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In the magical art of Steganography, there is nothing frivolous, nor
contrary to the Gospels and the Catholic faith; nor have we taught
superstitious beliefs. Everything is based on natural, lawful and honest
principles; the mystery which veils the precepts of this art and the
names of the spirits, requires a cultivated reader; to hide the secrets
of this art, which could be harmful if made known to wicked men, we
avail ourselves of the services of the spirits.

Johannes Trithemius, Steganographia

The air is influenced by astral emanations. So one can, naturally and
without spiritual help, communicate his thoughts to another man, how-
ever large the distance between them. This I have seen done, I did myself
and was done by Trithemius. .. In the same way, one can broadcast in
the air any image, however far, by means of mirrors. .. The image will
be, through large distances, seen by a conscious reader in the lunar
disc; this artifice was used by Pythagoras.

H.C. Agrippa, De Occulta Philosophia
It’s better to have loved and lost
than to have liked and tied for second.

Anonymous

Dear Deluded Author,

You are proposing to use the fact that Grobner bases are hard to compute
to devise a pubic key cryptography scheme. We are firmly convinced, instead,
that no scheme using Grobner bases will ever work. The following notes are an
attempt to explain why.

* D. Naccache read backwards.
** Partially supported by SPECTRE.
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Let us start by recalling the basic facts related to Grobner bases (cf. [B],
[BWK]). One has an ideal I C k[X1,...,X,] (where k is a field) and a well-
ordering compatible with product on the semigroup T of terms (monic mono-
mials) in k[Xi,...,X,]. This ordering allows to represent uniquely each f €
k[X1,...,X,] as an ordered linear combination of elements of T:

=t k0L hET >,
=1

so to each non-zero element f € k[X1,...,X,], we can associate T(f) := t1, the
maximal term of f; its coefficient ¢y is called the leading coefficient of f and
denoted le(f).

Moreover, the ordering allows to associate to the ideal I the semigroup ideal
TI) ={T(f) e T: feI\{0}} CT, and its complement, the order ideal
o) :=T\T().

The most important fact which can be derived by this setting is the following;:

Fact 1 1) k[X1,...,X,] =1® Spani(O(I)).

2) There is a k-vector space isomorphism between k[X1,...,X,]/I and
Spany,(O(1)).

3) For each f € k[X1,...,X,] there is a unique g := Can(f,I) € Spani(O(I))
st. f—gel.

Moreover:

a) Can(f,I) =Can(g,I) if and only if f —g € 1.
b) Can(f,I) =0 if and only if f € I.

Remark immediately a very important point, which is obscured in most pre-
sentations of Grobner bases: the canonical form of an element is defined just
in terms of the ideal and of the ordering; conceptually the notion of a Grobner
basis is not needed to define canonical forms. In fact, we have not yet defined
Grobner bases: we are going to do it now.

A Grébner basis of I is a set of generators G := {g1,...,9s} C I s.t. T(G) :=
{T(g1),...,T(gs)} generates T(I).

If a Grobner basis G of T is known, given f € k[X1,...,X,], Can(f,I) can
be computed by the following algorithm (Buchberger Reduction):

Red(f,G)
h:=0
While f # 0
If T(f) € T(G) then
choose g € G s.t. T(f) =tT(g)
fe=f—le(fle(g)~tg
else
he=h+1c(f)T(f), f=[f—1lc(f)T(f)
Can(f,I):=h
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which is a procedure analogous to Gaussian reduction in vector spaces and whose
cost is therefore quadratic in the size of the input polynomial f, i.e., in a dense
representation, in the number of terms which are not greater than T'(f). If the
ordering is compatible with degree, i.e. deg(t1) < deg(ta) = t1 < ta, this
number is O(d™) where d = deg(f).

On the other side, Buchberger Algorithm to compute a Grébner basis of an
ideal I, knowing a basis {f1,..., ft} of I, has a worst-case complexity dQO(n),
where d = maxdeg(f;).

Notwithstanding the complexity result above, the basic assumption of your
paper, i.e. that Grobner bases are hard to compute, is based on a misunder-
standing.

It is true that there are ideals whose Grobner bases have elements whose
degree is doubly exponential in the degrees of the input basis; but such exam-
ples are rare, with bad algebraic properties, and absolutely not random, while
randomness must obviously be somehow part of your scheme.

In fact in one of the two papers which at least partially settled the complexity
of Buchberger algorithm ([G]), the following is proved:

Theorem 1. “Most” of the ideals generated by s polynomials in n variables of
degree bounded by d are such that their Grobner bases have degree bounded by
(n+1)d —n.

