JOURNAL OF
PURE AND
APPLIED ALGEBRA

ELSEVIER Journal of Pure and Applied Algebra 139 (1999) 61-88

www.elsevier.com/locate/jpaa

A new efficient algorithm for computing
Grobner bases (F4)~
Jean-Charles Faugére
LIP6/CNRS Université Paris VI, case 168, 4 pl. Jussieu, F-75252 Puaris Cedex 05, France

Received 15 February 1998; received in final form 1 January 1999

Abstract

This paper introduces a new efficient algorithm for computing Grobner bases. To avoid as
much intermediate computation as possible, the algorithm computes successive truncated Grébner
bases and it replaces the classical polynomial reduction found in the Buchberger algorithm by the
simultaneous reduction of several polynomials. This powerful reduction mechanism is achieved
by means of a symbolic precomputation and by extensive use of sparse linear algebra methods.
Current techniques in linear algebra used in Computer Algebra are reviewed together with other
methods coming from the numerical field. Some previously untractable problems (Cyclic 9) are
presented as well as an empirical comparison of a first implementation of this algorithm with
other well known programs. This comparison pays careful attention to methodology issues. All
the benchmarks and CPU times used in this paper are frequently updated and available on a
Web page. Even though the new algorithm does not improve the worst case complexity it is
several times faster than previous implementations both for integers and modulo p computations.
© 1999 Published by Elsevier Science B.V. All rights reserved.

MSC: 14Q20; 14-04; 13P10; 15A36

1. Introduction

In view of the progress already achieved and the promising potential of current
and planned algorithms, polynomial solving could become one of the more attractive
application of Computer Algebra: practical problems can be solved, the algorithms are
competitive with numerical methods. The main conclusion to be drawn from practice
and experience of solving polynomial systems coming from various fields (industrial
[19] problems, pure mathematics [20]) is the following: first of all, even though the
computation of a Grébner basis is a crucial point it must be emphasized that it is
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only one step in the full solving process (change of ordering, triangular systems, real
or numerical roots are complementary tools); secondly classical Buchberger algorithms
[6,7,9] must be improved since even the best implementations often do not succeed to
compute Grobner bases from big problems. This paper is concerned with describing a
new algorithm (whose name is F4) for computing Grdbner basis.Even if the algorithm
works for any admissible ordering, the algorithm F4 has been designed to be efficient
for a degree reverse lexicographical ordering (DRL); computing efficiently a lexico-
graphical Grobner basis from an already computed Grobner basis being the task of
another algorithm. Paradoxically, if the Buchberger algorithm without optimizations is
very simple to describe it becomes much harder to understand how to improve a real
implementation. By and large, however, it may eventually be possible to suggest two
improvements: since 90% of the times is spent computing zero it would be useful to
have more powerful criterion to remove useless critical pairs [8] (a powerful theoretical
criteria exists but it is too costly); this crucial aspect of the problem is not studied in
this paper, but is implemented in another algorithm (Fs [18]). The second improve-
ment is concerned with strategies: during a Grobner computation, several choices can
be made (select a critical pair, choose a reductor) and even if strategies have been
proposed ([25] or even [24]) the heuristics which they rely on could not be satisfac-
torily explained. So it is difficult to be convinced that they are optimal optimizations.
Another bad consequence is that it is very difficult to (massively) parallelize the Buch-
berger algorithm because the sugar (for instance) strategy imposes a strong sequential
ordering. The primary objective of this paper is to propose a more powerful reduction
algorithm. For that purpose we will reduce simultaneously several polynomials by a
list of polynomials by using linear algebra techniques which ensure a global view of
the process.

The plan of the paper is as folows. The main Section 2 is devoted to presenting
the new algorithm. This section has been divided into several parts: in Section 2.1,
we review the necessary mathematical notations (we make the choice to use the same
notations as in the book [4]) and in Section 2.2 we establish the link between linear
algebra (matrices) and polynomial algebra. Then we present in Section 2.3 a basic
version of the algorithm without any criteria to eliminate useless pairs. An improved
version of the algorithm including the Buchberger criteria is then given in Section 2.4.
We close this discussion in Section 2.5 by motivating the choice of a good selection
strategy (it seems that selecting all critical pairs with a minimal exponent is a good
strategy). Since the algorithm relies heavily on linear algebra, Section 3 contains a
short survey of linear algebra techniques we have implemented. A first version of this
algorithm has been implemented in C in a new small system called FGb (for Fast
Gb). In Section 4 we report an experimental evaluation of this first implementation.
The best Grobner bases programs are compared on a set of well known benchmarks and
industrial problems. Finally, in Section 5 we outline the main features of the algorithm
along with a list of possible related works and open issues.

The name of this algorithm is simply algorithm number 4. In the rest of this paper
F stands for this algorithm.
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2. Description of the Fy algorithm
2.1. Standard notations

We use the notations of [4] for basic definitions: R is the ground ring, R[x] =
R[x1,...,x,] is the polynomial ring. We denote by T(xi....,x;), or simply by 7,
the set of all terms in these variables. We choose < an admissible ordering on

n

T.If t =x}'---x¥ ¢ T, then the total degree of 1 is defined as deg(s) = >, .
Now let f € R[x], / # 0, so that f = S (o, ooty )X] - xpe (where (..., )
are elements of R). Then we define the set M(f) of monomiuls of [ as M( =
{c(an, o)X x| e(o,...,a,) # 0}, The set T(f) of terms of [is T(f)=
(x|, ) # 0} The total degree of [ # 0 is defined as deg(f) =
max{deg(s)|t € T(f)}. We define the head term HT(f), the head monomial HM(f),
and the head coefficient HC(f) of f wurt < as follows: HT( /) = max(7T(f)),
HM( /) = max(M(f)), and HC(f)= the coeflicient of HM(/). If F is a subset
of R[x] we can extend the definition HT(F) = {HT(f)|f € F}, HM(F) =
(HM()f € F} and T(F)={T(f)|f € F}; 1d(F') denotes the ideal generated
by F.

