = inw ∆(f̄ , ḡ).

Lemma 7. Let w be a weight vector whose first m components are positive, and let ≤ be compatible
with w. Then for any p ∈ K{U}, θ ∈ Θ, θ 
= 1, degw sp < degw θp.

Proof. By definition, sp ≤ ld≤ p. If the first m components of w are positive and θ 
= 1, then
degw θ ld≤ p > degw ld≤ p, which implies the statement of the lemma.

Lemma 8. Let ≤ be compatible with w, and let f̄ = inw f , ḡ = inw g. If ∆w(f̄ , ḡ) 
= 0, then
∆w(f̄ , ḡ) = inw ∆(f, g), otherwise degw ∆(f, g) is less than degw v, where v is the parameter of
the critical pair {f, g}.
Proof. The statement follows from the definition of ∆-polynomial and Lemmas 7, 1, and 2.
1 It will become clear later why we need this requirement. Usually this condition is satisfied for all weight

vectors involved in the Gröbner walk; we conjecture that the case when some components are zero can
also be treated efficiently, however, this requires some additional analysis of the entire Gröbner walk
algorithm, which we leave for future research.
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For a set A ⊂ K{U} and a derivative (or an arbitrary polynomial) v, let

A<v = {f ∈ A | f < v}
A≤v = {f ∈ A | f ≤ v}

Adegw v = {f ∈ A | degw f ≤ degw v} .

We give two lemmas, which will allow us to work with the above sets.

Lemma 9. Let A, S ⊂ K{U}, and let v ∈ ΘU . If f ∈ ((ΘA)≤v) : S∞
<v, then for all θ ∈ Θ,

θf ∈ ((ΘA)≤θv) : S∞
<v.

Proof. It is sufficient to prove the lemma for θ = δ ∈ ∆, then the general case follows by induction
on the order of θ.

Since f ∈ ((ΘA)≤v) : S∞, there exist polynomials pi ∈ (ΘA)≤v , hi ∈ K{U} (i ∈ {1, . . . , k}),
s ∈ S∞ such that

sf =
k∑

i=1

hipi .

Differentiating this equality, we obtain

δs · f + s · δf =
k∑

i=1

δhi · pi +
k∑

i=1

hi · δpi .

Multiplying by s and substituting the above sum for sf , we get

s2δf = −δs

k∑
i=1

hipi + s

k∑
i=1

δhi · pi + s

k∑
i=1

hi · δpi ,

which implies that δf ∈ ((ΘA)≤δv) : S∞.

Lemma 10. Let A = 0, S 
= 0, A ⊂ I, be a system such that for all g ∈ I, g ∈ ((ΘA)degw g) : S∞.
Let f ∈ A, and let f ′ ∈ I be any polynomial such that inw f ′ = inw f . Then for A′ = A \ {f} ∪

{f ′} we also have that for all g ∈ I, g ∈ ((ΘA)degw g) : S∞.

Proof. It is sufficient to show that f ∈ ((ΘA′)degw f ) : S∞, then the proof for all g ∈ I follows by
applying Lemma 9.

Since inw f = inw f ′, we have degw(f − f ′) < degw f . Hence,

f − f ′ ∈ ((Θ(A \ {f}))degw g) : S∞ ,

which implies that f ∈ ((ΘA′)degw f ) : S∞.

A critical pair {f, g} with parameter v is solved by a set A ⊂ K{U} if

∆(f, g) ∈ ((ΘA)<v) : (iA ∪ sA)∞ .

A set A ⊂ K{U} is called coherent, if all its critical pairs are solved by A.
A system of equations and inequalities A = 0, S 
= 0, where A, S ⊂ K{U}, is called regular

w.r.t. ≤, if A is autoreduced and coherent, iA∪sA ⊂ S, and every element of S is partially reduced
w.r.t. A. Regular system A = 0, S 
= 0 is called regular for a prime ideal I, if I = [A] : S∞.

If A is a characteristic set of a prime differential ideal I, then the system of equations and
inequalities A = 0, iA ∪ sA 
= 0 is regular for I. It is also possible to compute a characteristic set of
a prime ideal I from a regular system for I by applying [4, Theorem 6].

