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Abstract. The toric ideal I
A

of a matrix A"(a
1
, . . . , a

n
)3Zd]n is the kernel of

the monoid algebra map n̂
A

: k[x
1
, . . . , x

n
]Pk[t$1

1
, . . . , t$1

d
], defined as

x
j
>ta

j
. It was shown in [4] that the reduced Gröbner basis of I

A
, with respect to

the weight vector c, can be used to solve all integer programs minimize
Mcx : Ax"b,x3NnN, denoted IP

A,b, c,/
, as b varies. In this paper we describe the

construction of a truncated Gröbner basis of I
A

with respect to c, that solves
IP

A,b, c,/
for a fixed b. This is achieved by establishing the homogeneity of I

A
with

respect to a multivariate grading induced by A. Depending on b, the truncated
Gröbner basis may be considerably smaller than the entire Gröbner basis of
I
A

with respect to c. For programs of the form maximizeMcx :Ax6b, x6u,
x3N nN in which all data are non-negative, this algebraic method gives rise to
a combinatorial algorithm presented in [17].

Keywords: Integer programming, Toric ideal, Truncated Gröbner bases, Trun-
cated Buchberger algorithm, Multivariate grading.

1 Introduction

We study integer programs of the form minimize Mcx : Ax"b,x3NnN, denoted
IP

A,b, c,/
, where the coefficient matrix A"(a

1
, . . . , a

n
)3Z d]n is a fixed matrix of

full row rank, the right hand side vector b3Zd, and the cost vector c3Rn. A vector
x3Nn such that Ax"b is called a solution of IP

A,b, c,/
. A solution y such that

cy6cx for all x3Nn, Ax"b, is an optimal solution for IP
A,b, c,/

and cy, the cost
value of y, is called the optimal value of IP

A,b, c,/
. We say that IP

A,b, c,/
is feasible,

or b is feasible if, IP
A,b, c,/

has at least one solution. The integer program IP
A,b,c,/

is assumed to be bounded (i.e, IP
A,b,c,/

has a bound optimal solution) and the cost
vector c is assumed to induce a linear order on Nn via cx. (If a given vector c does
not induce a linear order on Nn, we use the lexicographic order on Nn to break ties
among points with the same cost value. In what follows, c is always assumed to be
a total order on Nn. This refinement of c creates a unique optimal solution for
IP

A,b, c,/
, although the optimal value of the integer program is unchanged.) In [4],



Conti and Traverso describe a Gröbner basis algorithm to solve all programs
IP

A,b, c,/
as b varies. Their algorithm requires the computation of the reduced

Gröbner basis with respect to the cost vector c, of the toric ideal I
A

associated with
A. Gröbner basis algorithms for finding non-negative integer solutions to systems
of linear equations were also given by Pottier [9], [10] and Ollivier [11].

A set ¹-Zn is a test set for the family of integer programs MIP
A,b, c,/

, ∀b3ZdN
if, for each non-optimal solution x to a program in this family, there exists v3¹

such that x!v is a solution for the same program with cx'c(x!v). See [7], [12]
and [13] for finite test sets in integer programming. The algebraic algorithm in [4]
allows a geometric interpretation which has been worked out in [16]. The
geometry recognizes the reduced Gröbner basis produced by the Conti-Traverso
algorithm as a minimal test set for the above family of integer programs. These test
sets can be computed in practice by using a computer algebra package like
MACAULAY [1], or the software GRIN [8] which is a specialized implementa-
tion of Gröbner bases for integer programming.

The computation of the entire reduced Gröbner basis associated with the
family of programs MIP

A,b, c,/
, ∀b3ZdN, is often expensive or impossible. In

practice, one is often interested in solving IP
A,b, c,/

for a fixed right hand side
vector b, which typically requires only a subset of the entire Gröbner basis. In this
paper, we provide a truncated Buchberger algorithm for toric ideals that finds
a sufficient test set for IP

A,b,c,/
. This set is often a proper subset of the reduced

Gröbner basis of I
A
, with respect to c. The algorithm follows from a multivariate

grading induced by the matrix A, of the toric ideal I
A
. This generalizes, in the case

of toric ideals, the theory of truncated Gröbner bases for ideals that are homogene-
ous with respect to a grading given by a vector of non-negative integers (see
Section 10.2 in [2]). We refer to [2] and [6] for the theory of Gröbner bases and to
[14] for toric ideals, their Gröbner bases and connections to integer programming
and convex polytopes.

This paper is organized as follows. In Section 2 we present the multivariate
grading of I

A
given by the matrix A and the truncated Buchberger algorithm to

solve IP
A,b, c,/

for a fixed b. We introduce a partial order ) on the monoid of all
feasible right hand side vectors, and the truncated Buchberger algorithm, denoted
b-Buchberger, produces a minimal test set for all programs IP

A,b, c,/ for which
b( b. The elements in the union of all test sets obtained by varying the cost
function c are precisely the edge directions in the polytopes PIb"convex
hullMx3Nn :Ax"bN for b ( b.