Let f,g, p € R[x] with p # 0, and let F' be a finite subset of R[x]. Then we say
that
o [ reduces to g modulo p (notation f—P—>g), if 3t € T(f), 3s € T such that s *

HT(p) =1t and g = f — HC{I(p) x s * p where « is the coefficient of ¢
in p.
o [ reduces to g modulo P (notation f T»g), if f —9 for some p € P.

o [ is reducible modulo p if there exists g € R[x] such that f -9

1 is reducible modulo P if there exists g € R[x] such that f i

[ is top reducible modulo P if there exists g € R[x] such that fTrg and

HT(g) < HT(f).
o f %g is the reflexive-transitive closure of -

The S-polynomial of f and g is defined as

lem(HT(£),HT(9))
HT(f)

lem(HT(f),HT(g))
HT(g)

spol(f,4) = HC(g) S —HC()

2.2. Linear algebra and polynomials

Definition 2.1. By convention if M is a s x m matrix, M; ; is the jth element of the ith
row of M. If Tay =[t1,....1,) an ordered set of terms, let (& )i=1,..m be the canonical
basis of R”, we consider the linear map o7, : V7, — R” (where V7, is the submodule
of R[x] generated by T/) such that 7, (¢)=¢;. The reciprocal function will be denoted
by r,. The application Y, allows to interpret vectos of R as polynomials. We note
by (M, Ty ) a matrix with such an interpretation.
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Definition 2.2. If (M, Ty) is a s x m matrix with such an interpretation, then we can
construct the set of polynomials:

Rows(M, Ty ) :={yr, (row(M, i)Y} i =1,....s}\{0}

where row(M,7) is the ith row of M (an element of R™). Conversely, if / is a list of
polynomials and 7; an ordered set of terms we can construct an s x m matrix 4 (where
s =size(!), m =size(1})):

A; jr=coelf(U[iL. Ti[j]). i=1,....s, j=1,....m.

We note A7) the matrix (4; ;).

H nh B

S f % % x

Ji X X X
M (1)

.f'izk X X x

fi:k»l X x X

£ X X X

Definition 2.3, Let M be a s x m matrix, and Y = [Y,,...,Y,,] new variables. Then
F = Rows(M,Y) is a set of equations, so we can compute £ a reduced Grébner basis
of F for a lexicographical ordering such that ¥; > --- > ¥,. From this basis we can
reconstruct a matrix M = 47X We called M the (unique) row echelon form ' of M.
We say also that £ is a row echelon basis of F.

H b I g Im
S 1 0 ... 0 x ... x
i 01 ... 0 x X
. X X
2
M= fi 00 ... 1 x X 2)
firnr 00 ... 00 0
: 0 0
i 0 0 ... 00 0

where x denotes a possibly non-zero element.
In the case of polynomials we have a similar definition:

Definition 2.4. Let /' be a finite subset of R[x] and < an admissible ordering. We
define T_(F) to be Sort({T(f)| f € F}, <), 4: =AFT<(FD and A4 the row echelon
form of 4. We say that F= Rows(A T-(F)) is the row echelon form of F w.rt. <.

" In some computer algebra system, this is the only way to compute a row cchelon form !
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Elementary properties of row echelon matrices are summarized by the following
theorem:

Theorem 2.1. Let M be a s x m matrix, and Y =[Y,,...,Y,] new variables, F =
Rows{M,Y), M the row echelon form of M, F= Rows(]\7[ JY). We define

~ ~

F' ={y € F|HT(g) € HT(F)},
FT=F\F"

For any sybset F_ of F such that size(F_) = size(HT(F)) and HT(F_) = HT(F),
then G=F" UF_ is a triangular basis of the R-module Vy generated by F. That is
to say, for all f € Vi there exist (74 ) elements of R and (gx ) elements of G such
that f =%, Jxgr, HT(g1) = HT(f) and HT(gx) > HT(gi 11).

Proof. Since the head terms of G are pairwise distinct, G is linearly independent. We

claim that it is also a generating system of Vy,. Suppose for a contradiction that there

exists f € Vi such that f%f’ # 0. By definition of a Grdbner basis, [/ —0,
F

consequently /' is top reducible modulo HT(F) = HT(]*Z;) UHT(F ) = HT(F‘+) U
HT(F_) = HT(G), so that f” is top-reducible modulo G. This is a contradiction. [J

We can transpose immediately the theorem for polynomials:

Corollary 2.1. Let F be a finite subset of E and < an admissible ordering, and F
the row echelon form of F w.r.t. <. We define

F' = {g € F|HT(g) & HT(F)}

For all subset F_ of F such that size(F_) = size(HT(F)) and HT(F_) = HT(F),
then G=F UF_isa triangular basis of Vi, the R-module generated by F. For all
| € Vi there exist (74 ) elements of R and (g i elements of G such that f=)", /igx,
HT(g:) = HT(f) and HT(gx) > HT(gi+1).

2.3. The Fy algorithm

It is well known that during the execution of the Buchberger algorithm, one has a

lot of choices:

e sclect a critical pair in the list of critical pairs;

¢ choose one reductor among a list of reductors when reducing a polynomial by a list
of polynomials.

Buchberger [6] proves that these choices are not important for the correctness of
the algorithm, but it is well known that these choices are crucial for the total time
computation. Moreover, the best strategies [25] inspect only the leading terms of the
polynomials to make a choice. Consider the case where all the input polynomials
have the same leading term. In that case, all the critical pairs are equal and it is not
possible to take a decision. In some sense this problem can be corrected in a simple
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and surprising way: we make no choice. More precisely instead of choosing one critical
pair at each step, we select a subset of critical pairs at the same time. So, in fact, we
are delaying the necessary choices in a second step of the algorithm, the linear algebra
part of the algorithm.

Definition 2.5. A critical pair of two polynomials ( /7, f;) is an element of T2 x R[x] x
T X Rlx], Pair( . [;):=Ucmyj, b, fi.t;, ;) such that

lem(Pair(fy, f7)) = lemy; = HT(4, f7) = HT(¢; f7) = Iem(HT( f;), HT(f; ).

Definition 2.6. We say that the degree of the critical pair p; ;=Pair(f. f;), deg(p; ;)
is deg(lcm; ;). We define the two projections Le ft( p; ;):=(1;, f;) and Right(p; ;)=
(4, f;). If (¢, p) € T x R[x] then we note mult((¢, p)) the evaluated product ¢ * p.

We have now the tools needed to present the basic version of our algorithm. All
the matrices occurring in following algorithms are the representation of a list of poly-
nomials through the set of all their terms, as explained in Definition 2.2.

Algorithm F4

Input {F a finite subset of R{x]
Sel a function List(Pairs)— List(Pairs) such that Pel(1)Z£) if £
Output: a finite subset of R[x].
G:=F,F,:=F and d:=0
P={Pair({.g)| f.g € G with | # g}
while P # () do

d:=d+1
Pd:=F¢el(P)
PZZP\Pd

Ly:=Left(Py)JRight(Py)
F(} :=Reduction(L,, G)
for h ¢ ﬁz do
P:=P U {Pair(h.g)|y € G}
G:=G U {h}
return G

We have to extend the reduction of a polynomial modulo a subset of R[x], to the
reduction of a subset of R[x] modulo another subset of R[x]:

Reduction
Input - L a finite subset of 7 x R[x]
PUE G a finite subset of R[x]
Output: a finite subset of R[x] (possibly an empty set).
F:=Symbolic Preprocessing(L,G)
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£:=Reduction to Row Echelon Form of F wrt. <
~t .o~ .
Fo={f € FIHT(f) ¢ HT(F)}

return 7

Remark 2.1. By Lemma 2.1, we will see that an equivalent (but slower) definition of
F' could be 13+::{f € F| [ top irreducible by G}.