A regular system for I allows to check membership in I as follows. Let X be the set of all
derivatives present in A ∪ S, and let M(X) be the set of power products over X . Denote by ≤̃
the lexicographic ordering on M(X), where the elements of X are ordered by ranking ≤. For a
polynomial f ∈ K[X ], denote by lm≤ f the leading monomial of f w.r.t. ≤̃. Let B be the Gröbner
basis of (A) : S∞ w.r.t. ≤̃; we call B the Gröbner basis associated with regular system A = 0, S 
= 0.
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Lemma 11. [4, Theorem 5] Let A = 0, S 
= 0 be a regular system for I, let B be the associated
Gröbner basis, and let f be partially reduced w.r.t. A. Then f ∈ I ⇐⇒ f ∈ (B).

Given a characteristic set of I, it is easy to obtain one for inw I:

Lemma 12. [1, Lemma 3] Let ≤ be a ranking and let w be compatible with ≤. Let A be a char-
acteristic set for an ideal I w.r.t. ≤. Then inw A is a characteristic set of inw I w.r.t. ≤.

The “lifting” of a characteristic set from inw I to I is also possible according to the following
lemma.

Lemma 13. Let ≤ be a ranking compatible with weight vector w whose first m components are
positive. Let A = 0, S 
= 0 be a regular system for I w.r.t. ≤, and let B be the associated Gröbner
basis.

For every polynomial f̄ ∈ inw I one can compute polynomials f ∈ ((ΘA∪B)≤f̄ ) and s ∈ s∞A <f̄

such that inw f = sf̄ by applying the following algorithm:
Algorithm in−1

w (f̄ , A, B,w,≤)
f := 0, s := 1
while f̄ is not partially reduced w.r.t. A do

let p ∈ A, θ ∈ Θ, θ 
= 1, be such that
θ ld≤ p is present in f̄ and has maximal possible rank.

let f̄ = ld≤ p · f1 + f̄2, where f̄2 is free of ld≤ p.
f̄ := spf̄ − inw(f1θp)
f := spf + f1θp
s := s · sp

end while
while f̄ is not polynomially reduced w.r.t. B do

let q ∈ B be such that
monomial lm≤̃ q is present in f̄ and is maximal possible w.r.t. ≤̃.

let f̄ = lm≤ q · f1 + f̄2, where f̄2 is free of lm≤ q.
f̄ := f̄ − inw(f1q)
f := f + f1q

end while
if f̄ 
= 0 then the polynomial was not in inw I

else return (f, s)
end

Proof. 1. Termination. The first while loop terminates, because with each iteration the rank of
the highest derivative among the derivatives of leaders of A present in f̄ decreases. The second
while loop terminates, because with each iteration the greatest w.r.t. ≤̃ monomial among the
leading monomials of B present in f̄ decreases w.r.t. ≤̃.

2. Correctness. First, show that the final value of f̄ , f̄t, is 0 if and only if the initial value of f̄ ,
f̄0, is in inw I. Indeed, according to Lemmas 1, 2, and 7, we have f̄t ∈ inw I ⇐⇒ f̄0 ∈ inw I.
Hence, if f̄t = 0, we immediately obtain f̄0 ∈ inw I.
Assume that f̄t 
= 0 and show that f̄t 
∈ inw I. Suppose the contrary, and let ft ∈ I be such
that inw ft = f̄t. Note that inw ft is partially reduced w.r.t. A (as a result of the first while
loop) and reduced w.r.t. B (as a result of the second while loop). Hence, reductions w.r.t. A
and B cannot decrease the w-degree of ft and, in particular, cannot reduce it to 0. According
to Lemma 11, ft 
∈ I, contradiction!
Second, assuming f̄t = 0, show that the constructed polynomials f and s satisfy the condition
stated in the lemma, i.e., inw f = sf̄ . Indeed, consider the first while loop and the two
assignments in it for f̄ and f . Let f̄o, fo be the values of f̄ and f before the assignments, and
let f̄n, fn be the corresponding values after the assignments. We have:

f̄n + fn = sp(f̄o + fo) + f1θp − inw(f1θp) ,

which implies that

inw(f̄n + fn) = inw(sp(f̄o + fo)) = sp inw(f̄o + fo) .
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Now consider the second while loop and, for the two assignments in it, obtain

inw(f̄n + fn) = inw(f̄o + fo) .

Since the initial value of f and the final value of f̄ are 0, we obtain the required statement.

Note that initial forms inw(f1θp) and inw(f1q) in the above algorithm can be computed using the
formulas from Lemma 3 and Lemma 4.

