
Parallel Computation of Involutive and Gröbner Bases

Vladimir P. Gerdt and Denis A. Yanovich

Laboratory of Information Technologies
Joint Institute for Nuclear Research

141980 Dubna, Russia
gerdt@jinr.ru yan@jinr.ru

Abstract. In this paper we describe a parallel version of the algorithm for constructing
polynomial involutive bases. Having computed an involutive basis, the algorithm can also
output the reduced Gröbner bases without any extra computational costs. This algorithm
is an improved version of our previous parallel algorithm specialized for Janet bases. We
implemented the improved version for Janet bases too, and in such a way that our parallel
code can compute these bases not only for modular coefficients as in the previous imple-
mentation but also for long integers. We illustrate the experimental efficiency of our new
implementation by the standard Gröbner bases software benchmarks.

1 Introduction

In the last decade several attempts have been undertaken [1–3] on experimental parallelization of
the classical Buchberger algorithm [4] for computing Gröbner bases. However, because of a very
strong dependence of the computational costs on the selection strategy for S−polynomials these
attempts did not reveal a reasonable scalability of the parallelization. A selection strategy that is
heuristically good for the sequential algorithm, such as “sugar” [5], can easily be destroyed by a
parallelization. Preserving such a strategy [2] leads to extra overheads which tends to annihilate
potential advantages of the parallelization.

In [6] we showed that a slight modification of a sequential involutive algorithm for computing
minimal Janet bases [7] reveals its natural and effective parallelism. Experimental demonstration
of this property, however, was restricted to modular computation since our implementation in [6]
was not able to work in parallel with GNU Mutiprecision library [8] to handle long integers.

In the present paper we describe a more general parallel algorithm which computes an involutive
basis for an arbitrary noetherian and constructive division as defined in [9] and for an arbitrary
admissible monomial order. As well as in our previous papers [6, 7], the data structures used in the
algorithm define a reduced Gröbner basis as the internally fixed part of the involutive basis. Thus,
the reduced Gröbner basis can be immediately output after termination of the algorithm.

In addition to the algorithmic modifications improving the parallelization features, the below al-
gorithm description contains some optimizations which are also relevant to sequential computation
of involutive bases.

As before, we use the threads model of parallel programming and implemented the algorithm for
Janet division with threads running on the same computer environment as in [6]. But this time we
modified the previous parallel version of the algorithm in such a way that provided with the latest
versions of the Linux based software the implementation, allows to manipulate with long integers.
For the present, due to some peculiarities of our parallel codes directed to increase its efficiency, our
actual implementation is restricted to the degree-lexicographical and degree-reverse-lexicographical
Janet and Gröbner bases.

Our first experimental results obtained with the new parallel implementation revealed substan-
tially more gain for integer coefficients in comparison with that we profited in [6] for modular
coefficients.

2 Preliminaries

In this paper we use the following definitions and notations:

186 Vladimir P. Gerdt and Denis A. Yanovich

X = {x1, . . . , xn} is the set of polynomial variables.
X ⊆ X is a subset (possibly empty) of the variables.
R = K[X] is a polynomial ring over zero characteristic field K.
Id(F) is the ideal in R generated by F ⊂ R.
MX is the monoid of monomials, i.e. power products, in variables in X ⊆ X that is a

submonoid of M ≡ MX.
degi(u) is the degree of xi in u ∈ M.
deg(u) =

∑n
i=1 degi(u) is the total degree of u.

� is an admissible monomial ordering such that x1 � x2 � · · · � xn.
u | v is the conventional divisibility relation of monomial v by monomial u. If u | v and

deg(u) < deg(v), i.e. u is a proper divisor of v, we shall write v � u.
lm(f) and lt(f) are the leading monomial and the leading term of f ∈ R \ {0}, respectively.
lm(F) is the leading monomial set for F ⊂ R \ {0}.
card(F) is the cardinality of set F ∈ R.
lcm(u, v) is the least common multiple of monomials u, v ∈ M.
An involutive separation L of variables is said to be defined on M if for any finite monomial set

U ⊂ M and for any u ∈ U there is defined a subset M(u, U) ⊆ X of variables generating monoid
L(u, U) ≡ MM(u,U) such that

1. u, v ∈ U, uL(u, U) ∩ vL(v, U) �= ∅ ⇐⇒ u ∈ vL(v, U) or v ∈ uL(u, U).
2. v ∈ U, v ∈ uL(u, U) ⇐⇒ L(v, U) ⊆ L(u, U).
3. V ⊆ U =⇒ L(u, U) ⊆ L(u, V) ∀u ∈ V .

