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Gröbner Bases and Normal Forms in a Subring of the
Power Series Ring on Countably Many Variables

JAN SNELLMAN

Department of Mathematics, Stockholm University, Sweden

If K is a field, let the ring R′ consist of finite sums of homogeneous elements in R =
K[[x1, x2, x3, . . .]]. Then, R′ contains M, the free semi-group on the countable set of
variables {x1, x2, x3, . . .}. In this paper, we generalize the notion of admissible order from
finitely generated sub-monoids of M to M itself; assume that > is such an admissible
order on M. We show that we can define leading power products, with respect to >,
of elements in R′, and thus the initial ideal gr(I) of an arbitrary ideal I ⊂ R′. If I is
what we call a locally finitely generated ideal, then we show that gr(I) is also locally
finitely generated; this implies that I has a finite truncated Gröbner basis up to any
total degree. We give an example of a finitely generated homogeneous ideal which has
a non-finitely generated initial ideal with respect to the lexicographic initial order >lex
on M.

c© 1998 Academic Press Limited

1. Introduction

The author was led to the study of Gröbner basis theory of the ring R′ when investi-
gating the following problem: What is the initial ideal, in particular, with respect to the
lexicographic order, of generic ideals? Recall (Fröberg and Hollman, 1994; Fröberg, 1985;
Moreno Socias, 1991) that a generic ideal in a polynomial ring is an ideal generated by
generic forms, where furthermore there is no algebraic relation between the coefficients of
the generators. When calculating the initial ideals of generic ideals of the same type, but
in polynomial rings on successively more variables, one notes that they seem to converge
to some monomial ideal in infinitely many variables. It is natural to try to study the
initial ideal of the ideal generated by generic forms in infinitely many variables, and try
to prove that the sequence of initial ideals indeed converge to this ideal.

In this article, we define the ring R′, the natural habitat of generic forms in (countably)
infinitely many variables, and prove that we may form initial ideals of, in particular,
ideals generated by finitely many generic forms. The fact that this initial ideal may be
approximated by the initial ideals of the corresponding ideals in polynomial rings with
finitely many variables is the topic of a forthcoming article (Snellman, 1998).
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2. Preliminaries

If S is a ring, and A ⊂ S is a subset, then 〈A〉S denotes the ideal in S that A generates.
Similarly, if M is a monoid, and A ⊂M is a subset, then 〈A〉 denotes the semi-group ideal
{ma | a ∈ A,m ∈M}. All rings and monoids under consideration will be commutative.

Let N = {0, 1, 2, 3, . . .} and N+ = N \ {0}.

2.1. power products

Let N =
∐
N+ N. For α ∈ N , a power product (or monomial) xα in the variables

x1, x2, . . . is defined by xα =
∏∞
i=1 x

αi
i . The set of power products in the variables

x1, x2, . . . is a monoid under the obvious multiplication. It is denotedM = {xα | α ∈ N}.
For α ∈ N , the total degree of α is |α| =

∑∞
i=1 αi. For a power productM3 m = xα,

the total degree is |m| = |α|. The support of m is defined by Supp(m) = {i ∈ N+ | xi|m}.
For m 6= 1, this set is non-empty, and has a maximum which is denoted maxsupp(m),
the maximal support of m. We use the convention that maxsupp(1) = 0.

For n ∈ N, define

Mn = {m ∈M | maxsupp(m) ≤ n}, M[n] = {xα | i ≤ n⇒ αi = 0}.
Note that M0 is the trivial semi-group, and that M[0] = M. Mn and M[n] may be
regarded as sub-monoids ofM. Furthermore,M is isomorphic to M[n] via

M3
∞∏
i=1

xαii 7→
∞∏
i=1

xαii+n ∈M[n].

2.2. the rings R and R′

Let K be a field, and denote by R the ring of power series in countably many variables,
with coefficients in K; R = [[x1, x2, . . . , ]]. For any positive integer n, the power series ring
K[[x1, . . . , xn]] is both a subalgebra and a quotient of R, since† R

Bn
' K[[x1, . . . , xn]],

where Bn is the ideal of R generated by all power series in K[[xn+1, xn+2, xn+3, . . .]] of
total degree ≥ 1 and with zero constant term. We define aK-algebra epimorphism ρn, the
nth truncation homomorphism, by means of the composite R³ R

Bn
' K[[x1, . . . , xn]].

For n ∈ N, denote by Rn the K-vector space {
∑

α∈N
|α|=n

cαxα}. Note that R0 = K,

and that R =
∏
n∈NRn. The ring R′ is defined as the smallest K-subalgebra of R that

contains all homogeneous elements; R′ =
∐
n∈NRn. Note that for n ∈ N+, ρn (R′) =

K[x1, . . . , xn]. The ring R′ is of interest partly because it allows for a generalization of
the notion of generic form, a generic form in K[x1, . . . , xn] (of some total degree d) being
a homogeneous element f =

∑
m∈Mn,|m|=d cmm where there are no algebraic (over the

prime field ofK) relations‡ among the coefficients cm. In particular, no coefficients belong
to the prime field of K, and all cm’s are non-zero. Ideals generated by such elements have
been the focus of much study (see, for instance, Fröberg and Hollman (1994); Fröberg
(1985)). This definition generalizes directly to R′, with f expressed as a (not finite!)