The above algorithm can also be used to check membership in inw I. We call the corresponding
algorithm as follows:

Algorithm Belongs (f̄ , A, B, w, ≤)
A similar algorithm can be used to compute the partial remainder of f̄ in inw I w.r.t. an

autoreduced set A ⊂ I.
Algorithm PartialRem (f̄ , A, w, ≤)

while f̄ is not partially reduced w.r.t. A do
let p ∈ A, θ ∈ Θ, θ 
= 1, be such that

θ ld≤ p is present in f̄ and has maximal possible rank.
let f̄ = ld≤ p · f1 + f̄2, where f̄2 is free of ld≤ p.
f̄ := spf̄ − inw(f1θp)
f := spf − f1θp // This line is added only to facilitate the proof below

end while
return f̄

end

For the proof of termination of the above algorithm see Lemma 13. Correctness is expressed
by the following two lemmas, which will be used later in the proof of correctness of the differential
Gröbner walk step.

Lemma 14. Let w be a weight vector, and let ≤ be compatible with w.
Let A = 0, S 
= 0 be a system such that for all g ∈ I, g ∈ ((ΘA)degw g) : S∞.
Take any f ∈ A, and let f ′ ∈ I be such that

inw f ′ = f̄ ′ = PartialRem(inw f, A,w,≤) .

Then for A′ = (A \ {f}) ∪ {f ′}, we also have that for all g ∈ I, g ∈ ((ΘA′)degw g) : S∞.

Proof. It is sufficient to show that f ∈ ((ΘA′)degw f ) : S∞, after which the proof is completed
by applying Lemma 9. Let f ′′ be the final value for f . Then, if f̄ ′ 
= 0, we have inw f ′′ = f̄ ′,
otherwise degw f ′′ < degw f . In any case, degw(f ′′−f ′) < degw f . Moreover, both f ′, f ′′ ∈ I, hence
f ′′ − f ′ ∈ I. Since for all g ∈ I we have g ∈ ((ΘA)degw g) : S∞, and since degw(f ′′ − f ′) < degw f ,
we have

f ′′ − f ′ ∈ ((Θ(A \ {f}))degw(f ′′−f ′)) : S∞ .

Hence,
f ′′ ∈ ((Θ(A \ {f} ∪ {f ′}))degw f ′′) : S∞ ,

which implies that f ∈ ((ΘA′)degw f ) : S∞.

Lemma 15. If PartialRem(inw f, A,w,≤) = 0, then f can be partially reduced w.r.t. A in I to a
polynomial f ′ such that degw f ′ < degw f .

Proof. The proof of this lemma directly follows from the considerations in the proof of the previous
one.

The computation of the full remainder w.r.t. A and ≤ in inw I may require some liftings to I (i.e.
applications of in−1

w ), since we cannot guarantee that degw ip < degw p for all p ∈ A. Therefore,
this procedure also inputs the equations of a regular system A0 = 0, S0 
= 0 w.r.t. another ordering
≤0 compatible with w and the associated Gröbner basis B0.
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Algorithm FullRem (f̄ , A, w, ≤, A0, B0, ≤0)
f̄ :=PartialRem(f̄ , A, w, ≤)
repeat

R := {p ∈ A | rk≤ p divides a monomial in f̄ and degw ip < degw f̄}
if R 
= ∅ then

let p ∈ A be such that
rk≤ p is present in f̄ and has maximal possible rank.

let f̄ = rk≤ p · f1 + f̄2, where f̄2 is free of rk≤ p.
f̄ := ipf̄ − inw(f1p)

end if
until R = ∅

repeat
R := {p ∈ A | rk≤ p divides a monomial in f̄ and degw ip ≥ degw f̄}
if R 
= ∅ then

let p ∈ A be such that rk≤ p is present in f̄ and has maximal possible rank
let f̄ = rk≤ p · f1 + f̄2, where f̄2 is free of rk≤ p
(f ′, s) := in−1

w (f̄ , A0, B0,w,≤0)
f̄ := ipf ′ − s inw(f1p)

end if
until R = ∅

return f̄
end
The above algorithm terminates, because with each iteration of either repeat loop, the highest

rank among the ranks of polynomials from A present in f̄ decreases. Correctness is expressed by
the following two lemmas, whose proof is similar to that of Lemma 14 and therefore is omitted.

Lemma 16. Let w be a weight vector, let ≤ be compatible with w.
Let A = 0, S 
= 0 be a system such that for all g ∈ I, g ∈ ((ΘA)degw g) : S∞.
Take any f ∈ A, and let f ′ ∈ I be such that

inw f ′ = f̄ ′ = FullRem(inw f, A,w,≤, A0, B0,≤0) .

Then for A′ = (A \ {f}) ∪ {f ′}, we also have that for all g ∈ I, g ∈ ((ΘA′)degw g) : S∞.