Variables in M(u, U) are called (L−)multiplicative for u and those in NM(u, U) ≡ X\M(u, U) are
(L−)nonmultiplicative for u, respectively. If w ∈ uL(u, U) then u is involutive divisor of w, and in
this case we shall also write u |L v.

Below we shall explicitly put down the subscript L for both sets of L−multiplicative ML(u, U)
and L−nonmultiplicative NML(u, U) variables for u ∈ U . From the above definition it follows that
an involutive separation generates the involutive division [9] and vice-versa.

A finite polynomial set F is L−autoreduced if each term in every f ∈ F has no L−divisors among
lm(F) \ {lm(f)}. The L−(involutive) normal form NFL(p, F) of p �∈ F modulo L−autoreduced
set F is given by

NFL(p, F) = p̃ = p −
∑

ij

αijmijgj

where αij ∈ K, gj ∈ F, mij ∈ L(lm(gj), lm(F)), lm(mijgj) � lm(p), and there are no monomials
in p̃ which have L−divisors in lm(F). If lm(f) (f �∈ F) has no L−divisors in lm(F) then we shall
call it L−head reduced modulo F and write this as f = HNFL(f, F) where HNFL(f, F) denotes
the L−head normal form of f modulo F .

Given an ideal I ⊂ R, an involutive division L and monomial order �, a finite L−autoreduced
subset G ⊂ R generating I is called its L−(involutive) basis if

(∀f ∈ I) (∃ g ∈ G) [lm(g) |L lm(f)]

If division L is continuous [9] this is equivalent to

(∀f ∈ G) (∀xi ∈ NML(lm(f), lm(G))) [NFL(xi · f, G) = 0]

Below we shall often write NML(f, F) for NML(lm(f), lm(F)).
The product xi · f of polynomial f ∈ F and xi ∈ NML(f, F) is called nonmultiplicative

prolongation of f , and construction of involutive bases is often called completion. These terms
came from the involution theory of differential equations [10]. An involutive differential system has
all its certain differential consequences called integrability conditions incorporated in the system.
Therefore, to construct an infolutive form of a differential system one has to complete the system
with all its integrability conditions. A completion procedure includes differentiations of equations
in the system with respect to independent variables. These differentiations are called prolongations.
A single derivation of a differential equation corresponds to multiplication by a variable in the case

Parallel Computation of Involutive and Gröbner Bases 187

of multivariate polynomial. For polynomial systems the role of integrability conditions is played by
non-trivial critical pairs (S−polynomials) that are to be processed in the course of the Buchberger
algorithm [4].

One of classical, and widely used in the involutivity analysis of differential equations, separations
of variables introduced in [11] generates the involutive division called Janet division [9]. Given a
monomial order �, a finite set F ⊂ R, and a polynomial f ∈ F , the Janet separation of variables
into multiplicative and nonmultiplicative with respect to f is defined as follows.

For each 1 ≤ i ≤ n divide F into groups labeled by non-negative integers d1, . . . , di

[d1, . . . , di] = { f ∈ F | dj = degj(lm(f)), 1 ≤ j ≤ i }.

x1 is (Janet) multiplicative for f ∈ F if deg1(lm(f)) = max{deg1(lm(g)) | g ∈ F}. For i > 1 xi is
multiplicative for f ∈ [d1, . . . , di−1] when degi(lm(f)) = max{degi(lm(g)) | g ∈ [d1, . . . , di−1]}.

An involutive basis is a (generally redundant) Gröbner basis [9]. Similarly to a reduced Gröbner
basis, a monic minimal involutive basis [12] is unique.

