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Abstract

We report on an experimental implementation of Grébuner bases in Mathematica. This
experiment gives insight into the performance of Mathematica as a scientific system for
algorithm researchers. We draw two major conclusions:

e We are enthusiastic about Mathematica with respect to the programming style it
supports, which allows easy, well-structured, and generic implementation of algo-
rithmic ideas,

e We are frustrated because Mathematica is so extremely slow that its use for scientific
experiments of serious size is prohibitive.

1 The Experiment and Its Result

The experiment described in this paper is part of the book project (Buchberger 1991).
The book on which the author is working intends to provide an easy, but mathemati-
cally complete, introduction to the theory of Grobner bases and its many applications.
We also intend to distribute, along with the book, a GROBNER software package in
source code. The goal of GROBNER is threefold:

e students should be supported in learning the theory by having the possibility to
try out examples and to see all details of an implementation,
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researchers should be able to experiment with new versions of ‘the algorithms,
check hypotheses, expand and improve the package,

and users should be encouraged to apply the method for various concrete large-
scale problems.

A suitable langnage for GROBNER should therefore meet the following require-
ments:

I

the language should be available on as many machines as possible,
the language should be professionally distributed and supported,
the code should be easily readable,

some basic algebraic algorithms (long integer arithmetic and, in refined versions
of the package, rational function arithmetic and polynomial factorization) should
already be available in the language,

the language should support generic programming (formulation of algorithms in-
dependent of the underlying data domain),

the code should be fast.

compared systematically a number of available languages that might be considered

as an immediate choice: C, C*+, LISP, PCL (Portable Common Loops), muSimp, SAC-
2, Scratchpad-2, Maple and Mathematica. After extensive experiments with coding all
or part of GROBNER in these languages, I found that the appropriateness of these
tanguages for the task at hand can be summarized in the following table:

C ] C** [ Lisp | PCL [ muSIMP | SAC-2 | Scratch- | Maple | Mathe-
pad-2 matica
availability || + ] + + ¥ - |+ N T T
professional || + | + + ¥ + R + T +
distribution
readability || £ | £ + + + + + + +
algebraic - |- . - + + + + ¥
algorithms
genericity - |+ - + - - + - +
speed +1+ + T + + F - —

(Maple will soon have generic programming facilities.

The coarse scale used in this table is: +,%,F,—. The last line concerning speed
can be given in more detail:
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C[{C** | Lisp | PCL | muSIMP [ SAC-2C | Spad-2 [ Maple | Mathematica

[speed [ 1 [ 172 [1/10] 1100 | 1/10 1 17100 | 171000 | 1/3000

This line should be understood in the way that, for example, a program written in
Mathematica as a language (not a call to an eventually available built-in function) is
approximately 3000 (three-thousand!) times as slow as the same program written in
C. One main part of this paper (Section 3) will be devoted to backing this assertion.

When I started my experiments with the above candidate languages for GROBNER,
[ already knew most of the entries in the above rough table of performance criteria
because most of this is well know and documented. The two entries that surprised me
most (and it took me quite some time to “fill these entries in” because very little is
said about this in the official documents and critical assessments) were

e the strength of Mathematica for generic programming and
 its prohibitively slow speed.

Therefore, I would like to devote this paper to a discussion of these two aspects.

The conclusions we draw are, of course, independent of the particular package
considered. Only for the examples we will need some basic knowledge about Grébner
bases, see the survey article (Buchberger 1985). It is clear that the present paper
cannot give an tntroduction to Mathematica either. For all details about Mathematica
see the document (Wolfram 1988).

2 Programming Style and Generic Programming

The programming style of Mathematica is elegant mainly because of two reasons:

¢ Mathematica's fundamental data type is the “expression”, which models both
nested data and nested function descriptions and encompasses the expression
encounterd in ordinary mathematics in a very natural way.