Lemma 17. If FullRem(inw f, A,w,≤, A0, B0,≤0), then f can be reduced w.r.t. A in I to a poly-
nomial f ′ such that degw f ′ < degw f .

The following algorithm inputs any set of homogeneous polynomials Ā, and for each p̄ ∈ Ā such
that ip̄ (or sp̄) belongs to I, reduces p̄ by its initial (or separant) and adds the initial form of the
initial (separant) to Ā. The resulting set consists of polynomials whose initials and separants do
not belong to I. Again, we assume that a regular system A0 = 0, S0 
= 0 for I w.r.t. ≤0 and a the
associated Gröbner basis B0 are given.

Algorithm Addis (Ā, w, ≤, A0, B0, ≤0)
repeat

C̄ := Ā, Ā := ∅

for f̄ ∈ C̄ do
(f̄ , D̄) :=ReduceByis(f̄ ,w, ≤, A0, B0, ≤0)
Ā := Ā ∪ {f̄} ∪ D̄

end for
until Ā = C̄
return Ā

end
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Algorithm ReduceByis (f̄ , w, ≤, A0, B0, ≤0)
// In this algorithm, all initials and separants are taken w.r.t. ≤
D̄ := ∅

while Belongs(inw if̄ , A0, B0, w, ≤0) or Belongs(inw sf̄ , A0, B0, w, ≤0) do
if Belongs(inw if̄ , A0, B0, w, ≤0) then D̄ := D̄ ∪ {inw if̄}, f̄ := f̄ − if̄ · rk≤ f̄

else D̄ := D̄ ∪ {inw sf̄}, f̄ := degld≤ f̄ f̄ · f̄ − ld≤ f̄ · sf̄

end while
return (f̄ , D̄)

end
Algorithm Addis terminates, because algorithm ReduceByis, for any homogeneous polynomial

f̄ , returns a set of polynomials {f̄}∪ D̄ which are strictly less w.r.t. ≤ than f̄ . Correctness follows
from the following lemma:

Lemma 18. Let w be a weight vector, and let ≤ be compatible with w.
Let A = 0, S 
= 0 be a system such that for all g ∈ I, g ∈ ((ΘA)degw g) : S∞.
Let Ā′ =Addis(inw A,w,≤,A0,B0,≤0), and let A′ be any set such that inw A′ = Ā′. Then for

all g ∈ I, we also have g ∈ ((ΘA′)degw g) : S∞.

Proof. It is sufficient to show that if f ∈ A, f̄ = inw f , (f̄ ′, D̄) =ReduceByis(f̄ ,A, B, w, ≤, A0,
B0, ≤0), Ā′ = Ā \ {f̄} ∪ {f̄ ′} ∪ D̄, and inw A′ = Ā′, then f ∈ ((ΘA′)degw f ) : S∞.

Moreover, it is sufficient to show that this invariant holds for each iteration of the while loop
inside of the ReduceByis algorithm. Indeed, if inw if̄ ∈ inw I, then let

f̄ ′ = f̄ − if̄ · rk≤ f̄
f ′′ = f − if̄ · rk≤ f̄ ,

and let f ′ be any polynomial such that f̄ ′ = inw f ′. As in the proof of Lemma 14, we have
degw(f ′′ − f ′) < degw f , which implies that f ′′ ∈ ((Θ(A \ {f} ∪ {f ′}))degw f ′′) : S∞ and

f ∈ ((Θ(A \ {f} ∪ {f ′, if̄}))degw f ) : S∞ .

It remains to note that, according to Lemma 10, replacing if̄ by any other polynomial with the
same w-initial form does not change the above invariant. The case inw sf̄ ∈ inw I is similar.

Theorem 2. Let ≤, ≤′ be two rankings compatible with weight vector w, whose first m components
are positive. Given a characteristic set A of a prime differential ideal I w.r.t. ≤ and the associated
Gröbner basis B, the following algorithm DGWstep computes a regular system C = 0, S 
= 0 for I
w.r.t. ≤′.