3 Parallel Involutive Algorithm

In this section we describe a parallel version of the involutive basis algorithm which is an improved
version of the parallel Janet basis algorithm of paper [6] generalized to an arbitrary noetherian
and constructive division [9].

As well as in [6, 7] we associate with every polynomial f ∈ F in the intermediate polynomial
set F ∈ R the triple p = {f, u, vars} with

pol(p) = f is the polynomial f itself,
anc(p) = u is the leading monomial of a polynomial ancestor of f in F,
nmp(p) = vars is a (possible empty) subset of variables.

The ancestor of p is a polynomial g ∈ F of the smallest deg(lm(g)) among elements in F satisfying
lm(g) | lm(p). This means that for the ancestor g the equality anc(g) = lm(g) always holds.

If an intermediate polynomial p arose in the course of the below algorithm and has a proper
ancestor g, then p has been obtained from g by examining a sequence of head irreducible nonmul-
tiplicative prolongations.

The set vars accumulates those nonmultiplicative variables for p which have been already used
in the algorithm for construction of nonmultiplicative prolongations.

The second and the third elements in the above triple structure keep those parts of the comple-
tion history which serve, respectively, to avoid unnecessary reductions by means of the involutive
analogues of Buchberger’s criteria and do not consider useless repeated prolongations.

The main algorithm ParallelInvolutiveBasis (given on the subsequent page) uses the multi-
thread model of parallel programming. Given a noetherian continuous and constructive division [9]
L, an admissible monomial ordering � and the specified maximal number of threads Kthr to be
used, it computes a minimal L−involutive basis of the ideal generated by the input polynomial set
F .

In lines 25, 27 of the algorithms and below, where no confusion can arise, we simply refer to the
triple set T as the second argument in NML, NFL and HNFL instead of the set of polynomials
contained in T . Sometimes we also refer to the triple p instead of its polynomial.

188 Vladimir P. Gerdt and Denis A. Yanovich

Algorithm: ParallelInvolutiveBasis (F, L, ≺, Kthr)

Input: F ∈ R\{0}, a finite set; ≺, an admissible ordering;L, an involutive division; Kthr ≥ 1,
the maximal number of threads

Output: G, a minimal L−basis of Id(F)
1: choose f ∈ F with the lowest lm(f) w.r.t. �
2: T := {f, lm(f), ∅}
3: Q := {{g, lm(g), ∅} | g ∈ F \ {f}} ∪ {{f · x, lm(f)x, ∅} | x ∈ NML(f, {f})}
4: sort Q in increasing order of its polynomials w.r.t. �
5: S := ∅
6: P := { qi ∈ Q | i ≤ Kthr }
7: Q := Q \ P
8: create min{card(P), Kthr} threads WorkerThread(P, T, S, mutex)
9: wait for return of all threads

10: Q := Q ∪ S
11: while Q �= ∅ do
12: choose p ∈ Q s.t. (� ∃q ∈ Q \ {p}) [lm(pol(p)) � lm(pol(q))]
13: if lm(pol(p)) = 1 then
14: return {1}
15: else
16: Q := Q \ {p}
17: if lm(pol(p)) = anc(p) then
18: for all { r ∈ T | lm(pol(r)) � lm(pol(p)) } do
19: Q := Q ∪ {r}; T := T \ {r}
20: od
21: fi
22: pol(p) := NFL(pol(p), T)
23: fi
24: T := T ∪ {p}
25: for all q ∈ T and x ∈ NML(pol(q), T) \ nmp(q) do
26: Q := Q ∪ { {pol(q) · x, anc(q), ∅} }
27: nmp(q) := nmp(q) ∩ NML(pol(q), T) ∪ {x}
28: od
29: S := ∅
30: sort Q in increasing order of its polynomials w.r.t. �
31: P := { qi ∈ Q | i ≤ Kthr }
32: Q := Q \ P
33: create min{card(P), Kthr} threads WorkerThread(P, T, S, mutex)
34: wait for return of all threads
35: Q := Q ∪ S
36: od
37: return G := { pol(f) | f ∈ T }

Our previous parallel algorithm in [6] exploited the “thread-pool” model when all the threads
created wait until they get information (a polynomial in our case) for its processing (involutive head
reduction). The threads are living during the whole program running time, and, hence, consuming
the computer resources even if they are not active.