† We remark that xn+1 + xn+2 + xn+3 + · · · ∈ 〈K[[xn+1, xn+2, xn+3, . . .]] \K〉R but not in

(xn+1, xn+2, xn+3, . . .), so that R
(xn+1,xn+2,xn+3,...)

6' K[[x1, . . . , xn]].

‡ Thus, the set {cm | m ∈Mn, |m| = k} is algebraically independent (“irreduziert”, or “algebraische
unabhängig”) in the sense of Van der Waerden (1930).
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linear combination of power products in M with total degree d. Note that the infinite
polynomial ring K[x1, x2, . . .] is not sufficient for this purpose: if f is an element of this
ring, then almost every coefficient cm is zero, which is an element of the prime field. We
have that the truncation ρn (f) of a generic form in R′ is a generic form in K[x1, . . . , xn].

Now let f be an arbitrary, non-zero element of R, f =
∑
α∈N cαxα. We define the

set of monomials of f by Mon(f) = {xα | cα 6= 0}, and the total degree of f by |f | =
sup{|m| | m ∈ Mon(f)}. For m = xα ∈ Mon(f) we define the coefficient of m in f by
Coeff(m, f) = cα.

2.3. admissible orders

Definition 2.1. By an admissible order > on M we mean a total order such that

1. m > 1 for all m ∈M \ {1}.
2. p > p

′ ⇒ mp > mp
′
for all m, p, p

′ ∈M.
3, x1 > x2 > x3 > · · ·.

Example 2.2. As an example of an admissible order on M, the lexicographic order is
defined by xα >lex xβ iff there exist an n ∈ N+ such that αn > βn and for all k < n we
have that αk = βk.

Lemma 2.3. If n ∈ N+, m ∈Mn \ {1} and p ∈M[n], and furthermore |m| ≥ |p|, then
m > p for any admissible order > on M.

Proof. Denote by V the set {x1, . . . , xn} and by W the set {xn+1, xn+2, . . .}. Clearly,
if v ∈ V and w ∈W , then v > w. By induction,

∏r
i=1 vi >

∏s
j=1 wj if r ≥ s.

Now, m =
∏r
i=1 vi with vi ∈ V and r = |m|. Similarly, m =

∏s
j=1 wj with wj ∈ W ,

s = |p| ≤ r. Therefore, m > p. 2

If f ∈ K[x1, . . . , xn] \ {0} then the set Mon(f) is finite, and we can find its maximal
element, which we call the leading power product or leading monomial of f . It turns out
that R′ has the essential property that leading power products can be defined for any
non-zero element. Moreover, it can be shown that it is the largest K-subalgebra of R
with this property.

Theorem 2.4. For any admissible order > onM, and any f ∈ R′ \{0} the set Mon(f)
has a maximal element with respect to >.

Proof. First, assume that the assertion holds for homogeneous elements; then f is a
finite sum of its homogeneous components, f =

∑|f |
i=0 fi, where each Mon(fi) has a

maximal element pi. Clearly max1≤i≤|f | pi must be maximal also in Mon(f). Hence, we
may assume that f is homogeneous of degree d. Any homogeneous element of degree 1
has a maximal power product; assume inductively that any homogeneous element in R′ of
degree < d has a maximal power product. Write f in distributed form as f =

∑∞
i=1 xigi

where gi ∈ R′ ∩ K[[xi, xi+1, . . .]]. Thus, x1g1 contains all terms that are divisible by
x1, and so forth. At least one of the gi’s is non-zero; assume, to simplify the notation,
that g1 6= 0. Since |g1| < d, there exists a maximal power product m1 of g1, and x1m1 ∈
Mon(f). We claim that any power product Mon(f) 3 p > x1m1 must be divisible by a xj
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with j < N , where N = maxsupp(m1). To see this, we assume, towards a contradiction,
that there exist a monomial p ∈ Mon(f)∩M[N ] such that p > x1m1. Since |p| = |x1m1|,
we get from Lemma 2.3 that x1m1 > p, a contradiction.

This shows that the power products of Mon(f) that precede x1m1 are contained in
S = Mon(

∑N
i=2 xigi). Let us assume that t ∈ Mon(xjgj), 1 < j ≤ N . It then follows that

t ≤ xjmj , where mj is the maximal power product in Mon(gj) (this maximum exists,
by the induction hypothesis). Hence, the maximal element of {x2m2, . . . , xNmN} is the
maximal power product of S.

Therefore, the maximal monomial of Mon(f) is the maximal element of the finite set
{x1m1} ∪ {x2m2, . . . , xNmN}. 2

Remark 2.5. One can prove the following, stronger statement: suppose that > is a total
order onM which fulfils properties 2.1 and 2.1 of Definition 2.1. Then, every set Mon(f),
when f ∈ R′, has a maximal element w.r.t. > iff every set Mon(g), where g ∈ R′, |g| = 1
has a maximal element w.r.t. >.