We have now to describe the main function of our algorithm, that is to say the
consruction of the “matrix” F. This subalgorithm can be viewed as an usual reduction
of all the considered polynomials if we replace the standard arithmetic by: let 0 #
x. 0£yeR thenx+y=1,xxpy=1 x%*0=0 and x + 0= 1. So this is really a
symbolic preprocessing.

Symbolic Preprocessing

Input { L a finite subset of T x R[x]
G a finite subset of R[x]
Output: a finite subset of R[x].
F={t= fl(t. fye L}
Done:=HT(F)
while T(F) # Done do
m an element of T(F)\Done
Done:=Done U {m}
if m top reducible modulo G then
m=m" « HT(f) for some f € G and some m’ € T
F=Fu{m x [}
return F

Remark 2.2. [t seems that the initial values of Done should be @ but in all application
of this function the result is in fact the same with less iterations.

Remark 2.3. The symbolic preprocessing is very efficient since its complexity is linear
in the size of its outout if size(G) is smaller than the final size of tf T(F) which is
usually the case.

Lemma 2.1. Let G be finite subset of R{x), L be the image by mult of a finite subset
of T x G and = Reduction(L,G). Then for all h € ﬁ+, HT(h) € Id(HT(G)).

Proof. Let F the set computed by the algorithm Symbolic Preprocessing (L,G). As-
sume for a contradiction that 34 € £ such that t =HT(h) € Id(HT(G)). Hence HT(y)
divides ¢ for some ¢ € G. So ¢ is in T(F )C T(F)C T(F) and is top reducible by g,
hence #w) x g is inserted in F by Symbolic Preprocessing (or another product with
the same head term). This contradicts the fact that HT'(h) & HT(F). O

The following lemma is useful to proof the correctness of the algorithm.
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Lemma 2.2. Let G be finite subset of R[x], L be the image by mult of a finite subset
of T x G and F= Reduction(L,G). Then F' is a subset of 1d(G). Moreover for all
f in the R-module generated by L, [ % 0.
GuUF*

Proof. Apply the Corollary 2.1 to F the set generated by Symbolic Preprocessing(L, G).
Clearly F is a subset of F UJd(G), but it is obvious that L is a subset of Id(G), so
that /" is a subset of /d(G). Hence any F_ fulfilling the hypothesis of Theorem 2.1 is
a subset of Id((G). This conclude the proof of the lemma since the R-module generated
by L is a submodule of the R-module generated by F. [

Remark 2.4. Let G be a finite subset of R[x]. It is possible that f%o but that

NormalForm ( f,G) #£ 0 where NormalForm is the reduction which is used in Buch-
berger algorithm. The reason for that is that the result of NormalForm depends on
many choices (strategies).

Theorem 2.2. The alyorithm F4 computes a Grobner basis G in R[x] such that FC G
and Id(G) =Id(F).

Proof. Termination: Assume for a contradiction that the while-loop does not terminate.
We see that there exists an ascending sequence (;) of natural numbers such that F° ; #*
0 for all i. Let say that ¢; € F;' (hence ¢; can be any element in F;) Let U; be
Ui + Id(HT(g;)) for i > 1 and Uy = (0). By Lemma 2.1 we have U;_| & U,. This
contradicts the fact that R[x] is noetherian.

Correctness: We have G = |~ F;. We claim that the following are loop invari-
ants of the while-loop: G is a finite subset of R[x] such that F C G Cld(F), and
spol(g1,92) %O for all g).¢2 € G such that {g,,g.} & P. The first claim is an imme-

diate consequence of the first part of Lemma 2.2. For the second one, if {¢),¢2} & P,
this means that Pair(g,,g2) = (Icmi2,4,91.t2,g2) has been selected in a previous step
(say d) by the function Fel. Hence t| x g; and #, * g» are in Ly, so spol(gi,g2)
is an element of the R-module generated by L; hence by Lemma 2.2 spol(g1,q2)
%0. O

Remark 2.5. If size(.#¢l(1))=1 for all ! # ) then the algorithm F4 is the Buchberger
algorithm. In that case the .“e/ function corresponds to the selection strategy in the
Buchberger algorithm.

Example 2.1. One might wonder why in the proof of the termination of the algorithm
. ~ ot
we consider only one element of /', and not the whole F;.

If x > y > z for a lexicographical ordering, F=[ f1=xy?+1, fr=xz’+1, f3=)+7]
and Yel= identity, we find Py = {Pair(f1, f2), Pair(f2, f3), Pair(f1, f3)} and F| =
{y*—z%, y+ 1} so that Id(HT(F, ))={»}. So contrarily to Buchberger Algorithm this
not true that after each operation G';:=G U {h}, we have Id(HT(G')) 2 Id(HT(G)).
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2.4. Buchberger criteria. Improved F, algorithms

In order to obtain an efficient algorithm we need to insert into the previous algo-
rithm the Buchberger Criteria. Since it is not the subject of this paper to improve the
Buchberger Criteria we will use a standard implementation of these criteria such as the
Gebauer and Moller installation [21];

Buchberger Criteria

(Gnews Pnew)::Update(Galda POl(la h)

Update of critical pair list and ideal basis (see [4], p. 230)
a finite subset G,y of R[x]

Input: < a finite set P,;,; of critical pairs of R[x]
0#£ heR[x]

Output: a finite subset of R[x] and a list of critical pairs.

Specification : {

In the previous version of the algorithm we used only some rows of the reduced
matrix (the sets £ ! ), rejecting the rows which were already in the original matrix (the
sets 7F). In the new version of the algorithm we keep these useless rows, and we try
to replace some products m * f occurring in the rows of the “matrix” F by a new
“equivalent” product m’ + f with m > m’. This is the task of the function Simplify:
T x R[x] x List(Subset(R[x])) — T x R[x]. The third argument of Simplify is the list
of all the already computed matrices. A complete description of this function will be
given below.