In Section 3 we apply the above algebraic method to the program
maxMcx : Ax6b, x6u,x3NnN for which all data are non-negative. Such pro-
grams allow for simplifications and in this case, a geometric interpretation of the
truncated Buchberger algorithm gives a combinatorial algorithm presented in [17].

2 A Truncated Buchberger Algorithm for Toric Ideals

As earlier, let IP
A,b, c,/

denote the integer program minimize Mcx :Ax"b, x3NnN
satisfying all the stated assumptions. The program IP

A,b, c,/
is feasible if and only if

b lies in the monoid CN(A)"M +n
i/1

m
i
a
i
: m

i
3NN-Zd . We assume that

C(A)"M +n
i/1

r
i
a
i
: r

i
3R

`
N is a pointed cone in Rd and that Mx3Rn

`
:

Ax"0N"M0N. The latter assumption ensures that PI
b
"convex hull Mx3Nn :

Ax"bN is a polytope for all b3CN(A).
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The matrix A induces a monoid homomorphism n
A
:NnPZd given by

n
A
(u)"Au. This lifts to the homomorphism of monoid algebras

n̂
A
: k[x

1
, . . . , x

n
]Pk[t$1

1
, . . . , t$1

d
] where x

j
> ta

j
"taÇj1

. . . ta
djd

. The toric
ideal of A is the prime ideal I

A
"kernel (nL

A
)Lk[x

1
, . . . , x

n
].

Lemma 2.1 ¹he toric ideal I
A
"=b|CN (A)

I
A
(b) where I

A
(b) is the k-vector space

spanned by the binomials Mxu!xv :Au"Av"b, u, v3NnN.

Proof. The ideal I
A

is spanned as a k-vector space by the binomials Mxu!xv :
Au"Av , u, v3NnN. The above decomposition is the obvious grading of I

A
in-

dexed by elements of CN(A), where the component I
A
(b) is the k-vectorspace

spanned by Mxu!xv : Au"Av"b3CN(A)N. m

We call the polytope PIb"convex hull Mx3Nn :Ax"bN, the b-fiber of n
A
.

Note that xu!xv 3I
A
(b) if and only if u, v3PIbWNn. Hence, there is a bijection

between the fibers of n
A

and the components in the above direct sum via the
elements in CN (A). Further, Lemma 2.1 implies that I

A
"Sxu!xv : Au"Av,

u, v3NnT. Hence, I
A

always has a finite generating set that consists of binomials of
the above form and consequently, every reduced Gröbner basis of I

A
again consists

of such binomials.
The Conti-Traverso algorithm to solve all programs in the family MIP

A,b, c,/
,

∀b3CN(A)N, involves the following two steps:

Step 1. Compute the reduced Gröbner basis G
c
of the toric ideal I

A
, with respect to

the (refined) weight vector c.
Step 2. For a specified right hand side vector b, compute the normal form modulo
G
c
(remainder on division by elements in G

c
), of the monomial xu, where u is any

feasible solution to IP
A,b, c,/

. The exponent vector of this normal form is the
unique optimal solution of IP

A,b, c,/
.

The Conti-Traverso algorithm achieves Step 1 by a Gröbner basis computa-
tion on a larger ideal in the polynomial ring k[t

0
, t

1
, . . . , t

d
,x

1
, . . . , x

n
].

Methods for finding a generating set and Gröbner bases for I
A

that operate entirely
in the polynomial ring k[x

1
, . . . , x

n
] can be found in [5] and [8].

The reduced Gröbner basis G
c

of I
A

is a test set for all integer programs
IP

A,b, c,/
such that b3CN (A). For a fixed b, the set G

c
often contains a number of

elements that are not used in Step 2 of the algorithm. In the rest of this section we
describe a modification of the Buchberger algorithm for I

A
, inspired by Lemma

2.1, that provides a sufficient test set for IP
A,b, c,/

for fixed b. This set may be
considerably smaller (depending on b ) than the entire reduced Gröbner basis G

c
.

Example 2.2 Let A"C
3 1 11 2 3 5 3

4 5 0 1 7 4 6

5 6 1 9 2 3 3 D where rank(A)"3. For the sake

of clarity we associate the variables a, b, c, d, e, f, and g with the columns of A. For
the cost vector w"(23, 15, 6, 7, 1, 53, 4), the reduced Gröbner basisG

w
of I

A
consists

of the 31 binomials : fg10!b3ce7, f 2g5!b2 ce4, f 3!bce, d2e f 2g!a2b3c,
d2e2 f!b4c, bg10!d2e9, bfg!a2e, bef!ag2, b2 f 2!a3g, b4ce8!ag12,

b5c!ad2eg2, afg7!b3ce5, af 2g2!b2ce2, ae2!g3, abg7!d2e7, ab4c!d2fg3,
a2g9!b4ce6, a2 fg4!b3ce3, a2 f 2!b2cg, a2bg4!d2e5, a2b2 f!d2e2g,
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a3g6!b4ce4, a3 fg!b3ce, a3bg!d2e3, ag22!b3cd2e17, a4g3!b4ce2,
d2 f 2g4!a3b3ce, g25!b3cd2e19, a4ef!b3cg2, a4b!d2eg2, a5!b4c , where
the first term of each binomial is the leading monomial with respect to w.