Definition 2.6. If > is an admissible order on M, and f ∈ R′ \ {0}, then the lead-
ing power product, or leading monomial, of f is defined by Lpp>(f) = Lpp(f) =
max>(Mon(f)). The leading coefficient of f is defined by lc(f) = Coeff(Lpp(f), f).

Definition 2.7. For F ⊂ R′, in(F ) = {Lpp(f) | f ∈ F \ {0}}.

Lemma 2.8. If I is an ideal (in R′), then 〈in(I)〉 is a semi-group ideal in M, and
〈in(I)〉R′ is a monomial ideal in R′. The latter ideal is also denoted by gr(I).

3. Normal Form Calculations

The calculations of normal forms are an essential and integral part of any Gröbner
basis algorithm. To apply these algorithms in the unorthodox setting of the algebra R′,
we need first to generalize the procedure for finding normal forms. This generalization is
also a topic of considerable interest in itself. We will, however, restrict our attention to a
narrow class of these normal forms, which, for the purpose of Gröbner basis algorithms,
suffices.

3.1. normal form calculations in R′

Remark 3.1. If t ∈ M, f ∈ R′, N = maxsupp(Lpp(f)), then Lpp(f)|t iff Lpp(f)|t′,
where t′ denotes the sub-word of t that is obtained by replacing any occurrence of vari-
ables xi not in {x1, . . . , xN} with 1. So t = t′t′′, with t′ ∈MN , t′′ ∈M[N ].

Similarly, if F ⊂ R′ is a set such that S = sup{maxsupp(Lpp(f)) | f ∈ F} is finite (in
particular, if F is finite), and if m ∈ M, then m is divisible by Lpp(f) for some f ∈ F
iff m′ is, where m′ ∈MS denotes the x1, . . . , xS part of m.

It follows from this observation that we, for the purpose of the normal form calculation,
may regard R′ as a subring of the polynomial ring K[[xN , xN+1, . . .]][x1, . . . , xN ] since
the variables with indices higher than N will “act as coefficients” during the normal
form reductions. From now on, unless otherwise stated, we assume that > is some fixed
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admissible order on M, with respect to which leading power products et cetera are
formed.

Proposition 3.2. Let F := {f1, . . . , fr} ⊂ R′ consist of monic elements. For h ∈ R′
there are h1, . . . , hr, h̃ ∈ R′ such that

h =
r∑
i=1

hifi + h̃, Lpp(hifi) ≤ Lpp(h) and h̃ = 0 or Mon(h̃) ∩ 〈in(F )〉 = ∅.

We say that h̃ is a “(polynomial) normal form of h with respect to F and >”.

Proof. Let N ≥ max1≤i≤r maxsupp(Lpp(fi)), that is, Lpp(fi) ∈ K[x1, . . . , xN ] for
1 ≤ i ≤ r. Consider F as a subset of K[[xN+1, xN+2, . . .]][x1, . . . , xn] (note that the
elements of F are monic there, too). The result then follows from the (well-known)
division algorithm for polynomials with coefficients in commutative rings. 2

Definition 3.3. We denote the set of (polynomial) normal forms of h with respect to
F by NormF (h). If 0 ∈ NormF (h), then we say that h reduces to zero with respect to F .

Example 3.4. (Ralf Fröberg, personal communication.) If h ∈ R′, and F :=
{f1, . . . , fr} ⊂ R′ consists of monic elements, then h may have infinitely many polynomial
normal forms with respect to F . Study the normal forms of h = x2

1x2(x3 + x4 + x5 +
· · ·) with respect to F = {x2

1 − x2x3, x1x2 − x2
3}. Regarding R′ as a subset of Sn :=

K[[xn+1, xn+2, . . .]][x1, . . . , xn] we have that

h =
( n∑
k=3

x2
1x2xk

)
+ x2

1x2

∞∑
k=n+1

xk, (3.1)

The normal forms of x2
1x2

∑∞
k=n+1 xk) are {x2

2x3

∑∞
k=n+1 xk, x1x

2
3

∑∞
k=n+1 xk}. Each of

the n − 2 first terms in (3.1), that is, terms x2
1x2xk with 3 ≤ k ≤ n, have normal

forms in {x2
2x3xk, x1x

2
3xk}; the resulting terms are linearly independent. Thus, we get

normal forms for h by choosing one element from each of the pairs, and adding them.
It follows that h has exactly 2n−1 different normal forms in Sn, which “lift” to different
(polynomial) normal forms in R′.

Definition 3.5. A non-empty set F ⊂ R′ of homogeneous elements is said to be locally
finite if {f ∈ F | |f | = k} is finite for all k.

Definition 3.6. A proper homogeneous ideal I of R′ is said to be locally finitely gen-
erated if

∀d : dimK
Id∑d−1

j=1 R
′
jId−j

<∞.

Here,
∑

denotes (not direct) sum of K-vector spaces, Id = I ∩Rd, R′d = Rd. Recall that
Rd is the set of all homogeneous power series of degree d in R.