Most here means that coefficients are randomly chosen and that the result
holds except for a set of measure zero in the space parametrizing the coefficients.

The major misunderstanding of your paper is however confusing the problem
of deciding ideal membership with the problem of computing Grobner bases; a
solution to the second problem gives a solution to the first one, but an easier
solution to the first problem could be at hand. It is this easier solution which
allows to break a Grobner cryptographic scheme.

Let us begin by describing a basic cryptographic scheme using Grébner bases;
this scheme, or variants of it, has popped up many times and never reached
existence, since we dutifully explained its authors the attacks we are going to
describe below.

Somehow Archibald has produced an ideal I C k[X1,...,X,] of which he
secretly owns a hard-to-compute Grobner basis, so allowing him to compute
canonical forms in polynomial time.

Archibald makes public a set of terms 7 C O([I) (either the whole of it, or, for
added security, a subset of it) and a set of low-degree polynomials {g1,...,9:1} C
I, which are a basis of either I or of some ideal properly contained in it.

When Balthazar wants to send Archibald a message, he encodes it as a lin-
ear combination M = Zti cr Citi- The polynomial M therefore satisfies M =
Can(M,I).

To encrypt it, Balthazar produces randomly polynomials p1, . . ., p; and broad-
casts the polynomial C := M + 22:1 DiGi-

Since C — M € I, Can(C,I) = Can(M,I) = M, so Archibald can use his
secret Grobner basis to compute M = Can(C, I).
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What our f(r)iend Fantomas knows is 7, the g;’s and C; but he also knows
that M, while unknown to him, is the canonical form of C.

Before describing our attacks, we need a few more assumptions, in order to
have a complexity measure: we assume that everything is dense, i.e. we assume
that Archibald makes public:

1) I dense polynomials of degree at most d in n variables, ¢g1,...,g:.
2) A set of monomials 7 = {mq,...,ms} C O(I) of degree at most d.

To send a message, Balthazar chooses each p; to be a dense polynomial of
degree r. C is therefore a dense polynomial of degree R < D := d+r ! ; if
we denote by 7 the number of terms of degree at most D, the complexity of
Balthazar’s encoding and Archibald’s decoding is therefore between O(7) and
o(r?) 2.

The value of r is probably a public parameter, but Fantomas would not
be hampered even if it were a secret choice of Balthazar. In fact, because of
randomness in the choice of p;, there will be only a few cancellations in the sum
22:1 Digi, so that Fantomas has a good guess of r too.

Fantomas has another and stronger advantage: because of the uniqueness
of the canonical form, Fantomas doesn’t need to find the same p;’s used by
Balthazar; any choice of ¢;’s s.t. C = M + 22:1 q:g; is equally fine for him.
In particular, Fantomas can look for the minimal degree representation C' =
M + Zlizl q:g;. If we set D’ := maxdeg(q;g;), one has R < D' < D =d +r;
because of randomness, however, it is to be expected that R = D’ = D.

To break the system, Fantomas can now use the following result about
Grobner bases ([DFGS]), which definitely shows that the ideal membership prob-
lem is not necessarily as hard as computing a Grobner basis.

Theorem 2. Let I = (g1,...,491) and let h be s.t. deg(h) < D, h— Can(h,I) =

2221 pigi with deg(pigi) < D.

Let G be the output of Buchberger algorithm, modified so that each computa-
tion involving polynomials of degree higher than D is not performed.

Then Can(h,I) can be computed by Buchberger reduction of h via G.

1 D is the degree C would have if no cancellation occurs and if there is at least a g; of
degree d, such that the degree of the corresponding random p; is exactly r. That’s
exactly what one should expect to happen.
to achieve this complexity in decoding, either Balthazar has to choose a degree-
compatible ordering or he must use some clever version of Buchberger reduction.
Since this has nothing to do with security, and is a bit involved, we don’t enter into
many details and we just briefly discuss the case in which the ordering is degree-
compatible: because of density, Archibald has to scan all 7 terms for reducing them
if possible, which gives the O(7) lower bound; since each reduction costs O(7), the
upper bound is obtained too.
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The high complexity of Grobner bases is in fact strictly related with the ex-
istence of polynomials in an ideal whose minimal degree representation in terms
of a given basis is doubly exponential in the degree of the basis elements. Since
such polynomials cannot be used as encoded messages, a cryptographic scheme
applying the complexity of Grobner basis to an ideal membership problem is
bound to fail.