In the present algorithm another model of multi-threading which we shall call “boss-workers”
is used. The main procedure (”boss“) creates the threads just when there is a need in them (lines
8 and 33) and then wait (e.g. sleeping) until all the threads created finish their job. An advantage
of this model over that we used previously lies in simplification of its programming, avoidance
deadlocks and reduction of the mutex delays.

The structure of the algorithm ParallelInvolutiveBasis which realizes multi-threading, basi-
cally is very similar to the algorithm in [6]. This time, however, an involutive division is included in
the input parameters what makes the algorithm applicable for construction of other involutive bases

Parallel Computation of Involutive and Gröbner Bases 189

and not only Janet ones. The multi-threading parallelization is realized in lines 8 and 33 where the
working threads are created. Their number cannot exceed the maximal number of threads Kthr

specified as an input parameter, but may be less, if Kthr is larger than the number of elements in P
to be processed. Below we describe subalgorithms WorkerThread and NFL(pol(p), T) that are
invoked in lines 8, 22 and 33. Respectively, they control working threads and perform the involutive
tail reduction.

The sorting of elements in triple set Q that is done in lines 4 and 30 is an auxiliary operation
that revealed its heuristical profit in our implementation done for Janet division and for the degree-
lexicographical and degree-reverse-lexicographical orders when an element in p ∈ Q selected in line
12 has the minimal deg(lm(pol(p))). Note that in both cases the sorting of triples in Q is done
with respect to the leading monomials of their first elements.

What is essentially different in algorithm ParallelInvolutiveBasis in comparison with those
in papers [6, 7, 12] is the replacement of condition

lm(pol(r)) � lm(pol(p))

for the transfer of elements from T to Q by the condition

lm(pol(r)) � lm(pol(p))

in line 18. If this replacement still preserves the minimality of the output basis then it is clearly an
important optimization since it decreases the number of transfers done in the course of algorithm
and the related recalculations.

To show correctness of the replacement we refer to the main idea of the correctness proof for
the algorithm in paper [12]. It follows that in order to prove minimality of the output L− basis G
of algorithm ParallelInvolutiveBasis it is sufficient to show that after every execution of line 24
the monomial set U = { lm(pol(p)) | p ∈ T } is a subset of the minimal L−basis of the monomial
ideal generated by U . A polynomial set whose leading monomial set satisfies this property we shall
call compact (cf. [12]).

We claim that when the while-loop runs the very first time this is clearly holds. Indeed, right
before step 24 the triple set T contains the single element {f, lm(f), ∅} formed in line 2. Let
polynomial q (q = pol(p)) is that calculated at step 22, that is q = NFL(q, {f}). Denote lm(f)
and lm(q) by u and v, respectively. If neither u | v nor v | u the set {u, v} is apparently compact.
Furthermore, u � v cannot hold by admissibility of ≺ and the definition of NFL(pol(p), {f}) given
in Sect.2. If u | v, then v/u must contain L−nonmultiplicative variables for u. Monomial v does not
belong the minimial L−basis for the ideal generated by {u, v} only if there exists xi ∈ NML(u, {u})
such that v � u·xi. But in this case, by the selection strategy used in line 12, the triple {h, lm(h), ∅}
with lm(h) = u · xi inserted to Q in line 3 must have been be added to T before p. This proves the
claim.

It is obvious that displacement done in lines 18-19 never breaks compactness of the poly-
nomial set in T . Assume now that the property of compactness holds for the polynomial set
G = {pol(f} | f ∈ T } but is destroyed just in line 24. In accordance with property 3 in definition
(Sect.2) of involutive separation for L, this may only happen if there exists a polynomial h ∈ G
such that its nonmultiplicative prolongation h · xj whose leading term is L−irreducible modulo
G satisfies lm(pol(p)) � h · xj . But then by exactly the same reasoning as above, the triple in Q
with such a prolongation must have been selected and added to the triple set T earlier than p. The
obtained contradiction proves correctness of the replacement.