Lemma 3.7. For a proper homogeneous proper ideal I of R′, the following are equivalent:

1. I is locally finitely generated.



320 J. Snellman

2. I has a locally finite generating set.

Proof. If I has a locally finite set of generators F , then F consists of homogeneous
elements, and every set Ft = {f ∈ F | |f | = t} is finite. Fix a positive integer d. Then

Id = (R′F )d =
d∑
j=1

FjR
′
d−j = KFd +

d−1∑
j=1

FjR
′
d−j .

Therefore, we can use an noetherian isomorphism (of K-vector spaces) to conclude that

KFd ³
KFd

KFd ∩
∑d−1
j=1 FjR

′
d−j
'
KFd +

∑d−1
j=1 FjR

′
d−j∑d−1

j=1 FjR
′
d−j

=
Id∑d−1

j=1 R
′
jId−j

.

Since KFd, by the assumptions, is a finite dimensional K-vector space, we must have
that dimK

Id∑ d−1
j=1 R

′
jId−j

<∞.
Conversely, if I is locally finitely generated, we can for each d “lift” a basis of Id∑ d−1

j=1 R
′
jId−j

to a finite set Fd ⊂ Id. Assume by induction that I is generated up to degree d − 1 by
F≤d−1 = ∪d−1

i=1 Fi. We must show that I can be generated up to degree d by F≤d−1 ∪ Fd.
To this end, note that the set

T := {hf | h ∈ R′j , f ∈ Fd−j , 1 ≤ j ≤ d− 1}

generates the K-vector space
∑d−1
j=1 R

′
jId−j . On the other hand, Id∑ d−1

j=1 R
′
jId−j

is finite

dimensional, and has a finite basis ᾱ1, . . . , ᾱr, which we have lifted to Fd = {α1, . . . , αr} ⊂
Id. It is now an immediate consequence that KFd + T generates the K-vector space Id.
Therefore, every h ∈ Id may be written as

h =
q∑
i=i

fihi +
r∑
j=1

ciαi fi ∈ F≤d−1, hi ∈ R′d−|fi|, ci ∈ K (3.2)

This shows that F≤d−1 ∪ Fd generates I up to degree d. 2

Remark 3.8. In a polynomial ring A, the elements of degree d (of a homogeneous ideal
I) that are not generated by elements (in I) of degrees < d correspond to non-zero
elements in Id

A1Id−1
. We can use this simpler expression, because Ad = A1Ad−1 for all d,

and hence

A1Id−1 ⊃ A2Id−2 = A1A1Id−2 ⊃ A3Id−3 = A2A1Id−3 ⊃ · · · .
For any graded ring, this equality holds if the ring is a polynomial ring over the elements
of degree 1; in the literature, one often says that such an A is naturally graded.

This condition is not fulfilled for the ring R′! To see that, for instance, R′1R
′
1 ( R′2,

consider the element
∑∞
i=1 x

2
i , which is not expressable as a finite sum of products of

linear elements.

Lemma 3.9. Proposition 3.2 holds when F is locally finite instead of finite, if all the
other prerequisites for the theorem are fulfilled.

Proof. We may assume that h is homogeneous with total degree t. Then h can only be
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reduced by elements of F with total degree ≤ t, and we need only consider reductions of
h with respect to the finite set of such elements. 2

4. Construction of Gröbner Bases

Now that we have developed a satisfactory normal form theory for the algebra R′, the
construction of Gröbner bases might seem trivial; just do what is done in the polynomial
case: start with a finite set of generators, keep adding normal forms of the so-called
S-polynomials until no critical pairs remain, and the resulting set will be a Gröbner
basis.

There are several difficulties that this, basically sound, method has to overcome. First,
we will show that the initial ideal gr(I) of a finitely generated ideal I of R′ need not be
finitely generated. Hence, by a Gröbner basis for I we must mean a possibly infinite set
of generators, whose leading monomials generate gr(I). It is clear that such a set cannot
be calculated in a finite number of steps.

Secondly, to prove that a set of generators is a Gröbner basis, it is customary to show
that every element has a unique normal form with respect to it. The normal form theory,
developed in the previous part, only deals with normal forms with respect to a finite set,
or a locally finite one. Since locally finite sets by definition are homogeneous, the reader
might already have guessed how we plan to proceed: we consider only locally finitely
generated ideals. Then, starting with a locally finite set of generators, and adding normal
forms of S-polynomials, we can arrange things so that we can calculate the Gröbner basis,
up to any given total degree, in finite time. Since, for an element of degree t, it is only
necessary to consider the Gröbner basis up to said degree, we have an algorithm for
solving the ideal membership problem.

4.1. homogeneous Gröbner bases in R′

Definition 4.1. For P,Q ∈ R′ , let the S-polynomial of P and Q be

S(P,Q) =
lc(Q) Lpp(Q)

gcd(Lpp(P ),Lpp(Q))
P − lc(P ) Lpp(P )

gcd(Lpp(P ),Lpp(Q))
Q. (4.1)

Proposition 4.2. Let J be a homogeneous ideal in R′, and let F ⊂ J be locally finite
(in particular, F consists of homogeneous elements).