¢ In function definitions, Mathematica allows arguments that are “patterns” (i.e.
terms) and not only variables. Thus, one often can formulate algorithms in Math-
ematica without explicit “selectors” and “constructors”, which tend to make pro-
grams clumsy in other languages. Again, this pattern matching programming
style is what normally is used in ordinary mathematics (or in its formalization in
predicate logic) for describing algorithms.

For example, any selection of the ordinary mathematical rules for “lim” would
immediately yield an executable Mathematica program:
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Limes[a_+ b_} := Limes[a] + Limes[b]
Limes[a_ b_] := Limes[a] Limes[b]

Every Mathematica expression that matches the “pattern” Limes[ a_+ b_], where
a_ and b_ stand for arbitrary expressions, would be transformed by the Mathematica
interpreter according to the first rule. In fact, Limes[ a_+ b_] is an abbreviation for
Limes[ Plus[ a_, b_1]. Even, an entire rule like Limes[a_+ b_} := Limes[a] +
Limes[b] is in fact a single expression, which in “full form” would be

Define[ Limes[ Plus[ Blank[ a), Blank{b]]],
Plus[ Limes{ a], Limes[ bl]]

Generally speaking, except for some atoms, the only data items in Mathematica
are expressions of the form fleq,...,e,], where f,e;,..., e, are again expressions.

This simple concept of “expression and matching” is very powerful. We will now
show that it incorporates, in a very natural way, the concept of “generic programming”,
which is vital for complex algebraic packages. We find it worthwhile to expand on this
point because, although briefly mentioned in the document (Wolfram 1988), it is not
so commonly known.

The main point how generic programming can be incorporated in Mathematica
programs is the fact that the f in a Mathematica expression fley,...,€,] can be used
as a “tag” for characterizing a data domain. Objects having two different (constant)
tags T1 and T2 will automatically be analyzed to belong to two different domains
and, accordingly, two different sets of rules may be installed for the same operation
Operation:

Operation[ Ti[ ...}] :=first right-hand side,
Operation[ T2[ ...]J] :=second right-hand side.

When finding an expression of the form Operation[ ezpr], the Mathematica inter-
preter analyzes the expression ezpr and depending on whether erpr starts with T1 or
T2 applies the first rule or the second. This simple mechanism can be used to cre-
ate “generic packages” that handle complicated “towers” of algebraic domains without
repetition of code.

For example, when implementing Grobner bases (over multivariate polynomials)
one would like to formulate the algorithms for a wide range of different domains of
coefficients and for many different orderings and various representations of power prod-
ucts. Therefore it is not possible to use the built-in multivariate polynomial package
of Mathematica (which is actually coded in C and is not available in source code for

users!)
One way of organizing the many possible “towers” of domains for GROBNER is as

follows: The top-most domain is the domain of distributive polynomials which [ chose
to represent in the following “nested” form:
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DNP[ m, dnp],

where m is a monomial and

dnp is again a distributive polynomial.
(DNP[ ] is the “empty” (zero) polynomial.)

The monomials might be represented in the following form

Mon[ ¢, ppl,
where ¢ is an element of a coeflicient domain and
pp is an element of a power product domain.

We are interested in many different coefficient domains: the built-in rational num-
bers, the finite fields GF(p), the field of rational functions etc. For example, finite field
elements in GF(p) might be represented by

FF[ f1,

where f is a number modulo a prime p, and rational functions may be represented by

RF[ rf],

where 7f might be a rational function in the built-in Mathematica representation.
Finally, the power products may be represented as “exponent lists” in the form

EL[ e,...,€en],
where the e;,...,e, are the exponents at the n indeterminates. Alternatively, one
may be interested in a “Gddel coding” of the exponents e;,...,e, by the natural
number pi’ .- pi», where the p,...,p,,... are the prime numbers. A corresponding
representation in Mathematica may be

GE[ ge],

where ge is a natural number.