Thereby, the optimization done in line 18 does not break the algorithm correctness, and ap-
parently its termination too. Therefore, both correctness and termination of the algorithm follow
from those of the algorithms in [6, 7, 9] if this is true also for the subalgorithms WorkerThread
and NFL(pol(p), T).

Consider now these these subalgorithms. The subalgorithm WorkerThread controls the work-
ing threads processing the triple sets P, T, S initially created in lines 2, 5, and 6, of the main
algorithm and accessible by each “worker” thread.

190 Vladimir P. Gerdt and Denis A. Yanovich

Algorithm: WorkerThread(P, T, S, mutex)

Input: P , S and T , sets of triples
Output: S, a set with polynomials which Janet head reduced modulo T
1: while P �= ∅ do
2: lock(mutex)
3: choose p ∈ P
4: P := P \ {p}
5: unlock(mutex)
6: h := HNFL(p, T)
7: if h �= 0 then
8: lock(mutex)
9: if lm(pol(p)) �= lm(h) then

10: S := S ∪ {h, lm(h), ∅}
11: else
12: S := S ∪ {p}
13: fi
14: unlock(mutex)
15: fi
16: od
17: return S

The fourth argument of the algorithms is mutex (mutual exclusion object) that is a system object
used to assure that simultaneous access to global shared resources (such as P, T, S) is avoided.
Mutex is created by the starting program. Then any created thread that needs the resources must
lock the mutex from other threads while it is using the resource. The mutex must be unlocked
when the shared data are no longer needed.

The commands in the pseudocode form are shown for a thread performing a head involu-
tive reduction of a polynomial in P modulo polynomial set in T by invoking the subalgorithm
HNFL(p, T). For nonzero L−head reduction the corresponding triples are added to S. With all
this going on, if the leading term of the taken polynomial h was affected by L−reduction, then it
loses the link to his former ancestor and becomes its own ansestor in the upgraded set S. Otherwise,
the second and the third elements in the triple are inherited from the input triple.

Therefore, correctness and termination of algorithm WorkerThread is determined by those of
HNFL(p, T). The last subalgorithm as well as subalgorithm NFL is exactly that considered in [6,
7] for Janet division and extended to a general involutive division. Its termination and correctness
immediately follow from the basic properties of involutive reductions [9] and correctness of the
criteria used in line 8 introduced in [7, 9, 12].

For the head reducible input polynomial pol(f) what is checked in line 7, the two criteria are
verified in line 8:

CriterionI(f, g) is true iff anc(f) · anc(g) | lm(pol(f)).

CriterionII(f, g) is true iff lm(f) � lcm(anc(f) · anc(g)).

Criteria I and II follow from the Buchberger criteria [4] adapted to the involutive completion
procedure. If either of the two criteria is true, then HNFL(pol(f), T) = 0 [7].

The last subalgorithm NFL completes the L−head reduction by performing the involutive tail
reduction and is invoked in line 22 of the main algorithm ParallelInvolutiveJBasis.

Parallel Computation of Involutive and Gröbner Bases 191

Algorithm: HNFL(f, T)

Input: f = {pol(f), anc(f), nmp(f)}, a triple
T , a set of triples

Output: h = HNFL(pol(f), T), the L−head normal form of the polynomial in f modulo poly-
nomial set in T

1: G := {pol(g) | g ∈ T }
2: if lm(pol(f)) is L−irreducible modulo G then
3: return f
4: else
5: h := pol(f)
6: choose g ∈ T such that lm(pol(g)) |L lm(h)
7: if lm(h) �= anc(f) then
8: if CriterionI(f, g) or CriterionII(f, g) then
9: return 0

10: fi
11: else
12: while h �= 0 and lm(h) is L−reducible modulo G do
13: choose q ∈ G such that lm(q) |L lm(h)
14: h := h − q · lt(h)/ lt(q)
15: od
16: fi
17: fi
18: return h

Algorithm: NFL(f, T)