Then the following conditions on F are equivalent:

1. 〈in(F )〉R′ = gr(J),
2. If Q ∈ J then NormF (Q) = {0},
3. If Q ∈ J then 0 ∈ NormF (Q).

If the conditions are fulfilled, then 〈F 〉R′ = J .

Proof. It is easy to modify the proofs in Pauer and Pfeifhofer (1988, Proposition 2.5).
Note that the authors assume top-reduced normal forms instead of totally reduced normal
forms. 2

Definition 4.3. If the conditions of Proposition 4.2 are fulfilled, we say that F is a
Gröbner basis of J .
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We will need the following results on “partial” or “truncated” Gröbner bases:

Proposition 4.4. Let J be an homogeneous ideal in R′, and let F ⊂ J be a finite set
consisting of homogeneous elements. Let t be a positive integer.

Then the following conditions on F are equivalent:

1. (〈in(F )〉R′)≤t = gr(J)≤t,
2. If Q ∈ J, |Q| ≤ t then NormF (Q) = {0},
3. If Q ∈ J, |Q| ≤ t then 0 ∈ NormF (Q).

If the conditions are fulfilled, then (〈F 〉R′)≤t = J≤t.

Proof. The polynomial ring case is treated in Becker and Weispfenning (1993, Theo-
rem 10.39); the generalization to R′ is straightforward. 2

Lemma 4.5. Let J be a (not necessarily homogeneous) ideal in K[x1, . . . , xn], and let
F ⊂ J be a finite set consisting of (not necessarily homogeneous) elements. Let t be
a positive integer. Suppose that the admissible order > is degree-compatible, that is,
|m| > |m′| ⇒ m > m′. Then the following assertions are equivalent:

1. (〈F 〉K[x1,...,xn])≤t = gr(J)≤t,
2. If P,Q ∈ J, |S(P,Q)| ≤ t then 0 ∈ NormF (S(P,Q)); if P,Q ∈ J, |S(P,Q)| > t then

either 0 ∈ NormF (S(P,Q)) or all elements of NormF (S(P,Q)) have total degree
> t.

If the conditions are fulfilled, then (〈F 〉K[x1,...,xn])≤t = J≤t.

The following theorem is the main result of this paper:

Theorem 4.6. Let I be a homogeneous ideal of R′, and let G be a finite set of monic,
homogeneous elements in R′ that generates I up to degree t. Then, the following assertions
are equivalent:

1. P,Q ∈ G, |S(P,Q)| ≤ t⇒ 0 ∈ NormG(S(P,Q)),
2. gr(I)≤t = (〈in(G)〉R′)≤t.

It follows that a locally finite set F , consisting of monic elements, is a Gröbner basis of
a locally finitely generated ideal J iff every S-polynomial S(P,Q), P,Q ∈ F reduces to
zero with respect to F .

Proof. (2) ⇒ (1): Since S(P,Q) ∈ I, |S(P,Q)| ≤ t, Proposition 4.4 implies that 0 ∈
NormG(S(P,Q)).

(1) ⇒ (2): Since I and G are homogeneous, gr(I) and in(G) are not changed if we
replace the admissible order > with the degree-compatible order >tot defined by m >tot
m′ if |m| > |m′| or if |m| = |m′| and m > m′. We can therefore assume that > is
degree-compatible.

It is enough (by induction) to prove the inclusion gr(I)t ⊂ 〈in(G)〉R′ . Choose a (monic,
homogeneous) h ∈ It \ {0}. We must prove that Lpp(h) ∈ 〈in(G)〉R′ .
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Let N be the necessary number of “active variables”: that is, N indicates which
polynomial ring SN := K[[xN+1, xN+2, . . .]][x1, . . . , xN ] we will embed R′ into. We de-
mand four things from N : first, N ≥ maxQ∈G maxsupp(Q), secondly, if P,Q ∈ G then
N ≥ maxsupp(S(P,Q)). The third demand is this: we know that for every pair P,Q ∈ G,
if the S-polynomial S(P,Q) has total degree ≤ t, then it reduces to zero with respect
to G. Recalling the proof of Proposition 3.2, we obtain that there is some integer n,
depending on P and Q, such that the normal form 0 was formed in the polynomial ring
Sn. We demand that N is greater than all of these n’s, for some choice of normal form
reductions to zero of S(P,Q), for every pair P,Q ∈ G such that |S(P,Q)| ≤ t.

Since G consists of homogeneous elements, the normal form, with respect to G, of an
S-polynomial S(P,Q), P,Q ∈ G, |S(P,Q)| > t, is either zero or has total degree > t.
We demand (the fourth demand) that this is also the case when we “lift” everything
to the polynomial ring SN . If N is too small, then we could have that in the leading
power product of the normal form, some variables occuring were regarded as coefficients,
which could lower the total degree of the normal form so that it became ≤ t, resulting
in a new minimal monomial generator for the initial ideal of degree ≤ t. By considering
the reductions to normal forms of the finitely many S(P,Q), P,Q ∈ G, |S(P,Q)| > t,
and choosing sufficiently many “active variables” so that when the reduction chain is
regarded as a reduction chain in SN , the normal form of S(P,Q) (in SN ) always has the
same total degree as S(P,Q) (for some choice of a normal form for each S-polynomial),
we avoid this calamity.