For the right hand side vector r"(31, 27, 38), the polytope PI
r
contains the four

lattice points (0, 0, 1, 3, 2, 1, 1), (0, 4, 2, 1, 0, 0, 1), (2, 2, 1, 1, 0, 2, 0), and (5, 0, 1, 1, 0, 0,
1), of which (0, 0, 1, 3, 2, 1, 1) is the optimal solution to IP

A,r,w,/
. Representing the

solutions of IP
A,r,w,/

by the monomials cd3e2 fg, b4c2dg, a2b2cdf 2, and a5cdg, it
can be seen that only the five underlined binomials in G

w
are involved in the

reduction of any non-optimal monomial to the optimum. Therefore, to solve
IP

A,r,w,/
in practice, one would like to devise a method that uses r to shortcut the

Buchberger algorithm to output just the five underlined binomials or some small
superset of it.

Let M denote the set of all monomials in k[x]"k[x
1
, . . . , x

n
] where k is

a field. The monoids M and Nn are isomorphic via the usual identification of
a monomial xu with its exponent vector. Under this identification, the monoid
homomorphism n

A
induces a multivariate grading of M and hence k[x], where the

n
A
-degree of xu denoted n

A
(xu)"n

A
(u)"Au3CN(A). Let M ( f ) denote the mono-

mials in a polynomial f 3k[x].

Definition 2.3 A polynomial 09f3k[x] is said to be n
A
-homogeneous if n

A
(s)

"n
A
(t) for all monomials s, t3M ( f ). ¹he n

A
-degree of a homogeneous polynomial f,

denoted n
A
( f ), equals the n

A
-degree of any monomial in M ( f ).

A graded ideal I is homogeneous if and only if, all homogeneous components
of every polynomial f in I, are also in I. Note that a polynomial f3I

A
is

n
A
-homogeneous if and only if the exponent vectors of all monomials in M ( f ) are

lattice points in the same fiber of n
A
.

Lemma 2.4 ¹he toric ideal I
A

is homogeneous with respect to the grading induced
by n

A
.

Proof. A binomial xu!xv lies in I
A

if and only if u, v3Nn and Au"Av. Binomials
of this form are clearly n

A
-homogeneous. Let fb denote the sum of all monomials of

n
A
-degree b, in a non-zero polynomial f3I

A
. By Lemma 2.1, f is a k-linear

combination of homogeneous binomials with fb3I
A
(b)LI

A
for all b3CN(A).

Hence I
A

is homogeneous with respect to n
A
. m

From now on we use the word homogeneous to mean n
A
-homogeneous. The

above multivariate grading generalizes the usual grading of ideals by a vector of
non-negative integers. An ideal that is homogeneous with respect to grading by
a non-negative vector allows a natural truncation of the Buchberger algorithm
that is compatible with the grading. We generalize this concept for the toric ideal
I
A
, which has been shown to be homogeneous with respect to the above multivari-

ate grading. Our exposition follows Section 10.2 in [2].
Associated with the monoid CN(A) there is a ‘‘natural’’ partial order) such

that for b
1
, b

2
3CN(A), b

1
) b

2
if and only if b

1
!b

2
3CN(A). Notice that when

CN(A)"Nd, the partial order ) coincides with the componentwise partial order
7, where b

1
7b

2
if and only if b

1
!b

2
70. Let in

c
( f ) denote the initial (leading)

monomial of f3k[x] with respect to the refined cost function c.
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Lemma 2.5 ¹he following properties hold for the partial order ) and the grading n
A

of I
A

:

(i) If xu divides xv, then n
A
(xu) (n

A
(xv).

(ii) ¸et f, g3I
A

be homogeneous polynomials such that n
A
( f )"n

A
(g) and f, g,

f#g90. ¹hen f#g is again homogeneous with n
A
( f#g)"n

A
( f )"n

A
(g).

(iii) ¸et 09f, g3I
A

be homogeneous polynomials. ¹hen fg is homogeneous with
n
A
( fg)"n

A
( f )#n

A
(g).

(iv) ¸et 09f, p3I
A

be homogeneous polynomials and g90 be obtained by reducing
f by p with respect to c. ¹hen n

A
( f ) )n

A
(p) and g is a homogeneous polynomial

with n
A
(g)"n

A
( f ).