Improved Algorithm F4

£ a finite subset of R[x]
el a function List(Pairs)— List(Pairs) such that Fel() AP if 140
Update the part of Buchberger algorithm which select the pairs to
compute, using the criteria like the algorithm of p. 230 in [4].
Output: a finite subset of R[x].
G:=0 and P:=0 and d:=0
while £ = () do

fri=first(F)

Fi=F\{f}

(G, Py=Update(G,P, f)
while P # 0 do

Input:

d:=d +1
Py=Fel(P)
P:=P\P,

Ly:=Left(Py)U Right(Py)
- reauctiontla, U, d=1...
for h ¢ F';do
(G, P):=Update(G, P, h)
return G



70 J.-C. Faugére ! Journal of Pure and Applied Algebra 139 (1999 61-88

The new Reduction function is identical to the previous version except that there is
a new argument and that it returns also the result of Symbolic Preprocessing:

Reduction
L a finite subset of 7 x R[x]
Input: { G a finite subset of R[x]
F = (Fi Ye=1._(a—1), where £} is finite subset of R[x]
Output : two finite subsets of R[x].
F:=Symbolic Preprocessing (L, G, %)
F:= Reduction to Row Echelon Form of F w.rt. <
Flim {f € F | HT(f) ¢ HT(F)}
return (£, F)
Symbolic Preprocessing

L a finite subset of 7 x R[x]
Input: ¢ G a finite subset of R[x]
F =(Fi)r=1..(a—1)» Where F is finite subset of R[x]
Output: a finite subset of R[x].
Fo={mult(Simplify(m, f,.# )} (m, )€ L}
Done:=HT(F)
while T(F') £ Done do
m an element of T(F)\Done
Done:=Done U {m}
if mtop reducible modulo Gthen
m=m' + HT(f) forsome f € G andsome m’ € T
Fi=F U {mult(Simplify(m', f,.7))}
return /-
Simplify
teT aterm
Input: ¢ f € R[x] a polynomial
F = (FyYe=1..(a—1)» Where F} is finite subset of R[x]
Output : a non evaluated product, i.e. an element of T x R[x].
for u € list of divisors of ¢ do
if 3/(1 <j <d)such that (ux f) € F;
then
Fis the row echelon form of F; w.r.t. <
there exists a (unique) p € F;rsuch that HT(p) = HT(u * ')
if u = ¢ then

t
return Simplifv(—, p, 7)
u
else

return (1, p)
return (z, /)
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Lemma 2.3. If (¢, f") is the result of Simplify (1, f, 7 ) then HT(¢' » ") =HT(t * [).

(F UF)Y such that tf = f' + r with HT(r) < HT(¢ * f).

Proof. Termination: Simplify constructs a sequence (#, f) such that tp =1¢, fo = f
and #, < t; except perhaps for the last step. 7 is noetherian, this implies that the
algorithm stops after r; steps.

Correctness: The first part is obvious since HT(uy /5 )=HT( 4~ ) so that HT(# [} )=
HT(Z%ka) = HT(#+1f%+1)- The proof is by induction on the step number. So we
suppose rx=1,¢'="L and ux f € F;, f € F; for some j with HT(f”)=HT(ux /). The set
F_={uf} can be supplemented by other elements of F; such that HT(F_)=HT(F)
and size(F_) = size(HT(F)). We can apply Corollary 2.1 we find (o) € R, g; €
F_U (l:"j). , such that f" =3%", wgx and HT(g,) =HT(f’) and HT(f’) > HT(gy) for
k > 2. By construction of F_,g; =ux f. Hence [’/ =ouf +r with HT(r) < HT(/"),
consequently «; # 0 and we have ¢f = %t’f’ — %t'r. d

Remark 2.6. Experimental observation establishes that the effect of Simplify is to re-
turn, in 95% of the cases, a product (x;, p) where x; is a variable (and frequently the
product (x,, p)). This technique is very similar to the FGLM algorithm for computing
normal forms by using matrix multiplications.

For the verification of the improved version of the algorithm we recall the following
definition and theorem ([4], p. 219):

Definition 2.7. Let P be a finite subset of R[x], 0 #£ f € R[x], and ¢t € T. Suppose
f= thl m; p; with monomials 0 # m; € R[x] and p; € P not necessarily pairwise
different (1 < i < k). Then we say that this is a t-representation of f wrt. P, if
HT(m;p;) <t forall i=1,2,... k.

Theorem 2.3. Let G be a finite subset of R[x] with 0 € G. Assume that for all
91,92 € G, spol(g\,g2) either equals zero or it has a t-representation w.r.t. G for
some t < [em(HT(g1), HT (¢2)). Then G is a Grébner basis.

Theorem 2.4. Let F be «a finite subset of R[x], F =(Fi i1, d—1)» Where Fy Is finite
subset of R|x], Pair(g),g2) = (lem 2. 41, g1, t2,¢2) with lemio,ty, 5, € T such that the
Sfollowing hold:

(1) Fy is the image by mult of a finite subset of T x F

(i) (Fy)-C G fork=1,....(d — 1)Fy being as usual the row echelon of F})

(iti) f; = mult(Simplify(s;, g;, %)) for i =1,2.

(iv) spol( f1, [2) has a t-representation w.r.t. F with t < Ilem(HT(f ), HT(f2)).
Then the S-polynomial spol(gy,g:) has a U'-representation w.r.t. F with ' <
lemy ;.
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Proof. Let (¢, g!) be Simplify(t;,9:, F ). By Lemma 2.3 we have HT(#{g] )=HT(t1¢) )=
lemyy = HT(fg2) = HT(#4g%) so that (we suppose that all the polynomial are monics):

oI

spol(gy.95) = 119y — 1295
=(t1gy — hig1) + (g1 — bg2) + (292 — 1595)
=r+spol( f1, f2)+ 7

with r,# € Id(F U7 ) C I1d(G) such that max(HT (), HT(+')) < lcm; 5. Hence spol(yg),
¢>) has a ¢/-representation for ¢/ = max(HT(r), HT(+'),t) < Icmy,. O

2.5. Selection strategy

The choice of a good selection strategy, that is to say the choice of the function
Fel, is very important for the performance of the algorithm.

Computing Grobner bases for a degree ordering is very frequently the most difficult
step in the solving process (other steps are elimination or decomposition of the ideal).
One reason for that is that the input of the algorithm is only a subset of R[x] with
no mathematical structure. We want to give some structure to these polynomials at the
beginning of the computation: we use the concept of d-Grobner bases:

Definition 2.8. If G, is the result of the Buchberger algorithm truncated to the degree
d (that is to say we reject all critical pairs whose total degree (Definition 2.6) are
> d), then we call G; a (truncated) d-Grobner basis of /.

The following theorem give a structure to this list when the polynomials are homo-
geneous.

Theorem 2.5 ([34,4, p. 471]). For homogeneous polynomials f1,...,f1.Gy is a
Grébner basis “up to degree d'' that is to say:
. Gi> is well defined for polynomials [ such that deg(f) <d.

d

e Vpelstdeg(p)<d = po—f>0.
d
. spo/(f,g)—(}o for f,g in Gy such that deg(lem(HT(f),HT(g))) < d.
d

Moreover, there exists a Dg such that for all d > Dy, Gy = Gp, is the Grobner basis
of . We note by oc the number Dj.

An effective Nullstellensatz may give an estimate of Dy; from a theoretical point
of view such an explicit bound for the degrees reduces the problem of finding the
polynomials G, to the resolution of a system of linear equations. This reduction to
linear algebra of the computation Grobner bases has been used for a long time for
analysing the complexity of Buchberger algorithm [34].