Is our reader able to find a scheme which overcomes this difficulty?

In particular our reader could think (perhaps with some reason) that a sparse
scheme could work. We believe (perhaps without reason) that sparsity will make
the scheme easier to crack. We would be glad to test our belief on specific sparse
schemes.
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Appendix

We collect here those technical results which are needed for a proper understand-
ing of Fantomas attack. Of course, we begin by recalling a (simplified) version
of Buchberger algorithm.

Given f,g € k[X1,...,Xn] \ {0} we denote:

_lem(T(f),T(g))

S(f,g) = le(f) f—le(g)

1l.c.m.(TEf),T(9))g

T(f) T(g)
deg(f,q) = maxdeg(l'c'm'(§E;;7 1(9)) 7 l.C.m.(ggi, T(g))g)

Theorem 3. For G C I, the following conditions are equivalent:

1) G is a Grébner basis of I.

2) Each f € I has a representation f = > p;gi, gi € G, with T(f) = T'(p1g1) >
. > T(pigi) > T(pi1gi+1) > ..., which is called a strong Grébner repre-
sentation

3) G is a basis of I andVf,g € G, S(f,g) has a strong Grobner representation.

Proof.
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1) = 2) Buchberger reduction shows in fact that for each f € k[Xq,...,X,],
f—Can(f,I) has a strong Grobner representation.

2) = 1) The definition of Grébner basis is immediately verified since for each
f eI, T(f)is then a multiple of T(g1).

2) = 3) This is obvious since S(f,g) € I.

3) = 2) f has clearly at least a representation f = Y p;g;, where w.l.o.g.
T(p1g1) > T(p2g2) > ...; if it is not a strong Grobner representation, there
are at least two summands p;g;, pjg;, s.t. T(pig;) = T(p;g;) =: t. To each
representation which is not Grobner, we can therefore associate a term t, to
be the highest term s.t. there are 4, j, with T'(p;g;) = T'(p;¢;) = t, and an
integer m > 2 to be the total number of summands prgy s.t. T(prgx) = t.
We now assume that f has no strong Grobner representation; then among
the representations of f for which ¢ is minimal, we choose one with minimal
m. Let it be: f = > p;g; and let 4,4+ 1,...,i +m — 1 be the indexes s.t.
T(pitjgi+i) =1t.

Denote t; := l.C-m.(T;%2i7;(gi+l))7 tigr = lcm(?l:((;l;l;(gw+1))
Clearly there is 7 s.t. T(p;) = 7t;. Moreover the assumption implies that
S(giagi-i-l) = lc(gi)_ltigi — lc(gi+1)_1ti+1gi+1 = qu\h/\ with h) € G and

T(tigi) = T(tit19i+1) > T(qrh1) > ..., ie.

le(gi) " tigi = le(girn) Mg — Y aaha

le(g0) ' T(pi)gs = le(girn) " Thivagins — > Tarha

are both strong Grobner representations.

Therefore if we substitute in the chosen representation T'(p;)g; with the
representation above, either ¢ will decrease (in case m = 2 and lc(p;g;) =
le(pit19i+1)) or m will decrease.

In both cases we have a contradiction with the minimality of the chosen
representation. ]

Buchberger algorithm to compute a Grobner basis G of I, given a basis F' of
I is a direct consequence of the theorem above:

G = Grdébner(F)
G:=F
B:={{f.g}:f g€G}
While B # ) do
Choose {f,g9} € B

h:=Red(S(f,9),G)

If h # 0 then
B:=BU{{f,h}: feG}
G:=GU{h}

The modified algorithm of Theorem 2 is obtained by not performing the com-
putation and the reduction of those S(f, g) s.t. deg(f, g) > D. Its proof is an easy
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modification of the one of Theorem 3: one has just to consider only the represen-
tations of f —Can(f,I) in terms of the basis G (since it contains the input basis,
such representations exist); once a minimal one is chosen, one has just to remark
that if maxdeg(pig;) < D, then deg(gi,gi+1) < D, so S(g;,gi+1) has a strong
Grobner representation in terms of G. Once a strong Grobner representation of
f—Can(f,I) in terms of G is found, it is obvious that Can(f,I) = Red(f,3).

The complexity evaluation is also easy; if 7 is the number of terms of degree
at most D, there are at most 7 elements in G, O(72) elements in B, whose
reduction has a O(72) cost.