Input: f , the polynomial in a triple p such that f := HNFL(p, T);
T , a set of triples

Output: h = NFL(f, T), the full L−normal form of h
modulo polynomial set in T

1: G := {pol(g) | g ∈ T }
2: h := f
3: while h �= 0 and h has a term t which is L−reducible modulo G do
4: choose g ∈ G such that lm(g) |L t
5: h := h − g · t/ lt(g)
6: od
7: return h

4 Implementation and benchmarking

To investigate experimental behavior of the algorithm ParallelInvolutiveBasis we developed a
parallel C code on the basis of our earlier, and especially optimized for the sequential (non-parallel)
computation, implementation in C described in [7]. In particular, as well as in [7] we exploited the
Janet trees as data structures for T and unsorted lists for Q, P, S.

The running times were measured for the degree-reverse-lexicographical monomial ordering
compatible (Sect. 2) with x1 � x2 � · · · � xn on a 2 processor Pentium III 700 Mhz PC with
1Gb RAM computer running under Gentoo Linux [14]. As well as in the sequential computation,
to perform in the parallel code the arithmetical operations over the integer polynomial coefficients
the GNU Multiprecision Library [13] was used.

Whereas to run the sequential code we use the dlmalloc memory manager, this does not work
tolerably in the multi-thread computations. Similarly we could not exploit the GC manager. We
decided thereby to use the standard malloc manager. This leads to experimental slowing down of

192 Vladimir P. Gerdt and Denis A. Yanovich

the one-thread run of our parallel code in comparison with the sequential one (see Table 1) caused
by the non-optimized memory access. There are also some overheads owing to organization of the
inter-thread synchronization.

The timings for our parallel code in one-thread and three-thread modes1 are summarized in
the below presented Table 1. As benchmarks we use the same ones as in our previous papers [6,
7] and taken from the collections [15, 16]. These benchmarks are widely used for the testing of
the modern Gröbner bases software and provide a good platform for experimental analysis of the
built-in algorithms and efficiency of their implementation.

To measure a running time we used the following scheme. First, we measured individual timings
for reductions done in parallel by those threads which are created in lines 8 and 33 of the main
algorithm ParallelInvolutiveBasis. Meanwhile during this execution of the reductions the main
thread timer (the timer of ”boss”) was halted (i.e., its timer stopped). After completion of all
the reductions done, the maximal value of the individual time spent by the reduction threads was
added to the main timer.
Acting so we disposed of swapping time, delay caused by addressing to the hard disk and other
time delays irrelevant to the program running.

The second column of Table 1 shows the running times for our (specially optimized for the case
of) sequential code. The third column gives timings for the multi-thread implementation with one
“worker” thread. For experimental measurement of scalability one could compare these timings
with those measured for a parallel code running on our (actually two-processor machine) in
three-thread mode shown in the 4th column.

The last two columns show the relative speedup of three-thread parallel code with respect to
the sequential code and one-thread code. It should be noted that in our case the three-thread mode
runs in most cases faster than the optimized sequential version even if the astronomical time would
taken into account.

We also performed the following empirical analysis. By running the multi-thread software on
our two-processor machine we varied the number of threads and measured the processor loading.
And for all that it turned out that the maximal loading took place just for three threads. This is
in unison with the general prescription to have the number of the threads involved equal to the
number of available processors plus one.

On some examples we even detected a super-linear growth of speedup with respect to number
of threads involved. This is due to the fact that in the multi-threaded run some more short and
simple polynomials were computed and added to the triple set T earlier than in the sequential
run. These polynomials gave rise to another and faster chain of the successive reductions, and
thus, accelerated the process of computation. One can say that in these cases the multi-thread run
revealed experimentally better selection strategy for examining nonmultiplicative prolongations
than that fixed in our sequential code.

5 Conclusion

If in the last line of algorithm ParallelInvolutiveBasis we would use the command

return G := { pol(f) | f ∈ T | lm(f) = anc(f) } ,

then the algorithm would return the reduced Gröbner basis. This follows immediately from our
definition of ancestors as given in the beginning of Section 3. This extraction is done without
extra computation, i.e. without Gröbner reductions of the output involutive basis. Therefore, our
algorithm can be considered as a parallel one2 for computation of reduced Gröbner bases. A user
of our program may specify on the input which basis to be output: Janet, Gröbner or both.