Injecting SN into TN := K((xN+1, xN+2, . . .))[x1, . . . , xN ], whereK((xN+1, xN+2, . . .))
is the field of fractions of the domain K[[xN+1, xN+2, . . .]], we are sure that we can
apply standard Gröbner basis techniques. Note that the elements of G are monic even as
elements of TN , so we need never divide with a variable xj when performing normal form
calculations; thus the computations actually take place within SN . Neither h, the element
of It \{0} choosen above, nor the elements of G need be homogeneous, when regarded as
elements of TN (since some variables get demoted to coefficients when passing from R′

to SN , and therefore homogeneous elements of R′ may become non-homogeneous when
regarded as elements of SN ), but that is a small matter: the important thing is that
the leading power products are preserved. Furthermore, inside TN , all S-polynomials of
degree ≤ t reduce to 0 with respect to G. We also have that all S-polynomials of degree
> t either reduce to zero or have normal forms with total degree > t.

Because of this, the image of G in TN is a partial Gröbner basis, up to degree t, of
the extension of the ideal I to the ideal Ie ⊂ Tn, by Lemma 4.5. It is now clear that
when h is regarded as an element of SN , then Lpp(h) ∈ 〈in(G)〉SN . Since N is taken
large enough, this implies that when we once more regard h as an element of R′, then
Lpp(h) ∈ 〈in(G)〉R′ .

The general result follows easily from the result on “partial” Gröbner bases. 2

4.2. a Gröbner basis algorithm in R′

The most natural way, perhaps, to extend the usual Gröbner basis algorithm in poly-
nomial rings, is to use the normal form algorithm sketched in 3.2, and try to work directly
in R′. That is, we start with a locally finite generating set of our locally finitely generated
ideal I, and then proceed, degree by degree, to add normal forms of S-polynomials of the
generators; here, the normal forms are elements in R′.

We can also work within the polynomial rings K((xn+1, xn+2, . . .))[x1, . . . , xn], succes-
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sively promoting “constants” to “variables” as the need arises. The resulting algorithm
would not differ from the one we describe; it is merely another way of viewing the original
one. In Appendix A.1 we sometimes take this view when we talk about “splitting the
coefficients” and “active variables”.

In either case, the algorithm works with homogeneous in-data, and uses a variant of
the so called normal selection strategy as defined in Buchberger (1979) and Gebauer and
Möller (1988); it uses this strategy, but the admissible order >tot defined by m >tot p iff
|m| > |p| ∨ (|m| = |p| ∧m > p) is used for comparisons. Note that every element in the
(preliminary) Gröbner basis will be homogeneous, and hence that every comparison of
monomials will, in fact, compare monomials of the same total degree, for which > and
>tot coincide. So, the run of the Gröbner basis algorithm, and hence the result, is not
changed if we replace > with >tot throughout.

We recall that the normal selection strategy chooses the critical pair (P,Q) with the
least lcm(Lpp(P ),Lpp(Q)). In particular it adds the S-polynomial with lowest total de-
gree first. This is essential, since it guarantees that after each step of the algorithm, the
partial Gröbner basis is a locally finite set, and that we, for any total degree t, can com-
pute all elements of the Gröbner basis with total degree ≤ t in a “finite number of steps”
(thus yielding a solution to the ideal membership problem); however, each “step” involves
a complicated normal form calculation. In fact, even the seemingly innocuous operation
of forming S-polynomials involves infinite operations. Hence, we are not sure that it can
be computed in finite time (with, for instance, a Turing machine). Furthermore, we have
not placed any restrictions on the field K; it may not be “effectively computable”, a
technical condition not fulfilled for such commonplace rings as R and C. More on this
matter may be found in Seidenberg (1974).

To continue with the description of the “algorithm”: we add normal forms of S-
polynomials as generators, and the normal form sets with respect to the partial Gröbner
basis need not be singletons. Therefore, we need to make another choice: what normal
form to add. We will tacitly assume the existence of some suitable choice function to
facilitate this.

A final remark: the so called Buchberger Criteria can, appropriately modified, be also
used in this “algorithm” to avoid unnecessary reductions of S-polynomials.

Remark 4.7. If C = (P,Q) ∈ G is a critical pair of elements in F , then if the Gröbner
basis elements P and Q are changed (as a result of a reduction with respect to a new
Gröbner basis element) then the corresponding constituent of C is implicitly assumed
to change accordingly. Thus, in a practical implementation, one would save the pair of
indices of the Gröbner basis elements, rather than the elements themselves.