Algorithm DGWstep (A, B, w, ≤, ≤′)
A0 := A
S0 := iA ∪ sA (here initials and separants are taken w.r.t. ≤)
Ā := inw A
repeat

Ā :=Addis(Ā,w,≤′,A0,B,≤)
C̄ :=characteristic set of Ā w.r.t. ≤′

S := S ∪ iC̄ ∪ sC̄

C := {in−1
w (f̄ , A0, B,≤) | f̄ ∈ C̄}

R̄ := (Ā \ C̄) ∪ ∆w(C̄,≤′)
R̄ := {FullRem(f̄ ,C,w,≤′,A0,B,≤) | f̄ ∈ R̄} \ {0}
Ā := C̄ ∪ R̄

until R̄ = ∅

Autoreduce set C w.r.t. ≤′

Partially reduce the elements of S w.r.t. C and ≤′

return (C, S)
end
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Proof. Termination is guaranteed by the fact that with each iteration the rank of C̄ decreases.
Indeed, reducing a polynomial by its initials and separants can only decrease the rank of the
polynomial; hence, the rank of the characteristic set of Ā after the call to Addis is less than or
equal to the rank of the characteristic set of Ā before this call. Furthermore, if R̄ is a non-empty
set of polynomials each of which is reduced w.r.t. C̄, then the rank of the characteristic set of C̄∪R̄
is strictly less than that of C̄.

Let C = 0, S 
= 0 be the system constructed by the algorithm. Consider the last iteration of the
loop in the DGWstep algorithm before termination. We have that all ∆w-polynomials of C̄ either
are equal to 0 or can be reduced to 0 w.r.t. C and ≤′ in inw I. Hence, according to Lemmas 8
and 17, every ∆-polynomial f ∈ ∆(C) reduces to a polynomial f ′ w.r.t. C and ≤′ in I, where
degw f ′ < degw v and v is the parameter of the critical pair corresponding to ∆-polynomial f .
Therefore, we have f ∈ ((Θ(C ∪ {f ′})≤′v) : S∞.

Since A is a characteristic set of I w.r.t. ≤, every polynomial from I reduces to 0 w.r.t. A
and ≤. In particular, this implies that f ′ ∈ ((ΘA)≤f ′ ) : S∞

0 . Since ≤ is compatible with w,
we have f ′ ∈ ((ΘA)degw f ′) : S∞

0 . Now, according to Lemmas 16 and 18, we also obtain that
f ′ ∈ ((ΘC)degw f ′) : S∞.

It remains to note that, since degw f ′ < degw v and w is compatible with ≤′, we have

((ΘC)degw f ′) : S∞ ⊂ ((ΘC)≤′v) : S∞ ,

hence f ∈ ((ΘC)≤′v) : S∞ and set C is coherent.
When we exit from the repeat loop, set C̄ is autoreduced. Set C, which is obtained from C̄

by applying the in−1
w operation, may not be autoreduced, but it has the same set of ranks as C̄;

moreover, for any f ∈ C, the initial of f does not belong to I, hence it cannot be reduced to 0 w.r.t.
C \ {f}. Thus, autoreduction of C does not change its rank and, therefore, preserves its coherence.

By construction, S ⊃ iC ∪ sC . The definition of regular system requires that S should be
partially reduced w.r.t. C. This is achieved by partially reducing the elements of S w.r.t. C in
I at the end of algorithm DGWstep; the validity of this reduction is justified in [2, Section 5].
Therefore, C = 0, S 
= 0 is a regular system for I w.r.t. ≤′.

To obtain a characteristic set of I w.r.t. ≤′ from the regular system C = 0, S 
= 0, one can apply
the algorithm given in [4, Theorem 6]; as a by-product, this algorithm also computes the associated
Gröbner basis, which will be necessary for the next step of the differential Gröbner walk.

6 The Walk

Let A0 be a characteristic set of I w.r.t. Riquier ranking ≤0 represented by matrix M0 whose first
row is weight vector w0, and let ≤t be the target ranking represented by matrix Mt. The walk
consists of the following conversion steps.

First, let ≤1 be the ranking defined by matrix
(

w0

Mt

)
. Since both ≤1 and ≤0 are compatible

with w0 (due to Lemma 5), we can apply the step of the differential Gröbner walk and compute a
characteristic set A1 w.r.t. ≤1.

Each next step is performed as follows. Suppose, we have computed the characteristic set Ai

w.r.t. ranking ≤i defined by matrix Mi =
(

wi−1

Mt

)
. Let wi be the closest to wi−1 point in the

semi-interval (wi−1,wt] such that the leader of some differential polynomial in Ai and some other
derivative present in that polynomial have the same wi-degrees. Since Ai is finite and every f ∈ Ai

involves finitely many derivatives, there are finitely many (or zero) possibilities for wi, so we can
always choose the one that is the closest to wi−1. If such wi does not exist, Ai already is a
characteristic set w.r.t. ≤t, and the algorithm stops. Otherwise, let ≤′

i be the ranking defined by

matrix
(

wi

Mi

)
. Then ≤′

i is compatible with wi.