For practical computation this does not work well since:

e [y is often over estimated.
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e The linear system is huge: the matrix which is generated is frequently larger that
really needed.

e The matrix of the linear system has a generalized sylvester structure and solving
efficiently such a system is not a well known task.

Other algorithms are also closely related to linear algebra [3,24,32,33,35].

In fact the Buchberger algorithm and the F algorithm give incremental methods to
solve this systems. The new algorithm will compute G, ., from G,. Thus the algorithm
transforms a mathematical object (G, is unique) into another object with a stronger
structure. In fact the Buchberger algorithm is also incremental since it computes one
polynomial after another but in our case we compute a whole new truncated basis.

Go—= G =Gy — - = Gy — Gayy — -

Unfortunately Theorem 2.5 is false for non homogeneous polynomials. One solution
to overcome this difficulty is to homogenize the list of polynomials but it is not efficient
for big systems since parasite solutions are also computed (solutions at infinity can be
of greater dimension); a better method is to consider the sugar degree [25] of each
polynomial: we add a “phantom” homogenization variable and the sugar degree degg
of a polynomial is the degree of the polynomial if all the computations were performed
with the additional variable:

Definition 2.9. For the initial polynomials: degy(f;) = deg(f), for all i =1,...,m.
The polynomials occurring in the computation have the following forms p 4+ ¢ or
t+ p where t € T is a term. We define degg(p + ¢g) = max(degg(p),degy(g)) and
dego(m * p)=deg(m) + degg(p). We say that degy(q) is the “sugar” of gq.

Definition 2.10. Gf,s) is the result of the Buchberger algorithm when we reject all
critical pairs whose degg is > d. (We replace deg by degg is the Definition 2.8.)

The weak point of this approach is that G((/S+)1 \G((,S) contains polynomials with various
degrees and that near to the end of the computation degg(p) >> deg(p).
We give now some possible implementation of .#el. These results are not discussed
in detail as they will been reported in a more technical paper.
o The easiest way to implement Fe/ is to take the identity! In that case we really
reduce all the critical pairs at the same time.
e The best function we have tested is to take all the critical pairs with a minimal total
degree:

Sel(P)
Input. P a list of critical pairs
Output: a list of critical pairs
d:=min{deg(lcm(p)), p € P}
Py={p e Pldeg(lem(p))=d}
return P,
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We call this strategy the normal strategy for Fj. If the input polynomials are ho-
mogeneous, we already have a Grobner basis up to degree ¢ — 1 and Fel selects
exactly all the critical which are needed for computing a Grobner basis up to degree
d.

e We can also change the deg(Pair( f;, f;)) to be the sugar degree, degy(/cm;;) (see
Definition 2.6). In our experiments, this variant of the algorithm was less efficient.

2.6. Example

The reader should be aware that it is impossible to fully appreciate the efficiency
of the algorithm for small examples. We consider the cyclic 4 problem. We choose a
total degree reverse lexicographical ordering and the normal strategy.

F=[fs=uabced — 1, f3=abc+ abd + acd + bcd, [y = ab + bc + ad + cd,
fi=a+b+c+d]

At the beginning G = {/4} and P, = {Pair(f3, f4)} so that L, = {(1, f3),(b, fa)}.
We enter now in Symbolic Preprocessing(L,, G, 0); £y = L, Done = HT(F|) = {ab}
and T(F;) = {ad,ab,b*.bc,bd,cd}, we pick an element in T(F))\Done, for instance
ad, but ad is top reducible by G; we have Done = {ab,ad}, F\ = F) U {d f4} and
T(F\)=T(F)U{d?}. Since the other elements of T(F,) are not top reducible by G,
Symbollic Preprocessing returns { /3,6 /4,d f4}. Or in matrix form:

[0 0o 0 1 1 1 1 0
A=l 0 1 1 0 1 0 0
!t 1r 1 o0 1 0 0 0O

the row echelon form of A, is

o 0 0 1 1 1 1 0
A4=1 0 1 0 =1 0 —1 0
0 1 0 0 2 0 1 0

that is to say Fy={fs=ad +bd +cd +d?, fo=ab+bc—bd —d?, f7=b>+2bd +d*}
and since ab,ad € HT(F|) we have F, = {/7} and now G = {f34, f7}.

In the next step we have to study P = {Pair(f2, f4)}. thus Ly = {(1, /2).(bc, f4)}
and # = {F}. In Symbollic Preprocessing we first try to simplify (1, /2) and (bc, f4)
with #. We see that f4 € F| and that f¢ is the unique polynomial in F| such that
HT(f6) = HT(bf4) = ab, hence Simplify (bc, f4,F ) = (¢, fo). Now Fr = {f2,¢f6}
and 7(F,) = {abc,bc?,abd, acd, bed, cd*}. We pick abd which is reducible by bd f4
but again we can replace this product by bfs. After several steps we find F> =
{efs.df7.0fs, f2.cfe}

60 0 0

0
A= |0
1
1

—_ O O O

SO = = O
<o — O O —
oo o O -
OO = N O
—_- o o o~
o oo - O
SO O O OO

0
1
1
0
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0O 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 2 0 1 0
H={0 0 1 0 0 1 0 —1 0 -1 0
1 0 0 0 0 —1 —1 I I 0
01 0 0 0 0 1 -1 0 -1 0

Fy={fo=uacd + bed + 2d + cd?, f1o = b*d + 2bd*> + d°, f)| = abd + bed —
bd? — d3,f|3 = abc — bed — *d + bd® — ¢d? + &, [13 = bc? + 2d — bd® — d3} and
G={faf7. 15}

In the next step we have Ly={(1, /'), (bcd, f4),(c2,f7),(b, f13)}, and we call recur-
sively the function Simplify: Simplify(bed, f4)= Simplify(cd, fo)= Simplify(d, f12)=
(d,f12). We have Iy = { f1.d f12.¢* f7.b/13}. Notice that ¢2 /5 cannot be simplified,
but very often we have only a polynomial multiplied by a vanable. After several
steps in Symbollic Preprocessing we find F5 = {f,d f12.¢* f7,bf13.d f13.d f10} and
Fy={f15s =2 —2d?> +2bd> + 2d*, 1o = abed — |, f17 = —bcd® — 2d? + bd® —
cd® +d* + 1, f1g = *hd + Fd> — bd® — d*, f19 = b*d*> +2bd* + d*}. Note that the
rank of F3 is only 5. This means that there is a reduction to zero.

2.7. Conclusion

So we have transformed the degree of freedom in the Buchberger algorithm into
strategies for efficiently solving linear algebra systems. This is easier because we have
constructed a matrix A4 (the number of rows in A4 is a little overestimated by the
symbolic prediction) and we can decide to begin the reduction of one row before
another with a “good reason”. For integer coefficients it is a major advantage to be able
to apply an iterative algorithm on the whole matrix ( p-adic method). Some negative
aspects are that the matrix 4 is singular and that 4 is often huge. A good compression
algorithm for the matrix reduces the storage requirements by a factor greater than 10
(see Section 3.4).