The above presented first experimental results obtained with our new parallel implementation
demonstrate for the standard polynomial benchmarks [15, 16] an experimental evidence of effective
parallelization of our involutive algorithms.
1 That is, with one and and three “workers” which perform the L−head reductions.
2 This is true also and for the sequential algorithm [7].

Parallel Computation of Involutive and Gröbner Bases 193

As the next step in theoretical and experimental parallelization of the involutive algorithms we
shall try to decrease further the overheads and to analyze applicability of programming models
and software available for distributed computing.

It should be noted that two criteria used in the subalgorithm HNFL(p, T) do not fully cover the
Buchberger criteria as it was shown in [17]. Some of zero-redundant nonmultiplicative prolongation
can be avoided by applying other criteria formulated in [17]. However, our first attempts to build-in
the missing criteria in sequential implementation of the Janet basis algorithm [7] have not revealed
so far any experimentally notable gain from the use of new criteria for the standard benchmarks
set [15, 16]. Moreover, for most of benchmarks it led to increasing the timings caused by extra
checks of the applicability conditions for the missing criteria. Perhaps this is because our current
data structures [7] are not very suitable for these extra checks. By this reason so we did not
include the new criteria in the present parallel version and its implementation. But we plan to
continue experimental study of effects from the missing criteria for our involutive algorithms and
implementing their codes.

6 Acknowledgments

One of the authors (V.G.) thanks Ralf Hemmecke for useful discussions. The research presented
in this paper was partially supported by the grants 04-01-00784 from the Russian Foundation for
Basic Research and 2339.2003.2 from the Russian Ministry of Science and Education.

References

1. Faugère, J.C.: Parallelization of Gröbner basis. In: PASCO’94, Lecture Notes Series in Computing 5,
World Scientific, Singapore (1994) 124–132

2. Attardi, G., Traverso, C.: Strategy-accurate parallel Buchberger algorithm. J. Symb. Comp. 11 (1996)
411-425

3. Amrheim, B., Gloor, O., Küchlin, W.: A case study of multi-threaded Gröbner basis completion. In:
Proceedings of ISSAC’96, ACM Press (1996) 95–102

4. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Recent Trends
in Multidimensional System Theory, N.K. Bose (ed.), Reidel, Dordrecht (1985) 184–232

5. Gianni, P., Mora, T., Niesi, G., Robbiano, L., Traverso, K.: “One sugar cube, please” or Selection
strategies in Buchberger algorithm. Proceedings of ISSAC’91, ACM Press (1991) 49–54

6. Gerdt, V.P., Yanovich, D.A.: Parallelism in computing Janet bases. In: Proceedings of the Workshop
on Under- and Overdetermined Systems of Algebraic or Differential Equations (Karlsruhe, March 18-
19, 2002), J.Calmet, M.Hausdorf, W.M.Seiler (Eds.), Institute of Algorithms and Cognitive Systems,
University of Karlsruhe (2002) 47–56

7. Gerdt, V.P., Blinkov, Yu.A., Yanovich, D.A.: Construction of Janet bases. II. Polynomial bases. In:
Computer Algebra in Scientific Computing / CASC’01, V.G.Ganzha, E.W.Mayr and E.V.Vorozhtsov
(Eds.), Springer-Verlag Berlin (2001) 249–263

8. http://www.swox.com/gmp
9. Gerdt, V.P., Blinkov, Yu.A.: Involutive bases of polynomial ideals. Math. Comp. Sim. 45 (1998) 519-

542
10. Calmet, J., Hausdorf, M., Seiler, W.M.: A constructive introduction to involution. In: Proc. Int. Symp.