Proof. We prove just (i) and (iv) since (ii) and (iii) follow from the definitions. (i) If
xu divides xv then v"u#w for some w3Nn. Therefore, Av!Au"Aw3CN(A)
which implies that n

A
(xu)(n

A
(xv). (iv) Since p reduces f, in

c
(p ) divides some term

of f. Using (i) and the homogeneity of f and p, n
A
( f ))n

A
(p). The polynomial g is

again homogeneous with n
A
(g)"n

A
( f ) since reduction by a homogeneous poly-

nomial preserves degree. m

We are now ready to describe a truncated Buchberger algorithm for I
A

called
b-Buchberger, that produces a test set for the programs IP

A,b,c,/ for all b ( b. The
normal form a binomial g, modulo a set of binomials G and cost function c, is
denoted norm f MG,cN

(g) and the S-binomial of two binomials g
1

and g
2
, with respect

to c, is denoted S-bin
c
(g

1
, g

2
).

The b-Buchberger algorithm for toric ideals

Input: A finite homogeneous binomial basis F of I
A

and the refined cost vector c.
Output: A truncated (with respect to b) Gröbner basis of I

A
with monomial order

given by c. i"!1, G
0
"F

Repeat
i"i#1
G

i`1
"G

i
X (Mnorm fMG

i
,cN

(S-bin
c
(g

1
, g

2
) ) : g

1
, g

2
3G

i
,

n
A
(S-bin

c
(g

1
, g

2
) ( b )N C M0N)

Until G
i`1

"G
i
.

Reduce G
i`1

modulo the leading monomials of its elements.

The only difference between the usual Buchberger algorithm and the
b-Buchberger algorithm described above is that the latter only considers those
S-binomials with n

A
(S-bin

c
(g

1
, g

2
) )( b. The algorithm terminates in finitely many

steps since the Buchberger algorithm does so. Following the above notation, we
may denote the usual Buchberger algorithm as R-Buchberger. Let F denote the
starting binomial basis for I

A
input to b-Buchberger and G

c
(b) denote the output of

the algorithm. From Lemma 2.5 we obtain the following proposition.

Proposition 2.6 (i) Every g3G
c
(b) is a homogeneous binomial and n

A
(g)( b

∀g3G
c
(b)CF. (ii) For all g

1
, g

2
3G

c
(b) with n

A
(S-bin

c
(g

1
, g

2
) ( b, S-bin

c
(g

1
, g

2
)

reduces to 0 modulo G
c
(b).
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binomial n
A

(binomial) d"r! Is d3CN(A)?
n
A

(binomial)

bce!f 3 [15, 12, 9] [16, 15, 29] NO
b3 f 2!d2e3 [13, 23, 24] [18, 4, 14] NO
b4c!d2e2 f [15, 20, 25] [16, 7, 13] YES

ag2!bef [9, 16, 11] [22, 11, 27] NO
ae2!g3 [9, 18, 9] [22, 9, 29] NO
a2 f 2!b2cg [16, 16, 16] [15, 11, 22] YES

a2e!bfg [9, 15, 12] [22, 12, 26] NO
a2b2 f!d2e2g [13, 22, 25] [18, 5, 13] YES

a2b3c!d2ef 2g [20, 23, 29] [11, 4, 9] NO
a3g!b2 f 2 [12, 18, 18] [19, 9, 20] YES

a4b!d2eg2 [13, 21, 26] [18, 6, 12] NO
a5!d2e2 f [15, 20, 25] [16, 7, 13] YES

Notice that only those binomials in the starting basis F with n
A
( f ) ( b play

a role in the algorithm b-Buchberger. If there exists a binomial f3F such that
n
A
( f ) is not less than or equal to b with respect to the partial order ( , then it may

be checked that the S-binomial formed by f and any other binomial will also
inherit this property and hence will not be considered by b-Buchberger. However,
G

c
(b) generates I

A
and the ‘‘passive’’ elements in F are carried along simply to

preserve the generated ideal.

Example 2.2 continued. The twelve binomials listed in the following table form
a minimal generating set for the toric ideal I

A
from Example 2.2. For the right hand

side vector r"(31, 27, 38), an element of this minimal generating set participates in
the algorithm r-Buchberger only if n

A
(minimal generator)( r, i.e., r!n

A
(minim-

al generator)3CN(A). It can be seen from the table below that only the five
underlined binomials are eligible to participate in r-Buchberger. The remaining
seven are simply carried along by the algorithm to preserve the ideal.

We call ¹
c
(b)"Mg3G

c
(b) :n

A
(g)( bN the reduced b-Gröbner basis of I

A
with

respect to c. Let I
A
[b]"=b( b I

A
(b) and G

c
denote the usual reduced Gröbner

basis of I
A

with respect to c.

Proposition 2.7 ¹he reduced b-Gröbner basis ¹
c
(b)"G

c
WI

A
[b].