Lemma 19. [1, Lemma 5] Ai is a characteristic set of I w.r.t. ≤′
i.

Let ≤i+1 be the ranking defined by the matrix
(

wi

Mt

)
. Applying the step of the differential Gröbner

walk, compute a characteristic set Ai+1 of I w.r.t. ≤i+1. This concludes the conversion step.
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7 Termination of the Differential Gröbner Walk

Consider characteristic sets of a given differential ideal I w.r.t. all possible rankings (here we do
not need to restrict ourselves to Riquier rankings). For a fixed ranking, there may be infinitely
many characteristic sets of I, but, as it follows directly from the definition, their ranks are equal.
Since characteristic sets are autoreduced, this is equivalent to the statement that the sets of their
leaders coincide. Formally, for a subset A ⊂ K{U}, define the set of leaders of A as ld≤(A) =
{ld≤ f | f ∈ A}. If A1, A2 are characteristic sets of I w.r.t. ≤, then ld≤(A1) = ld≤(A2). Let

Ld(I) = {ld≤(A) | ≤ be a ranking and A be a characteristic set of I w.r.t. ≤} .

In other words, Ld(I) is the family of sets of leaders of characteristic sets of I w.r.t. all possible
rankings. In order to show that the differential Gröbner walk algorithm always terminates, we
prove in this section that the family Ld(I) is finite.

Let t1, t2 ∈ ΘU be two derivatives. We say that t2 is a derivative of t1, if there exists θ ∈ Θ
such that t2 = θt1.

Lemma 20. [17, Chapter 0, Lemma 15] Let t1, t2, . . . ⊂ ΘU be an infinite sequence of derivatives.
Then there exist indices i < j such that tj is a derivative of ti.

Theorem 3. For any differential ideal I ⊂ K{U}, family Ld(I) is finite.

Proof. Suppose that Ld(I) is infinite. For each L ∈ Ld(I), denote by ≤L the corresponding ranking.
Then the set Σ = {≤L | L ∈ Ld(I)} is infinite.

Let f1 ∈ I be a differential polynomial, and let A1 = {f1}. Since f1 contains only a finite
number of derivatives, according to the pigeonhole principle, there exists an infinite subset Σ1 ⊂ Σ
such that for all ≤,≤′∈ Σ1, ld≤ f1 = ld≤′ f1.

Suppose, A1 is a characteristic set of I w.r.t. a ranking ≤1∈ Σ1. Then A1 is also a characteristic
set of I w.r.t. any ranking ≤∈ Σ1, since the reduction relations w.r.t. A1 and any ≤∈ Σ1 coincide.
However, this contradicts the definition of the set of rankings Σ, because characteristic sets cor-
responding to different rankings in Σ have different sets of leaders. Therefore, A1 is autoreduced
but not a characteristic set of I. Hence, there exists a polynomial f2 ∈ I reduced w.r.t. A1 and
any ≤∈ Σ1.

According to the pigeonhole principle, there exists an infinite subset Σ2 ⊂ Σ1 such that for all
≤∈ Σ2, the characteristic set of A1 ∪ {f2} is the same and the polynomials in it have the same
leaders; call this characteristic set A2.

The set A2 cannot be a characteristic set of I for some ≤∈ Σ2 (according to the definition of
Σ), hence there exists a polynomial f3 ∈ I reduced w.r.t. A2 and any ranking ≤∈ Σ2.

According to the pigeonhole principle, there exists an infinite subset Σ3 ⊂ Σ2 such that for all
≤∈ Σ3, the characteristic set of A2 ∪ {f3} is the same and the polynomials in it have the same
leaders; call this characteristic set A3.

Proceeding in the same way, we construct an infinite sequence of polynomials f1, f2, . . ., an
infinite sequence of autoreduced sets A0, A1, . . ., and an infinite sequence of sets of rankings Σ0 ⊃
Σ1 ⊃ . . .. For each polynomial fi, one of the following two options is possible:

1. For all j > i, ld≤ fj > ld≤ fi (≤∈ Σj). In this case fi ∈ Aj for all j ≥ i, and we say that fi

remains in the sequence.
2. There exists j > i such that ld≤ fj < ld≤ fi (≤∈ Σj). In this case we say that fi is followed by

a smaller derivative, and denote the smallest such j by ν(i).