Applications of Computer Algebra - ISACA 2000, R. Akerkar (ed), Allied Publishers, New Delhi (2001)
33–50

11. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles, Cahiers Scientifiques, IV,
Gauthier-Villars, Paris (1929)

12. Gerdt, V.P., Blinkov, Yu.A.: Miniamal involutive bases. Math. Comp. Sim. 45 (1998) 543–560
13. http://www.swox.com/gmp

14. http://www.gentoo.org

15. Bini, D., Mourrain, B.: Polynomial Test Suite (1996)
http://www-sop.inria.fr/saga/POL

16. Verschelde, J.: The Database with Test Examples.
http://www.math.uic.edu/~ jan/demo.html

17. Apel, J., Hemmecke, Ralf.: Detecting Unnecessary Reductions in an Involutive Basis Computation.
RISC Linz Report 02-22 (2002)

194 Vladimir P. Gerdt and Denis A. Yanovich

example sequential 1 thread 3 threads speedup tseq/t3th t1th/t3th

assur44 65.60 73.93 31.34 +34.26 2.09 2.36
butcher8 5.07 6.7 3.93 +1.14 1.29 1.71
chemequs 4.09 4.03 2.6 +1.49 1.57 1.55
chemkin 67.62 88.88 35.82 +31.8 1.89 2.48
cohn3 521.83 554.75 222.69 +299.14 2.34 2.49
cpdm5 4.79 10.07 5.41 -0.62 0.89 1.86
cyclic6 0.36 0.79 1.16 -0.8 0.31 0.68
cyclic7 193.6 386.89 182.86 +10.74 1.06 2.12
d1 40.98 52.2 24.88 +16.1 1.65 2.10
des18 3 0.81 1.23 0.97 -0.16 0.84 1.27
des22 24 3.14 4.43 2.57 +0.57 1.22 1.72
dl 731.31 1150.18 557.00 +174.31 1.31 2.07
eco8 1.12 2.41 1.67 -0.55 0.67 1.44
eco9 12.30 22.23 11.14 +1.16 1.10 2.00
eco10 129.73 227.92 103.99 +25.74 1.25 2.19
eco11 2168.62 2867.5 1254.34 +914.28 1.73 2.27
eco12 25712.00 34255.3 15870.8 +9841.2 1.62 2.16
extcyc5 4.36 7.7 5.89 -1.53 0.74 1.31
extcyc6 1585.63 1689.16 680.26 +905.37 2.33 2.48
f744 13.22 23.76 13.8 -0.58 0.96 1.72
fabrice24 649.14 648.78 254.39 +394.75 2.55 2.55
filter9 38.73 33.58 38.66 +0.07 1.00 0.88
i1 626.30 1000.69 371.79 +254.51 1.69 2.69
jcf26 1317.05 1325.57 515.61 +801,44 2.55 2.57
katsura7 5.87 11.28 5.85 +0.02 1.00 1.93
katsura8 71.16 119.92 53.72 +17.44 1.33 2.23
katsura9 911.09 1356.37 587.82 +323.27 1.55 2.31
katsura10 17676.90 22395.00 9809.34 +7867.56 1.80 2.28
kin1 87.57 86.29 34.46 +53.11 2.54 2.50
kotsireas 25.19 29.29 13.76 +11.43 1.83 2.13
noon6 3.01 4.56 3.88 -0.87 0.78 1.18
noon7 71.34 101.63 59.55 +11.79 1.20 1.71
noon8 3999.61 4454.96 2299.72 +1699.89 1.74 1.94
pinchon1 29.34 48.5 26.7 +2.64 1.10 1.82
rbpl 1150.77 1295.27 778.49 +372.28 1.49 1.66
rbpl24 649.10 648.54 224.74 +424.36 2.89 2.89
redcyc6 0.52 0.92 0.84 -0.32 0.62 1.10
redeco10 42.29 74.63 35.81 +6.48 1.18 2.08
redeco11 398.92 667.03 301.26 +97.66 1.32 2.21
reimer6 50.24 88.99 52.56 -2.32 0.96 1.69
reimer7 8980.36 11659.2 7547.27 +1433.09 1.19 1.55
virasoro 25.10 46.54 21.26 +3.84 1.18 2.19

Table 1. Timings (in seconds) and speedup due to parallelism.