Proof. Since G
c
(b) generates I

A
, the algorithm R-Buchberger outputs G

c
with

starting basis G
c
(b) and cost vector c. During the run of this algorithm, no binomial

g is created such that in
c
(g) divides either the leading or trailing term of an element

in ¹
c
(b). Suppose such a g is created and it is the first such. By Lemma 2.5,

n
A
(g)"d ( b and hence, g is the normal form of an S-binomial S-bin

c
(g

1
, g

2
) of

n
A
-degree d. This implies that n

A
(g

1
), n

A
(g

2
) ( d( b and therefore, g

1
, g

2
3¹

c
(b).

But then by Proposition 2.6 (ii) and the definition of G
c
(b), S-bin

c
(g

1
, g

2
) reduces to

zero modulo ¹
c
(b). Hence no element of ¹

c
(b) is altered and no new binomial

g with n
A
(g)( b is created. Since ¹

c
(b)-G

c
(b), the result follows. m

The above proposition also proves that the set ¹
c
(b) is unique, although it may

not be a generating set for I
A
. We denote by in

c
(¹

c
(b)) the set of all initial terms
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q
ij
:"S!bin

w
(p

i
, p

j
) n

A
(q

ij
) Is r)n

A
(q

ij
) ? effect of reduction

q
12

:"a2b4cf!b2cd2e2g [26, 32, 38] NO
q
13

:"a2b6c!d4e4g [23, 38, 47] NO
q
14

:"b6cf!a3d2e2g [22, 34, 40] NO
q
15

:"a5b4c!d4e4 f 2 [30, 40, 50] NO
q
23

:"d2e2fg!b4cg [18, 26, 28] YES q
23

:"g(!p
1
)

q
24

:"a5g!b4cg [18, 26, 28] YES q
24

:"g(p
5
!p

1
)

q
25

:"d2e2 f 3!a3b2cg [25, 28, 31] NO
q
34

:"a5g!d2e2 fg [18, 26, 28] YES q
34

:"g(p
5
)

q
35

:"b2d2e2f 2!a3d2e2g [22, 34, 40] NO
q
45

:"b2d2e2 f 3!a8g [27, 38, 43] NO

with respect to c, of the binomials in ¹
c
(b), and by in

c
(I

A
) the initial ideal of I

A
with

respect to c.

Theorem 2.8 ¹he set ¹
c
(b)"G

c
WI

A
[b] has the following properties:

(i) Every monomial s3 in
c
(I

A
) such that n

A
(s)( b is divisible by some t3in

c
(¹

c
(b)).

(ii) Every 09f3I
A
[b] reduces to zero modulo ¹

c
(b).

(iii) Every homogeneous f3k[x] with n
A
( f ) ( b has a unique normal form modulo

¹
c
(b).

Proof. (i) Suppose there exists some monomial s3in
c
(I

A
) with n

A
(s)( b that is

not divisible by any t3in
c
(¹

c
(b)). By Lemma 2.5 (i) and Proposition 2.7, it follows

that there does not exist any t3in
c
(G

c
) that divides s. This contradicts that G

c
is

a Gröbner basis of I
A

with respect to c. Using (i) and Proposition 2.6, we get (ii) and
(iii). m

Corollary 2.9 ¹he set ¹
c
(b) is a minimal test set for all integer programs IP

A,b,c,/
with b( b.

Proof. Let u be a feasible non-optimal solution to IP
A,b,c,/ for some b ( b for

which the optimal solution is v. By Theorem 2.8, the binomial xu!xv3I
A
[b]

reduces to zero modulo ¹
c
(b) where xv3D in

c
(¹

c
(b)). Hence, the unique normal form

of xu modulo ¹
c
(b) is xv. This set is minimal by Proposition 2.7 since otherwise

G
c
would not be a minimal test set for the family of programs MIP

A,b, c,/
, ∀bN.m

Example 2.2 continued. For r"(31, 27, 38) consider the five binomials p
1
:"b4c!

d2e2 f, p
2
:"a2 f 2!b2cg, p

3
:"a2b2 f!d2e2g, p

4
:"a3g!b2 f 2 and

p
5
:"a5!d2e2 f that are eligible to actively participate in r-Buchberger. For

w"(23, 15, 6, 7, 1, 53, 4), the leading terms of the binomials are the underlined
monomials in the above list. The following table tabulates the S-binomials formed
and the effect of truncation on them. When the degree of an S-binomial allows it to
be considered for reduction by the algorithm, we record this division in the last
column.

It may observed from above that the truncation allows only three of the
S-binomials produced to be considered further and these reduce to zero modulo
the existing binomials. Hence no new binomials are formed. After auto reducing
the above five binomials modulo their leading terms, we obtain the reduced
r-Gröbner basis ¹

w
(r) :"Md2e2 f!b4c, b2 f 2!a3g, a2 f 2!b2cg, a2b2 f!d2e2g,
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a5!b4cN which can be observed to be G
w
WI

A
[r] from earlier discussions of this

example.