Algorithm 4.1.
Specification: F := GBAS({f1, f2, f3, . . .})
Construction of standard basis F of 〈{f1, f2, f3, . . .}〉R′
Given: A locally finite generating set {f1, f2, f3, . . .} ⊂ R

′
,

homogeneous with Lpp(fi) = mi.
Find: F = ∪∞g=1Fg, a locally finite set which is a Gröbner basis for 〈{f1, . . . , fr}〉R′ .
Variables:
Fi = The Gröbner basis elements of total degree i
Gi = Critical pairs which have S-polynomial of total degree i.
F = ∪i>0Fi at all times
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G = ∪i>0Gi at all times

for g := 1 . . .∞
while Gg 6= ∅

Choose a pair (P,Q) ∈ Gg according to the normal selection strategy (using >tot)
Gg := Gg \ (P,Q)
if 0 6∈ NormF (S(P,Q))

Choose h ∈ NormF (S(P,Q)) ⊂ R′
h := h

lc(h)

reduce Fg with respect to h
Fg := Fg ∪ {h}
forall W ∈ F \ {h}

d := | lcm(Lpp(W ),Lpp(h))|
Gd := Gd ∪ {(W,h)}

end for
end if

end while
forall f ∈ {fi | |fi| = g}

if 0 6∈ NormF (h)
Choose h ∈ NormF (f)
h := h

lc(h)

Reduce Fg with respect to h
Fg := Fg ∪ {h}
forall W ∈ F \ {h}

d := | lcm(Lpp(W ),Lpp(h))|
Gd := Gd ∪ {(W,h)}

end for
end if

end for
end for

It is an easy consequence of the previous results, that the output of Algorithm 4.1 is
indeed a Gröbner basis:

Theorem 4.8. Let I be a homogeneous ideal in R′, generated by a locally finite set
{f1, f2, f3, . . .} (thus, I is locally finitely generated). If F = ∪∞g=1Fg is the output of
Algorithm 4.1, then F is a Gröbner basis of I. Since F is a locally finite set, so is the set
{Lpp(f) | f ∈ F}, which generates gr(I). Therefore, gr(I) is locally finitely generated.

Remark 4.9. One can easily prove that F has most of the usual properties of a Gröbner
basis in a polynomial ring (see Becker and Weispfenning (1993) and Buchberger (1985a))
so that, for instance, normal forms with respect to F are unique. However, it is impossible
to decompose the K-vector space R′ as R′ = I ⊕ Span(M\ gr(I)). This follows from the
fact that Span(M) = K[x1, x2, x3, . . .] ( R′.



326 J. Snellman

Appendix A. Examples of Lexicographic Initial Ideals of Generic Ideals

A.1. a finitely generated initial ideal: two generic quadratic forms

In this section, we will calculate the initial ideal (with respect to the lexicographic
order) of the generic ideal spanned by two generic quadratic forms. By “generic ideal”,
we mean, as in Fröberg and Hollman (1994) and Fröberg (1985), that not only are the
generators generic, but they are independent in the sense that the union of their sets of
coefficients is algebraically independent. Let therefore I = (f1, f2) where f1, f2 ∈ R2 have
generic coefficients. There should be no algebraic relation among the non-zero coefficients,
nor should these belong to the prime field of K. To avoid complicating matters, we will
in fact assume that K = C with prime field Q.

To facilitate computations, we perform a “Gaussian-elimination” step and write the
generators as

f1 = x1
2 + a1,3x1 + α2,2x2

2 + a2,3x2 + a3

f2 = x1x2 + b1,3x1 + β2,2x2
2 + b2,3x2 + b3

where a1,3 =
∑∞
j=3 α1,3xj , a2,3 =

∑∞
j=3 α2,3xj , a3 =

∑
3≤i≤j αi,jxixj , b1,3 =

∑∞
j=3 β1,3xj ,

b2,3 =
∑∞
j=3 β2,3xj and b3 =

∑
3≤i≤j βi,jxixj . Following the algorithm, we regard the fi

as elements in K[[x3, x4, . . .]][x1, x2] and form the S-polynomial:

S1,2 = x2f1 − x1f2

= −b1,3x1
2 − β2,2x1x2

2 + (a1,3 − b2,3)x1x2 − b3x1 + α2,2x2
3 + a2,3x2

2 + a3x2.

When we reduce this to normal form, the leading monomial is (−β2,2β1,3
2 + β1,3β2,3 −

β3,3)x1x
2
3. Thus, for the next step of the algorithm we need to add x3 as an active variable.

In K[[x4, . . .]][x1, x2, x3] the generators can be written as

f1 = x1
2 + α1,3x1x3 + a1,4x1 + α2,2x2

2 + α2,3x2x3 + a2,4x2 + α3,3x3
2 + a3,4x3 + a4

f2 = x1x2 + β1,3x1x3 + b1,4x1 + β2,2x2
2 + β2,3x2x3 + b2,4x2 + β3,3x3

2 + b3,4x3 + b4

f3 = x1x3
2 +Q

where a1,4 =
∑∞
j=4 α1,4xj , a2,4 =

∑∞
j=4 α2,4xj , a3,4 =

∑∞
j=4 α3,4xj , a4 =

∑
4≤i≤j αi,jxixj ,

b1,4 =
∑∞
j=4 β1,4xj , b2,4 =

∑∞
j=4 β2,4xj , b3,4 =

∑∞
j=4 β3,4xj , b4 =

∑
4≤i≤j βi,jxixj and

Q is a rather longish expression that is omitted in the interest of brevity. Now we form
the S-polynomial of f1 and f3 in K[[x4, . . .]][x1, x2, x3] and reduce it with respect to
{f1, f2, f3}. The resulting expression is somewhat long, so we give here only the leading

term, which is − β2,2(β2,2
2+α2,2)