3. Solving sparse linear systems

Compared with naive linear algebra approach we have reduced dramatically the size
of matrices which are involved. Despite this reduction, the matrices that we have to
solve during the program execution are very big sparse matrices (sece p. 22): say
50000 x 50000 to give an idea (the record is 750000 x 750000 for a very sparse
matrix). To give a comprehensive review of all useful linear techniques is far beyond
the scope of this paper and we give only some references to the original papers.
It should be observed that we have to solve sparse matrices in a computer algebra
system. It is therefore not surprising that we have to merge techniques coming from
sparse linear algebra (possibly designed initially for floating point coefficients) and
techniques coming from computer algebra (for big integer computations for instance).
But first we establish the link with the main algorithm:
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3.1. Solving a matrix and reduction to row echelon

In the main algorithm we have to reduce (find a basis of the image of the correspon-
fing linear map) sparse matrices which are singulars and not square. On the other hand,
linear algebra techniques are often described for solving linear systems of equations
Ax=b. One way to connect the two approaches is to first extract a square sub matrix and
to put the remaining columns into the right-hand side. For instance if we want to reduce:

at ab b be

1 1 2 1 1

A= f |1 2 1 2
S\l 2 2 2

We first try to find the rank of the matrix using a fast algorithm mod p and we find that
the second column is deffective. So we extract a square matrix and a right-hand side:

I 1 1 2
A=]1 1 2|r=|2
1 2 2 2
Hence the system of equations can be rewritten:
p &
AP | =—(ab)r or b = —(ab)(f]ilr)
bc bc
so we have to solve the linear system
X0 2
Z0 = 0
to 0
and the reduced form of the matrix
a ab b be , ,
. a  ab b° be
[ 0 O
/i 0 fi /1 2 0 0
I 1 20 l 0]="
A\l 4 0 i f2l1r 0 1 0
/3 0 i\l 0 0 1

3.2. Solving sparse linear systems

Solving sparse linear systems has been studied for a very long time for numerical
computations, there are mainly two types of methods: iterative methods (computing
successively v, = Ay; if 4 is an n x n matrix) and decomposition methods. The
methods which are useful in our context are the following:

3.2.1. Iterative solvers
After O(n) steps we obtain an exact solution (up to rounding errors). This is the
case of conjugate gradient method or the Lanczos algorithm [39] since after »n steps



J.-C. Fuaugére ! Journal of Pure and Applied Algebra 139 (1999) 61-88 77

the result is exact. Another well known iterative algorithm is the Wiedemann algorithm
[29,48], which uses the efficient Berlekamp and Massey algorithm [38] to recover the
solution. Note that there exists a more efficient version of the Wiedemann algorithm:
the Wiedemann algorithm by blocks (but we have not implemented this version yet).

The key operation in these algorithms is the multiplication 4xy. It is very easy to im-
plement this operation efficiently to take advantage of the sparsity of 4 and to obtain a
complexity of O(]4|) for computing 4+ y where |4| is the number of non zero elements
in A; thus the global complexity for solving the system is O(n|4|) instead of o).

When the matrix has a regular pattern it is possible to apply even more efficient
techniques (for Toeplitz matrices for instance [5]). These methods cannot be applied in
our case since the pattern of the generated matrices is not regular enough. A significant
drawback of these methods is that there is no speedup if we try to solve simultaneously
several linear systems with the same left-hand side.

3.2.2. Factorization methods

The classical LU decomposition tries to decompose the input matrix 4 into a product
LU where L (resp. U) is a lower (resp. upper) triangular matrix. For sparse LU
decomposition [15,22,23,42,43] there is an additional constraint: the number of non-zero
elements in L and U minus the number of non-zero elements in 4 must be as smallest as
possible (this number is called the number of “fill-ins”). The sparse LU decomposition
starts with a symbolic preprocessing very similar to ours. It aims is to avoid to spend
time for computing coefficients the vanishing of which is predictable. The interesting
feature of this method is that both preprocessing may be done simultaneously.

A large number of implementations for these methods are available (mainly in
C/C++ or Fortran) [12] or even in Matlab. Unfortunately, these programs and some
algorithms are not very robust: very often the input matrix 4 must be non-singular or
square or positive definite. On the other hand, parallel algorithms and parallel imple-
mentations exist [2,14,28,41,47]. We have modified the smms [1] program in order to
work with modulo p coefficients in order to evaluate the costs of different algorithms.

Solving large linear equations modulo a small prime number has been studied in
cryptology [31,39] for factoring integers or computing discrete logarithms (very often
p=2 in that case). These authors use a combination of structured Gaussian elimination
and other iterative algorithms. In the current implementation of the £ algorithm we use
by default the structured Gaussian elimination. Note that in an ideal implementation the
program should first analyse the shape of the matrix and then decide which algorithm
should be applied.

3.3. Computer Algebra methods for solving linear systems with integer coefficients

Very specific methods have been developed in Computer Algebra for solving linear
equations when the coefficients are integers. First we recall that the Bareiss algorithm
is better than the classical Gauss algorithm but is very inefficient for big systems.
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The best way of solving linear systems 4Ax = b with integer coefficients is to use
p-adic computations: we choose a prime p, and we compute C = A4~ mod p (very
often a sparse LU decomposition is more appropriate). Then we define

pO = p, W = Ch"™ mod p,

m—1

h(m) o Av(m) ) )
b(m+1) — - ) X(m) — -S- ,V('/)])/~
)
f j=0

Theorem 3.1 (Dixon [13]).

o AxU) — p = 0mod p”

o If' B is upper bound of the coefficients of A and b it is sufficient to compute x\
Jor m > 2nlog (nB) and then to apply the extended Euclidean algorithm to X
and p"™ to recover the value in Q.

[n fact the iteration may be stopped when x!") becomes stable (see [40] for multi-
modular methods which may be generalized to p-adic method).
The global complexity [30] of this algorithms is

O(° log(nB)*) Bareiss method
O(* (n + log(nB))log(nB)) multi modular method
O(n*log(nB)) p-adic method

Note that the p-adic method is also an iterative algorithm (in fact this is a Newton
algorithm) and that we have previously noticed that this kind of algorithm is less
efficient for solving simultaneous systems Ax =by,...,Axy = b;. If k > n it is probably
better to use a multi-modular approach: we compute 4~ 'h mod p; for different primes
pi and we apply the Chinese remainder theorem to find the solution modulo [T, p:.