Denote by νk(i) the expression ν(ν(. . . ν(i) . . .)), where ν is applied k times.
Now we will construct a subsequence of f1, f2, . . . contradicting Lemma 20.
If f1 remains in the sequence, let i1 = 1. Otherwise, if fν(1) remains in the sequence, let

i1 = ν(1). Otherwise, if fν2(1) remains in the sequence, let i1 = ν2(1), and so on. We will either
find an index i1 such that fi1 remains in the sequence, or will construct an infinite sequence

f1, fν(1), fν2(1), . . .
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But the latter is not possible. Indeed, it follows from the definition of ν(i) that for all i < j,
ld≤ fνj(1) < ld≤ fνi(1) (≤∈ Σνj(1)). Hence, ld≤ fνj(1) is not a derivative of ld≤ fνi(1), which contra-
dicts Lemma 20.

If fi1+1 remains in the sequence, let i2 = i1 + 1. Otherwise, if fν(i1+1) remains in the sequence,
let i2 = ν(i1+1), and so on. Applying the above argument, we show that the process will eventually
stop and we will find an index i2 such that fi2 remains in the sequence.

Continuing in the same way, we obtain an infinite sequence of indices i1 < i2 < . . . such that
for all j, fij remains in the sequence. But the fact that both fij and fik

(ij < ik) remain in
the sequence means that they both belong to the autoreduced set Aik

, therefore ld≤ fik
is not

a derivative of ld≤ fij (≤∈ Σik
). Thus we have constructed an infinite sequence of derivatives

{ld≤j fij | ≤j∈ Σij}, none of which is a derivative of another one. This contradicts Lemma 20.

During the differential Gröbner walk, we compute a sequence of characteristic sets A1, A2, . . .

w.r.t. rankings ≤1,≤2, . . ., where ≤i are represented by matrices of the form
(

wi−1

Mt

)
(i > 0), and

{wi} is a sequence of consecutive distinct points in the semi-interval (w0,wt].

Theorem 4. Sequences A1, A2, . . . and w1,w2, . . . are finite.

Proof. The proof of this theorem is based on Theorem 3 and can be found in [1].

8 Example

We illustrate the differential Gröbner walk algorithm on an example from [2]. Consider differential
ideal generated by the following polynomials: u2

x − 4u, uxyvy −u+1, vxx −ux. This ideal is prime
and, with respect to the following ranking on derivatives

. . . >0 vxx >0 vxy >0 vyy >0 uxx >0 uxy >0 uyy >0 vx >0 vy >0 ux >0 uy >0 v >0 u ,

has the following characteristic set:

vxx − ux, 4vyu + uxuy − uxuyu, u2
x − 4u, u2

y − 2u .

We illustrate the performance of the differential Gröbner walk algorithm by transforming this
characteristic set into the one w.r.t. the new ranking

. . . >t ux >t uy >t u >t . . . >t vxx >t vxy >t vyy >t vx >t vy > v .

Both rankings are Riquier rankings and can be specified by the following matrices:

M0 =




1 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 , Mt =




0 0 1 0
0 0 0 1
1 1 0 0
1 0 0 0


 .

Step 1. The first step of the Gröbner walk consists of transformation of the original set of poly-
nomials into a regular set w.r.t. ranking ≤1 specified by matrix

M1 =




1 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 0 0


 .

Note that ≤1 is the same ordering as ≤0 with the roles of differential indeterminates u and v
exchanged. The transformation is carried out via the DGWstep algorithm, which works in the set
of initial forms. However, in this example, in order to show explicitly how many reductions are saved
by this algorithm compared to the standard Rosenfeld–Gröbner, we will perform all computations
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not with the initial forms but with the entire polynomials. Whenever a reduction decreases the
w-degree of a polynomial, it implies that the same reduction would reduce the w-initial form of
this polynomial to 0, and the following reductions are unnecessary (because they will produce 0
anyway). Also, the in−1

w algorithm needs not be applied, because we work directly with the entire
polynomials, at the expense of computing their tails for each reduction.

Let set A consist of the original polynomials (whose ranks w.r.t. ≤1 are underlined):

f1 = vxx − ux, f2 = uy(1 − u)ux + 4uvy, f3 = u2
x − 4u, f4 = u2

y − 2u .

The characteristic subset of A is set C = {f2, f4}. Compute the reductions of polynomials in
(A \ C) ∪ ∆(C) w.r.t. C:

f3
f2−→ux

f2−→u2
y

f4−→ 2v2
y − u2 + 2u − 1 = f5

∆(f2, f4) = uyy
(f4)y−→ uuy(u − 1)vyy − vyu2

y + 2vyu − 2vyu2 = f6

f1
f2−→uy(1 − u)vxx + 4uvy = f7 .