The algorithm b-Buchberger described above considers an S-binomial
g"xu!xv for reduction if and only if n

A
(g)"Au"Av ( b. This amounts to

checking feasibility of the system Mx3Nn :Ax"b!AuN which is as hard as
solving the original integer program IP

A,b, c,/
. Therefore, in order to implement

b-Buchberger in practice, we propose two relaxations of the above check. Consider
the S-binomial g"xu!xv3I

A
for reduction if :

(i) b!Au3C(A) where C (A)"MAx : x3Rn
`

N. I.e., check feasibility of the linear
programming relaxation of the original check.

(ii) b!Au3C(A)WZA where ZA"MAz : z3ZnN. This is a relaxation of the
original check since in general, CN(A) is strictly contained in C(A)WZA.

Both the above relaxations consider all S-binomials that were considered by
the original algorithm and possibly more. Hence, the output of the algorithm
b-Buchberger with these relaxed checks will still provide a test set (not necessarily
minimal) for all programs IP

A,b,c,/ with b( b.
The truncated Buchberger algorithm can be sped up by applying Buchberger’s

first and second criteria to remove unnecessary S-binomials during the run of the
algorithm. The first criterion allows S-bin

c
(g

1
, g

2
) to be discarded if, in

c
(g

1
) and

in
c
(g

2
) are relatively prime. This condition is not affected by any truncation of

the Buchberger algorithm. The second criterion states that the S-binomial
S-bin

c
(g

1
, g

2
) can be discarded if there exists a binomial f in the current partial

basis such that S-bin
c
(g

1
, f ) and S-bin

c
( f, g

2
) have been already considered by the

algorithm and in
c
( f ) divides lcm(in

c
(g

1
), in

c
(g

2
)). We show that this criterion is

also unaffected by truncation. If there exists f such that in
c
( f ) divides lcm (in

c
(g

1
),

in
c
(g

2
) ) then lcm (in

c
(g

1
), in

c
( f ) ) and lcm(in

c
( f ), in

c
(g

2
) ) both divide lcm (in

c
(g

1
),

in
c
(g

2
) ). Therefore, if n

A
(S-bin

c
(g

1
, g

2
) )( b, by Lemma 2.5 (i), n

A
(S-bin

c
(g

1
, f ) )( b

and n
A
(S-bin

c
( f, g

2
)) ( b. Hence, S-bin

c
(g

1
, f ) and S-bin

c
( f, g

2
) are not victims of

the truncation and Buchberger’s second criterion can also be applied to remove
unnecessary S-pairs during the run of the truncated Buchberger algorithm.

We remark that the theory of a truncated Buchberger algorithm and Gröbner
basis, in the context of a multivariate grading induced by an integer matrix A, will
hold for any ideal that is homogeneous with respect to this grading. The above
results can be generalized to this situation.

We now examine the geometry of the elements in the set ¹
c
(b). The set

ºGB
A
"X

c
G
c
is a well-defined unique finite set called the universal Gröbner basis

of A (see [15]). This is a universal test set associated with A since it contains a test
set for all programs IP

A,b, c,/
as b and c are varied. On similar lines we define the

set ºGB
A
(b)"X

c
¹

c
(b) which we call the universal b-Gröbner basis of A. Clearly,

ºGB
A
(b) is a universal test set for all integer programs IP

A,b,c,/ with b( b.

Lemma 2.10 ¹he set ºGB
A
(b)"ºGB

A
WI

A
[b].

Proof. By proposition 2.7, ºGB
A
(b)"X

c
¹

c
(b)"X

c
(G

c
WI

A
[b])"ºGB

A
WI

A
[b].

m

The above lemma implies that the set ºGB
A
(b) is both unique and finite. The

following theorem gives a geometric characterization of elements in ºGB
A
. A vec-

tor v3Zn is said to be primitive if the g.c.d. of its components is one.
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Theorem 2.11 (Theorem 5.1 in [15]) A binomial xa!xb3ºGB
A

if and only if the
vector a!b is primitive and the line segment [a,b] is an edge of the Aa-fiber of n

A
.

Corollary 2.12 A binomial xa!xb3ºGB
A
(b) if and only if the vector a!b is

primitive and the line segment [a,b] is an edge of the Aa-fiber of n
A

where Aa( b.