Now we show some parts of the corresponding Mathematica code for realizing arith-
metic on these domains:

Addition for DNP-polynomials:

dnp_DNP + DNP{] := dmp

DNP{ mi_, dnpl_] + DNP[ m2_, dnp2_] :=
DNP[ m1, dnp! + DNP[ m2, dnp2]] /; ml > m2

DNP[ mi_, dnp1_] + DNP[ m2_, dnp2 ] :=
DNP{ ml + m2, dnpl + dnp2] /; IsEquivalent[ ml, m2] && mi1 !'= -m2
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b (A rule containing a variable like dnp_DNP on the left-hand side must be read as follows:
f an argument dnp whose tag is DNP is encountered then the rule is applied). Note
hat the “+” on the left-hand side of these rule denotes the addition specific for DNP-
" polynomials whereas the “+” on the right-hand side is “generic” in the sense that,
at run-time, the objects m1, m2, dnp1, dnp2 etc. are analyzed and, in dependence
© on their “tag” (in this case “Mon” or “DNP”), the appropriate rule of the package is
- selected and applied. Similarly, in this example, also “>", “~", and “IsEquivalent”
are “generic”.
- Some operations on Mon-monomials:

»
i

Mon[ ci_, pp1 ] > Mon[ c2_, pp2.] := ppl > pp2
Mon[ ci_, pp_] + Mon[ c2_, pp_) := Mon[ c¢1 + ¢2, pp)
IsEquivalent[ Mon[ ci_, ppi1_], Mon[ c2_, pp_1] := ppl == pp2

The operations “>”, “4”, and “IsEquvialent” appearing on the left-hand side of these
definitions are the specific realizations for Mon-polynomials of the generic operations
used in the above domain of DNP-polynomials. The operations “>” and “4” on the
right-hand side are again “generic”.
Let us consider one more “layer” in this example of a “tower of algebraic domains”.
“>” on EL-power product:

ell EL > el2 EL :=
Block([ i, ...,
For[i=1, ...

£ eltl[ i1) > e12([ il],

“>” on GE-power products;
GE[ el_> GE[ e2_] := el > e2

In these two definitions, again, “>” on the left-hand side denotes the operation specific
for the domain of EL-power products and GE-power products, respectively. “>" on the
right-hand side denotes the corresponding generic operation. Typically, the domain of
natural numbers will be used as the substitute for these generic domains. However, it
is well conceivable that other domains are used as exponent domains. For example, it
may turn out that “symbolic exponents” (i.e. polynomial or rational expressions) are
an interesting exponent domain.
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Addition on rational number coefficients: Arithmetic on these numbers is built-in.
In fact, these numbers have the internal tag Rational.
Addition on finite field elements:

FF[ £1.) + FF[f2_] := FF[ Modul[ f1 + £2, $Prime]]
Addition on buill-in rational functions:
RF{ rf1 ] + RF[ rf2_] := RF|[ Factor[ rf1 + rf2]]

In the last two examples, again, “+” on the left-hand side is specific for the domains
“FF” and “RF”, respectively, whereas “+” on the right-hand side is generic. Typically,
in these cases, the generic rule will only be applied to the domain of integers and the
domain of built-in rational function expressions, respectively.

On top of the DNP-polynomials, a number of higher levels in the generic domain hi-
erarchy are constructed in GROBNER, for example, the domain of sets of polynomials,
pairs of polynomials, sets of pairs of polynomials etc.

A package that is constructed according to the above principle can then be used
for a huge variety of domain combinations, At run-time, the Mathematica pattern
matcher will analyze the tags of the data expressions and select the appropriate rules
in the rule base (= “program”). Roughly, if in a package with m “layers” of domains
there are n domains in each layer then the package can be used for n™ many concrete
domains although there are only m - n many pieces of code!

Summarizing, 1 think that generic programming in Mathematica along the above
lines for towers of algebraic domains is elegant, natural, versatile, and yields intelligible,
easy-to-change and short code. I really enjoyed programming in this style.