3.4. Marrix compression

When the matrices are big it is necessary to adopt fairly complicated storage schemes
to compress the matrix in memory: consider a (5 x 10*) x (5 x 10*) matrix with 10%
non-zero elements (this is the case in Cyclic 9 for instance); even if only one byte is
allocated for each coefficients (an optimistic assumption since some coefficients have
hundred digits); the matrix requires 250 10° bytes to be stored! In our implementations
we do not duplicate coefficients (relying on the fact that some rows in the matrix are
just term multiples of others); thus we have only to compress the position of the
non-zero elements; we have experimented the following techniques:

(i) No compression: inefficient both for CPU time and memory usage.

(i1) Bitmap compression: each row of the matrix contains zero and non-zero elements:

x 00 x x 0 0 0 x

Ji-j2,... denote the indexes of the non-zero elements (here j; =1, j» =4,...), then
3, 2%~ is the bitmap compression (for the example | + 2% + 2% =281). This method
is efficient but consumes a substantial amount of memory. This is the prefered way to
implement the compression when the coefficients are in GF(2)
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(i1i) Distributed representation: the row is represented by the array

Lilin-nlin-i]| -

using bytes when j; — ji—; < 255 (this occurs very frequently). This method is most
efficient in memory than the previous one and a little slower (10%).

(iv) Apply a standard compression tool (gzip for instance) to one of the previous
representation. Very efficient in memory but rather slow.

For the moment our prefered methods are (ii) and (iii) (depending on the ground
field), but the compression algorithms should be seriously improved in future versions.

4. Experiments

The quality of the computer implementation of Grébner bases computations may
have a dramatic effect on their performance. The theoretical results on complexity
(even for homogeneous systems, the complexity is d* in most cases and 2% in some
very pathological cases) cannot throw light on the practical behavior of effective imple-
mentation. Thus, while “paper and pencil” analysis of polynomial solving algorithms
are important, they are not enough. Our view is that studying and using programs
which implement these algorithms is an essential component in a good understanding
of this area of Computer Algebra. To this end, we provide some experiments and com-
parison with similar programs. This section should be considered as the validation of
our algorithm. Thus it plays the same role as its proof for theorems.

4.1. Methodology

Empirical analysis means that we have to pay particular attention to the development
of methodologies in the field of benchmark for linear system solving. We adopt the
following points:

1. We compare the new algorithm with state of the art Grébner bases implementation
{namely Magma [10], PoSSo/Frisco Grébner engine [46], Macaulay 2 [26,44], Singular
[27]. Asir [45], Cocoa, Axiom, Maple [11] and Gb [17]). It is also crucial to compare
the implementation of the new algorithm with the Buchberger algorithm implemented
by the same person (in this case the author). In our opinion it is also important
to compare low-level implementation of the algorithms to avoid parasite interactions
with a high level language/compiler. £y has been implemented in C and most of the
competitors are implemented in C/C++.

2. The list of examples is also a crucial issue: the examples can be easily accessed
[16] (the web site contains pointers to the Frisco test suite). The list is composed of
classical benchmarks (Cyclic n, Katsura ») but also of industrial examples (coming
from signal theory, robotics). We have removed from the list all the toy examples
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since nothing can be concluded with them. Of course the toy concept is relative to
current computers. For us, an example is toy if it takes less than 1 sec on a PC.

3. This section contains two timing tables: the first one corresponds to modular
computations, the second one corresponds to big integers computations. All the com-
putations are done several times on equivalent computers to prevent as much as possible
interactions with other programs. For each timing the program was run several times.
This was necessary to eliminate fluctuations in the measurements stemming from some
other programs running on the same computer. Of course the timings are rounded.

4. We rigorously use the last version of all the programs and use an appropriate
computer to execute them.

5. An even more convincing proof of the efficiency of a new algorithm is to solve
previously untractable problems. So we should test the algorithm on very difficult
problems. In our case, Fy4 solves Cyclic8 and Cyclic9.

6. The same strategy is used for all the programs. For instance if we homogenize the
input polynomials for one program we try the same strategy with all other programs.
This is the reason why we give the timing for cyclic » and homogeneous cyclic x.
Some systems (Singular for instance) allow the user to customize the internal strategy;
we try several parameters and we retain the best method.

7. The outputs of the different programs are checked to be equal.

8. Last, and it 1s the more difficult, we compare the algorithm with other methods:
triangular sets (Moreno/Aubry), homotopies (J. Verschelde), Bezoutian {Mourrain) and
sparse resultant (Emiris). The task is more difficult since the outputs are very different
(quasi component, floating point approximations).

8.1. Triangular methods (Wu, Wang, Lazard, Kalkebrenner). On one hand triangular
methods seem to be less efficient than lexico Grobner bases computation (the current
limit is Cyclic 6 and Katsura 5) but on the other hand the quality of the output is better.
So we think that these methods are useful to simplify lexicographical Grébner bases.

8.2. Homotopy methods. J. Vershelde reports timings (Cyclic 8 on a Sparc-Server
1000 in 4435m) which are less efficient than Grdbner bases techniques. It is difficult
to handle over constrained systems.

8.3. Mixed volume is extremely fast to estimate the number of isolated roots (up to
Cyclic’ 12) but with our experience it is not so efficient for other systems (and the
number of solution is often over estimated).

4.2. Modular computations

Modular computations are very useful in Computer Algebra because they give a
fast result (with a very high probability) and information on the number of solutions
(Hilbert function).

Moreover, since big integer computations could be done by means of p-adic or multi
modular arithmetics it means that the cost of an integer computation is roughly

time of modular computation * size of the output coeffs

So it is also very important to have an efficient solver modulo a prime p.
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The computer is a PC Pentium Pro 200 MHz with 128 Meg of RAM.

We consider only non homogeneous systems, but in the following we give =
Min(Thomog, Tnon homog) Decause Singular and Macaulay are often very slow for non
homogeneous system.

Note that the PoSSo library uses generic coefficient to implement Z/pZ but the
other softwares implement inlined modular arithmetic. In other words the overhead of
function calls is heavier in the PoSSo library. With a better implementation one can
probably divide timings by a factor between 2 and 4.
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Table |
Academic examples mod p
FGb Gb PoSSo Singular Mac 2 Asir
K4 085 325 46 s 10 s 12 s 56 s
Ky 4.1s 29s 9 min 58 s 1 min 47 s 1 min 55 s
Ky 30s 3 min 48 s 1 h25 min 17 min 41 s 17 min 11 g
Ko 4 min 13 s 36 min 23 s 3 h6 min [eS)
K1) 30 min 29 s 00 o oC oo
Cyclic7 465 I min 15s 9 min 3 s 2 min 34 s 2min0s 6 min 51 s
Hom C5 52s I min 02 s
Cyclic 8 I min 55 s 26 min 17 s 4 h 38 min 1 h 56 min 1 h 33 min 3 h 54 min
Hom Cy 1844 s 39 min 17 s
Cyclic 9 4 h 32 min oC 00 o0 oo o0
Hom Cy Il h 10 min® o0 o0 0 oC 00

211 h 9 min 40 s on a 500 MHz Alpha workstation with | Go op RAM.