The Graver basis of A, introduced in [7] and denoted GR
A
, is a universal test

set for all integer programs with coefficient matrix A. For p3 M#,!Nn, let
Kp"kerR(A)WRnp , the pointed polyhedral cone in Rn obtained by intersecting the
subspace kerR(A) with the orthant in Rn of sign pattern p. Let Hp be the unique
minimal Hilbert basis of Kp . (A Hilbert basis [13] of a polyhedral cone K-Rn is
a set of minimal generators over N, for the monoid KWZn. A pointed cone has
a unique minimal Hilbert basis.) Then by definition, GR

A
"XpHpCM0N. We refer

to [14] for details and results on the Graver basis of A. In particular, it can be
shown that ºGB

A
-GR

A
. The binomial g"xu!xv3 I

A
(thought of as the line

segment [u, v]), lies in the Au"Av-fiber of n
A
. We call this fiber the fiber of g. By

Theorem 2.11, the elements in the Graver basis of A that are in ºGB
A

are precisely
those binomials that are edges in their fibers. Therefore, any algorithm to compute
the Graver basis of A can be extended to an algorithm for computing ºGB

A
via

a subroutine that checks whether xu!xv3GR
A

is an edge in its fiber.
We briefly describe the algorithm to compute GR

A
and show how it may be

modified to compute ºGB
A
(b). Consider the (d#n)]2n-matrix K(A)"A

A

I
n

0

I
n
B,

called the ¸awrence lifting of A, where 0 is a d]n matrix of zeros and I
n

is the
identity matrix of size n. It may be checked that kerZ(K (A))"M (u,!u) :
u3 kerZ(A)N and hence the toric ideal IK (A)

"Sxpyq!xqyp : p, q3Nn ,
Ap"AqT-k[x

1
, . . . , x

n
, y

1
, . . . , y

n
]. The Lawrence lifting K(A) has the prop-

erty that any reduced Gröbner basis of IK (A)
equals GRK (A)

as well as ºGBK (A)
. See

Theorem 4.1 in [15] for a proof. This along with the above discussion gives the
following algorithm (Algorithm 4.3 in [15]) to compute GR

A
.

Algorithm to compute the Graver basis of A.

1. Compute the reduced Gröbner basis Gz of IK (A)
with respect to any term

order z.
2. The Graver basis of A consists of all binomials xp!xq such that xpyq!xqyp

appears in Gz .

Applying the decomposition in Lemma 2.1 to IK (A)
we see that the component

IK (A)
(b,b@) is the k-vector space spanned by all binomials of the form

Mxpyq!xqyp :Ap"Aq"b, p#q"b@, p, q3NnN. This implies that xp!xq3

I
A
(b) if and only if xpyq!xqyp3 IK (A)

(b,b@ ) for some b@3Nn. We define the
b-Graver basis of A, denoted GR

A
(b) to be the set GR

A
WI

A
[b]. Let (b, *)-

Buchberger be the truncated Buchberger algorithm on IK (A)
that only considers

those S-binomials xpyq!xqyp such that Ap( b. Note that nK (A)
(xpyq!xqyp )

"(Ap, p#q)3CN(A)= Nn and (b, *)-Buchberger only checks the first d compo-
nents of nK (A)

(xpyq!xqyp ) in order to decide whether this S-binomial should
be considered for reduction or not. An algorithm to compute GR

A
(b) is then

immediate.
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n 2 3 4 5 6 7 8 9 10 11 12 13 14

DGR
A
n

D 1 5 15 47 102 276 578 1261 2465 5362 9285 18900 33269

DGRK (A
n
)
(*, 1) D 0 1 3 7 17 33 66 124 231 408 717 1229 2084

Algorithm 2.13. How to compute the b-Graver basis of A.

1. Compute the test set ¹z(b, *) of K(A) with respect to any term order z.
2. ThenGR

A
(b) consists of all binomials xp!xq such that xpyq!xqyp3¹z(b, * ).

Proof of correctness of Algorithm 2.13. By Proposition 2.7, ¹z(b, * )"
Mxpyq!xqyp3Gz : Ap"Aq( bN where Gz is the reduced Gröbner basis of
IK (A)

with respect to z. By the above discussion, Gz is also the Graver basis of
K(A) and a binomial xp!xq3GR

A
(b) if and only if xpyq!xqyp is in the Graver

basis of K(A) and Ap"Aq( b. m

Algorithm 2.13 and Corollary 2.12 give the following algorithm to compute
ºGB

A
(b).

Algorithm 2.14. How to compute the universal b-Gröbner basis ºGB
A
(b).

1. Compute GR
A
(b) using Algorithm 2.13. Then ºGB

A
(b)-GR

A
(b).

2. A binomial xp!xq3GR
A
(b) is in ºGB

A
(b) if and only if it is an edge in its

fiber.

A very well-studied class of integer programs, those of the form minim-
ize (cx : Ax"b, x3 M0, 1NnN, are called 0, 1 programs. The above 0, 1 program can
also be written as minimizeMcx#0s :K(A) (x, s)t"(b, 1)t, x3Nn, s3NnN, where
1 is an n-vector of ones. The reduced (b, 1)-Gröbner basis of IK (A)

would give
a universal b-Gröbner basis for all 0, 1 integer programs with coefficient matrix A.
Similarly, the reduced (*, 1)-Gröbner basis of IK (A)

would give a universal Gröbner
basis for all 0, 1 integer programs of the above form as b and c are varied. We
conclude this section with such an example.