In addition, the slow-down caused by tagging objects is tolerable. By appropriate
distribution of the code (how this can be controlled by the programmer is described
in the Mathematica document), as a rule of thumb the slow-down is approximately by
the factor of 2 if one has 10 rules in each domain. ;

Having adopted the above generic style for a preliminary version of GROBNER 1
was nearly convinced to stay with Mathematica for carrying the project through. 1
drastically changed my mind when I started systematic measurements of computing
time: It turned out that, whereas the relative slow-down by generic programming is
tolerable, the absolute computing times are prohibitive. I report on this in the next
section.

3 Speed
Speed is important both for the userof a system like GROBNER and for the researcher.

Algebraic methods like Grobner bases, which are “universal” for a broad class of
problems, tend to be “exponential” in their behavior. High speed is therefore essential
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for using the method in practical cases. For example, good results have been achieved
recently in robot kinematics by using the Grobner bases method on the PSI machine at
ICOT (Tokyo), see (Sato, Aiba 1991). The computing times are in the range of several
seconds, which is quite tolerable for this kind of problems. A slow-down by a factor
of 1000 or even “only” 100 by using the wrong language would make the application
worthless.

However, also the researcher working in such an area heavily depends on speed
because he needs to study huge series of test examples for observing the dependence
of computing time on input parameters, for studying certain phenomena in the inter-
mediate results that may lead to new conjectures and eventually to new thecrems, and
also for using the method as a building block for other algorithmic problems. For ex-
ample, recently the Grobner bases method is heavily studied as a building block in the
context of Zeilberger’s approach to the automated generation and proof of combinato-
rial identities and and the computation of definite sums and integrals, see (Takayama
1990).

For avoiding misunderstandings, let me point out that Mathematica (and similar
systems like MAPLE) may be very fast if one uses the built-in C functions. Externally,
these functions can be called by Mathematica function calls. Internally, however, they
are not written in the Mathematica language but in C. Their code is not accessible
and even if it would be accessible it would be of little use for the tutorial and research
purposes described in this paper.

Even this favorable statement about the speed of built-in functions in Mathematica
must be relativized because some of the functions, in particular the built-in Grébner
bases function, perform fast on small examples but show an unexplained increase in
computing time on slightly bigger examples. This is absolutely intolerable for using the
system as a research tool. Not only does the unexplained increase in computing time
lead to the conclusion that the implementation does not use all theory available for the
method but it leaves the researcher with absolutely no possibility to analyze the reason
for the unexplained behavior. Also, it is not possible to adjust the built-in functions to
changing needs, for example in the case of GROBNER, to variable coefficient domains
and variable admissible orderings of power products.

In a situation like ours where we want to distribute software in source code for stu-
dents, researchers and users in fully documented form, the speed of Mathematica must
be judged by its performance for algorithms that are fully formulated in Mathematica
with any resort to undocumented algorithms written in C. Since my initial experiments
with the speed of parts of GROBNER written in Mathematica were so disappointing
I went through a detailed time analysis of the fundamental Mathematica operations.
Summarizing what I found is:
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o

I —
Class of Operations Time per operation

in millisec

(on an Apollo 3500)
constant time operations on 1.5

Mathematica “lists” (i.e. arrays internally):

e.g. Length, First, Last, Part

constant time operations on “nested lists”: 3

e.g. FirstN, RestN, PrependN

Tteration over Mathematica “hsts”: 140041
e.g. Rest, Drop, Prepend, Append, Insert, Reverse

Map and Scan iteration over “lists” 1.51

user programmed iteration over “lists” 3l

using “For” etc.

user programmed iteration over “nested lists” 61

LengthN, ReverseN, MapN, ScanN etc.

The parameter “I” in the above table denotes the length of lists. In order to un-
derstand the length-dependent complexity of some of the above operations one must
know that Mathematica “lists” internally are represented by arrays. (This is nowhere
documented in the Mathematica publications. However, for algorithm researchers this
is very important information.)