We give the shape of some generated matrices. The matrices can have a very different
structure and the number of non-zero elements varies greatly.

Upper left figure:

From Cyclics

Matrix 4Ag 475 x 786 (13.8% non-zero).

Upper right figure:

application example: from fgss [19] matrix As 1425 > 2561 (0.47% non-zero).

Lower left figure:

Example: engineering problem (Nuclear) matrix 47 1557 x 3838 (0.2% non-zero).

The conclusion of Table lis that the old Gb is still faster than other systems, and
that FGb > Gb.

The following figure shows the performance results for the homogenization strategy
and the affine strategy (the quotient “time to solve homog Cyclic »” divided “time to
solve non-homog Cyclic #” is plotted).

Comparison Homegeneous/ Non homogeneous

1000% 1"

100%

Cyclic 6 Cyclic 7 Cyclic 8 Cyclic 9 F 855
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We conclude that for small systems the difference is small but for big systems
like Cyclic 9 there is a huge difference (you add several components of dimension 3
and 4). For Cyclic 9 the algorithm generates a 292051 x 317850 matrix and it is 3.2
times slower!

Cyclic n - Modulo p - DRL Groebner basis

sh10m
FGb
PoSSa___ / .
s ‘Asir A
e
YV Cocoa
1h50m )
Singular
.“4-- Macaulay 2
e
.///// "Gb
Maple 5.5 ’
20 min
73
20 co
o c7 cs

4.3. Integers

In Table 2, we have included a special version of the the classical PoSSo Grobner
engine called “Rouil”, this version has been optimized by Fabrice Rouillier.? p> In the
table we remove the Singular entry because Singular and Macaulay? seem very close
and very slow for big integers.

Size is the size in digits of the biggest coefficient in the output.

2 The algorithm uses a prime p to avoid syzygies. Then the algorithm checks that the result was correct. At
the present state the implementation sometimes does not detect bad primes.
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Table 2
Academic examples Z

FGb Gb Singular Rouil Asir Mac 2 Magma Size
K7 2.9 s 42 s 50 s 3 min 28 s 10 min 56 s 53
Kq 23 s 10 min 21 s 8§min23s 8 min37s 2h 17 min 102
Ky 3min 3 s 5 h 35 min 1 h 31 min o0 133
Ko 31 min 245 o 0 o e} 192
Cylic6 03 s 32s 53s 54s 8s 19.5 s 26s 96
Hom C;7 542 s 1 h32min 10 h 35 min >25 min® 2 h 50 min 2202 s 96
Cylic 7 39.7s 5h 17 min® oo 00 >2 he 00 = 96
Cylic8 2dminds oc 00 o0 o o0 [>'S) 202
Cylic 9 18 days¢ a¢ 0 0o o0 00 00 800

2134 Mbyte of data when stopped.

bEstimated from an original time of 24 h 26 min 40 s on Sparc 10 with Lazard s algorithm.
€162 Mbyte of data when stopped.

dThe size of the result in binary is 1 660 358 088 bytes. Run on 512 Meg RAM PC.

We observe that Magma is very efficient for big integers (in fact the Magma version
for alpha workstations is even 7 times faster).

3 e e
[ts} . . . :
o Cyclic n - Big Integer - DRL Groebner Basis
[o£]
B

{ S

s -

84 sh

1d 2h Singular

 Maceday2

Lo st i e,

5 Posso (Rouillier) 7 8 9

Cyclic-9 for big integers is an example of huge computation; we use:

e 3 Processors PPro 200 MHz 512 Meg RAM + 1 Alpha 400 MHz 570 Meg.

o Total sequential CPU time: 18 days.

e Size of the file of coeflicients in the output (binary): 1660 Meg.

e The result contains: 1344 polynomials with 1000 monomials and 800 digits
numbers !
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This success is also a failure in some sense: the size of the output is so big that we
cannot do anything with this result. That is to say we are now near to the intrinsic
complexity of Grobner bases. On the other side, the output is very big because the co-
efficients are big and floating point computation would not suffer from this exponential
growth.

We conclude that for all these examples FGb>>>Gb and that it faster than other
systems.

5. Final remarks

The conclusion is that /4 is at least one order of magnitude faster than all previously
implemented algorithms.

We recall the main features of this algorithm are:

o Replace all the previous strategies (sugar([25]),...) by algorithms for (sparse) linear
algebra. It explains why the usual strategies in Buchberger algorithm could not be
optimal.

o Faster for all kind of arithmetic (modular computation, integers, “generic” compu-
tation)

e In some sense it is as fast as possible for big integers coefficients or coefficients
with parameters (k(y1,...,¥,)) because the practical complexity is almost linear in
the size of the output coefficients: in the case of homogeneous polynomials the
complexity of Fy is s'7D + M where s is the size of othe result and M is the time
needed for modular computation which is generally much smaller.

o For homogeneous systems the algorithm generate reduction to zero or non-zero poly-
nomials (completely reduced) which are all in the final Grobner basis. So the algo-
rithm does not generate “parasite” intermediate data.

e Very good experimental behavior for non-homogeneous systems (several times faster
than the corresponding homogeneous system).

e Parallel versions of the algorithm can be implemented (we have done a first imple-
mentation).

e The algorithm is easier to implement (no polynomial arithmetic is required, do not
need an efficient power product (exponents) implementation).

e It can solve previously intractable problems: we are now able to compute easily
three new records: Cyclic9 for modular coefficients (4h30), Cyclic8 for big integers
coefficients (25 mins) and the very challenging Cyclic9 for bignum coefficients (18
days of CPU time).

A lot of work remains to do in the linear algebra part to apply less naive algorithms
to the generated matrices and to compress more efficiently those matrices. Considerable
works must also be done to compare the algorithm with different possible strategies
(sugar and homogenizing, multi-weight in the case of multi-homogeneous ideals might
reduce the size ot the matrices (as suggest by D. Lazard and one anonymous referee)).
How to use the symmetry of the problems to handle more efficiently the matrices is also
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an open problem. Even if the algorithm presented in this paper is heavily connected
with the Buchberger algoritm (use the same criteria for useless pairs), we think that
an interesting work would be to use the technique of Mandache [36,37] to check that
Fy is not a Buchberger algorithm in the sense that the Buchberger algorithm cannot
simulate the new algorithm for any strategy. When the normal strategy is used, we can
plot the function d—deg( first(P;)); we obtain an increasing function for homogeneous
systems but in the affine case we obtain different curves:

Cyclic 8 — Total degree of critical pairs

WW

El 50 — Total degree of critical pairs

An open issue is to understand deeply the shape of this curves.
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