β2,2β1,3
2−β1,3β2,3+β3,3

x4
2. Since the leading coefficient lies in K, we need

not split the coefficients. We add f4, a monic polynomial in K[[x4, . . .]][x1, x2, x3] with
leading monomial x4

2, to our basis. Forming S(f2, f3), we find that it reduces to 0 with
respect to {f1, f2, f3, f4}. We are now done, since S(fi, f4) must , for i = 1, 3, reduce to
0 with respect to {f1, f2, f3, f4} by Buchbergers first criterion, and S(f2, f4) reduce to 0
as well. Lifting the result back to R′, we have that gr(I) = (x2

1, x1x2, x1x
2
3, x

4
2).

A.2. a finitely generated ideal having non-finitely generated initial
ideal: the generic ideal generated by a quadratic and a cubic form

If we modify the previous example, studying the generic ideal I = (f, g) where f is
a quadratic generic form and g is a cubic generic form, then, the (lexicographic) initial
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Table 1. Initial ideals of restricted ideals of the generic ideal generated by a quadratic
and a cubic form.

Degree gr(ρ2 (I)) gr(ρ3 (I)) gr(ρ4 (I)) gr(ρ5 (I)) gr(ρ6 (I)) gr(ρ7 (I))

2 x2
1 x2

1 x2
1 x2

1 x2
1 x2

1
3 x1x2

2 x1x2
2 x1x2

2 x1x2
2 x1x2

2 x1x2
2

4 x4
2 x1x2x2

3 x1x2x2
3 x1x2x2

3 x1x2x2
3 x1x2x2

3
5 x1x4

3 x1x2x3x2
4 x1x2x3x2

4 x1x2x3x2
4 x1x2x3x2

4
6 x1x2x4

4 x1x2x3x4x2
5 x1x2x3x4x2

5 x1x2x3x4x2
5

6 x6
2 x6

2 x6
2 x6

2 x6
2

7 x1x2x3x4
5 x1x2x3x4x5x2

6 x1x2x3x4x5x2
6

7 x1x6
3 x1x6

3 x1x6
3 x1x6

3
8 x1x2x3x4x4

6 x1x2x3x4x5x6x2
7

8 x1x2x6
4 x1x2x6

4 x1x2x6
4

9 x1x2x3x4x5x4
7

9 x1x2x3x6
5 x1x2x3x6

5
10
10 x1x2x3x4x6

6

ideal gr(I) is locally finitely generated but not finitely generated. In fact, the initial ideal
gr(I) is generated by

x2
1, x1x

2
2, x1x2x

2
3, x1x2x3x

2
4, x1x2x3x4x

2
5, x

6
2,

x1x2x3x4x
2
5, x1x

6
3, x1x2x3x4x5x

2
6, x1x2x

6
4, x1x2x3x4x5x6x

2
7, . . .

where, for a total degree t ≥ 9, the minimal monomial generators of degree t are
x1x2 · · ·xt−6x

6
t−4 and x1x2 · · ·xt−1x

2
t . This initial ideal provides some information on

the initial ideals of the restricted ideals ρn (I) ⊂ K[x1, . . . , xn] of I: these are ordinary
generic ideals generated by a quadratic and a cubic form. Their initial ideals have been
studied by Alyson Reeves (1993). We tabulate the first of these initial ideals in Table 1.

The author has proved (Snellman, 1998), that, for all locally finitely generated ideals
J , the relation limn→∞ gr(ρn (J)) = gr(J) holds, in the following sense:

∀d : ∃N(d) : n > N(d)⇒ gr(J)≤d = (〈gr(ρn (J))〉R′)≤d.

So the initial ideals of all restricted ideals determine gr(J); the converse, on the other
hand, does not hold in general: studying Table 1, we see that gr(ρ2 (I)) has the minimal
monomial generator x4

2; this “tail”, which may be regarded as an effect of the truncation
to two variables (the corresponding generator of the same degree for gr(I) is x1x2x

2
3) is

impossible to detect from the study of gr(I) alone.
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——Becker, T., Weispfenning, V. (1993). Gröbner Bases: a Computational Approach to Commutative Algebra.
Graduate texts in mathematics. Springer, Berlin.

——Buchberger, B. (1979). A criterion for detecting unnecessary reductions in the construction of Groebner-
bases. Lecture Notes in Computer Science, 72, 3–21. Symbolic and Algebraic Computation, EU-
ROSAM’79, Int. Symp., Marseille.
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PhD thesis, École Polytechnique.
——Pauer, F., Pfeifhofer, M. (1988). The theory of Gröbner bases. L’Enseignement Mathématique, 34,
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