In these reduction chains, for the intermediate polynomials, only ranks are shown; in what follows,
the reducing polynomials above the reduction arrows will be omitted as well. Also, to obtain
the above polynomial f5, we have cancelled the content of the result of reduction (a polynomial
factor that does not belong to the prime ideal); this operation requires polynomial factorization
and, in general, may have a high complexity, however, it significantly simplifies the subsequent
computations. Now add the results of reductions to the characteristic set, forming a new set
A = {f2, f4, f5, f6, f7}. Its characteristic subset is C = {f2, f4, f5, f7}. Reduce (A \ C) ∪ ∆(C)
w.r.t. C:

f6
!−→u2

y → v2
y → 0

∆(f5, f7) = uxx → uxy → uyy → vxx → v2
xy → vxy → vyy

!−→u2
x → ux → u4

y → u2
y → v4

y → 0 .

The exclamation marks (!) indicate the first reductions that decrease the w-degree of the poly-
nomials being reduced. Since all results of reductions are 0, C is a regular set w.r.t. ≤1 (we are
not interested in the set of inequalities at this point), and the first step of the differential Gröbner
walk is completed (since we work with the entire polynomials and do not need to compute inverse
initial forms, it is sufficient to have a regular system, and we do not even need to check whether
C forms a characteristic set or not, in order to continue with the next step).

Steps 2 and 3. The closest weight vector to (1, 1, 0, 0) in the semi-interval ((1, 1, 0, 0), (0, 0, 1, 0)],
such that the leader of some differential polynomial in C and some other derivative present in C
have equal w-degrees, is w1 = (1

2 , 1
2 , 1

2 , 0). Set C is also a regular set w.r.t. the ranking defined by
matrix M ′

1 obtained by appending M1 to w1. The second step consists of computation of a regular

set w.r.t. ≤2 specified by matrix M2 =
(

w1

Mt

)
(we omit the details).

The next weight vector is w2 = (1
3 , 1

3 , 2
3 , 0), and we compute a regular set w.r.t. ranking ≤3

defined by the corresponding matrix. As a result, we obtain the following set of polynomials:

−v2
yy + vyvyyvxy − 2v2

y + 1, −2v2
y + v4

yy − 2v2
yy + 1, vxx − 2vyy, −u + v2

yy .

Since the target ranking ≤t selects the same leaders in the above polynomials as ≤3, they form a
regular set w.r.t. ≤t as well.

The following table summarizes the performance of the differential Gröbner walk and the
Rosenfeld–Gröbner algorithm on the above toy example:

Algorithm # reductions # nonzero normal forms
Diff. Gröbner walk 42 16
Rosenfeld-Gröbner 62 28

The number of reductions for both algorithms include the number of computations of ∆-polynomials;
for the Gröbner walk algorithm the reductions that follow a w-degree-decreasing reduction (marked
by ‘!’) are not counted (the number of reductions saved in this way is 66). For the Rosenfeld-
Gröbner, we applied the same algorithm as above for computing the characteristic set w.r.t. ≤t

directly from that w.r.t. ≤0; the details of this computation are omitted.
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9 Conclusion and Open Problems

Our next goal is to implement the differential Gröbner walk algorithm presented here and compare
its performance with that of the other algorithms (see [2, 3]) solving the problem of transformation
of characteristic sets from one ranking to another. One can also generalize to the differential case
various speed-up techniques known for the polynomial Gröbner walk [7, 18] (the version presented
in this paper is in this sense a differential analogue of the original version of the polynomial Gröbner
walk [8]).

Some theoretical improvements of the algorithm are also possible. For example, one would
like to have an algorithm which transforms regular systems from one ranking to another without
computing the associated Gröbner bases for the intermediate rankings (the Gröbner basis for the
initial ranking is necessary for checking membership in the ideal).

Perhaps, a more difficult problem is to design an algorithm that, given a regular decomposition
[4] or a characteristic decomposition [19] of an arbitrary radical differential ideal w.r.t. one ranking,
transforms it to the corresponding decomposition w.r.t. another ranking. As it is shown in [19,
Example 3.6], an ideal may be characterizable w.r.t. one ranking but not characterizable w.r.t.
another. Thus, the decomposition may change, splittings seem to be unavoidable, and it is not
obvious how to perform liftings of initial forms to the original ideal.
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