The “nested lists” mentioned in the above table are expressions of the following
kind:

Tl e1, T[ e2, T[ e3, ... T[1 ...11],

where T is some “tag” and the ei are the actual elements of the list. This may be used
as one possible simulation of true “lists” in Mathematica. The user-defined operations
on such nested lists have the suffix “N” in the above table.

From the above table one sees that the Mathematica operations are approximately
3000 - 8000 times slower than the corresponding operations programmed in C. (The
Apollo 3500 is a 5 MIPS machine). (My experimental results are also backed implicitly
by the examples in (Maeder 1990), which partly contain timings. However, no explicit
mention about speed is made in the official Mathematica documents!)

As a consequence, high-level algorithms fully written in the Mathematica language
and not resorting to built-in medium grain algorithms like polynomial arithmetic are
prohibitively slow. Here are the computation times of two typical Grobner bases ex-

amples:
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e 3 variables 3 variables
3 polynomials | 3 polynomials
degree 2 degree 4
My implementation 2min | 12 min
on a ZUSE 723 (1963!)
in assembler code
Built-in Mathematica J| 1 sec > 2 days
Grobner basis function
on Apollo 3500
Built-in Maple 4 sec 2 min
Grobner basis function
on Apollo
My implementation 5 min 30 min
fully coded in
Mathematica language

From this table one sees that the speed-up of approximately 1000 achieved by hard-
ware improvements in the last 25 years (the ZUSE Z23 was a 0,003 “MIPS” machine!)
is completely lost by the software elegance of Mathematica and similar high-level lan-
guages.

Also, one sees that the undocumented built-in Grdbner bases function of Mathe-
matica performs very well on small examples but shows an unexplained increase in
performance for slightly larger examples. (This phenomenon was observed by many
researchers with some other of the built-in Mathematica functions).

The reasons for this bad speed performance of Mathematica as a language most

probably are manifold:

o Mathematica is interpreted, not compiled,

¢ a function call in Mathematica, since it performs something so general as pattern
matching, needs approximately 1 millisecond independent of the function body,

¢ in integer arithmetic the most general case is assumed even if only index compu-
tations are executed,

o others?

I think that these reasons should be analyzed in more detail and documented in
future Mathematica documents.

89



4 Conclusions

In this paper I concentrated on only two criteria for judging Mathematica. Many
other criteria could be considered, see the extensive critical analysis (Fateman 1990).
Interestingly enough, in (Fateman 1990) the two criteria, on which I concentrate in
this paper and which are the crucial ones for judging a system as an instrument for
algorithm research, are not treated in any detail.

From what I learned in the above experiments I drew the following conclusions:

e Although there are many interesting software systems available for computer al-
gebra, the “ideal” system does not yet exist. The ideal system would combine the
elegance and naturalness of Mathematic and the speed of C. I know this is impos-
sible but I think we could achieve something much better than what exists now.
For example, it would already help a lot if there was a possibility to incorporate
user-defined C routines in high-level languages like Mathematica.

¢ For my own GROBNER project I now decided to use Collins’ SAC-2 system
in a new version that is entirely coded in C. I designed a simple preprocessing
mechanism that allows a rudimentary form of generic programming that seems
to be sufficient for a project like GROBNER. I will report on this in a subsequent
paper. G. Collins and I decided to coopetate on turning “SAC-2C” into a profes-
sionally distributed system such that many researchers can use it in situations like
GROBNER where algorithm researchers want to distribute easy-to-read, generic
and fast source code.

Acknowledgment: This paper was written in the frame of the “Grobner Bases
Project” sponsored by the Austrian Ministry of Science and Research. I would also like
to thank Roman E. Maeder for pointing out the possibility of generic programming in
Mathematica to me. Thanks also to Stephen Wolfram who provided a test installation
of Mathematica for the “Grobner Bases Project”.
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