Example 2.15 Consider the 1]n matrix A
n
"[1, 2, 3, . . . , n] and the family of

integer programs minimize (cx :A
n
x"b, x3 M0, 1NnN, obtained by varying the right

hand side vector b in CN(A
n
) and cost function c in Rn. The reduced (*, 1)-Gröbner

basis of IK (A
n
)
is a universal Gröbner basis for the above family of programs. This

set is precisely the set of square-free binomials in GR
A
n

. As an example,
GR

AË
"Mbd!c2, c4!d3, bc2!d2, b2!d, b3!c2, ad!bc, ad2!c3,

ac!d, ac!b2, ab!c, a2!b, a2d!c2, a2b!d, a3!c, a4!dN of which only
the three underlined binomials are square free. The subset Mad!bc, ac!d,
ab!cN which may be identified with GRK (AË)

(*, 1), is a universal test set for the
0, 1 programs given by A

4
. We tabulate below the cardinality of both GR

A
n

and its
subset of square-free binomials, for n"2, . . . , 22. Up to n"13, the computa-
tions can be done quite efficiently using MACAULAY. The computations for
n"14, . . . , 22 were obtained from Dimitrii V. Pasechnik for which he uses his
special program for computing Hilbert bases of cones.
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n 15 16 17 18 19 20 21 22

DGR
A
n

D 58171 99328 181514 287239 502116 775710 1239710 1956334

DGRK (A
n
)
(*, 1) D 3480 5693 9157 14600 22911 35595 54744 83151

3 A Special Case

In this section we specialize the theory developed in the previous section to integer
programs of the form maxMcx :Ax6b, x6u, x3NnN, denoted IP

A,b,c,u,6
, where

all data are non-negative and integral. We show that a geometric interpretation of
this specialization gives a combinatorial algorithm for IP

A,b, c,u,6
, presented in

[17]. As before, we may assume that c has been refined to create a total order on
Nn. The non-negativity of the data ensures that IP

A,b, c,u,6
is bounded with respect

to every cost function. The vector of upper bounds u3Nn and as before, A, b, c and
u will be fixed throughout this section.

In order to apply the results of the previous section to IP
A,b, c,u,6

, we add slack
vectors and transform the problem to maxMcx#0s#0r : Ax#I

d
s"b,

I
n
x#I

n
r"u, x3Nn, s3Nd, r3NnN which we denote as IP

A{, (b,u),c{/
. Here

I
p

denotes the identity matrix of size p and s and r are slack vectors of the sizes

specified. The matrix A@"C
A

I
n

I
d
0

0

I
n
D is in N (d`n)](2n`d ), right hand side vector

(b, u)3Nd`n and cost vector c@"(c, 0, 0)3N2n`d. The monoid CN(A@)"Nd`n

and the partial order ) is just the componentwise partial order 7on Nd`n.
The associated monoid homomorphism n

A{
: N2n`dPNd`n takes

(x, s, r)>A@ (x, s, r). The toric ideal I
A{
"kernel(nL

A{
) where n̂

A{
: k[x, s, r]Pk[t, z]

such that x
j
> ta

j
z
j
, s

i
> t

i
and r

j
> z

j
for j"1, . . . , n and i"1, . . . , d. Let

J denote the polynomial ideal in k[t, z,x, s, r] given by J"Sx
j
!ta

j
z
j
, s

i
!t

i
,

r
j
!z

j
, j"1, . . . , n, i"1, . . . , dT. It follows from Theorem 2 in Section 3.3 of

[6] that I
A{
"JWk[x, s, r].

Lemma 3.1 ¹he toric ideal I
A{
"Sx

j
!sa

j
r
j
, j"1, . . . , nT-k[x, s, r].

Proof. The set G
;
"Mx

j
!sa

j
r
j
, t

i
!s

i
, z

j
!r

j
, j"1, . . . , n, i"1, . . . , dN with

the underlined terms as leading terms, is the reduced Gröbner basis of J with
respect to any elimination order'such that t, z, x's, r. Hence
I
A{
"JWk[x, s, r]"SG

;
Wk[x, s, r]T. m

As in [15] and [16], we can think of the binomial ya!yb in a toric ideal
I
A
-k[y]"k[y

1
, . . . , y

n
], with no common factors in the two terms, as the

vector a!b3Zn or alternatively as the line segment [a, b]LRn . In the case of
the programs IP

A{, (b,u ), c{,/
under consideration, we modify the usual interpreta-

tion so that a binomial xasbrc!xdskrj in I
A{

with no common factors in the two
terms, is identified with the vector a!d3Zn, or the line segment [a, d]LRn, by
ignoring the slack components. Conversely, there exists a unique way in which
a vector in Zn can be interpreted as a binomial in I

A{
. Given v3Zn, we first write it

uniquely as v"v`!v~ where v`, v~3Nn. The binomial associated with
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[v`, v~] is then defined as bin (v)"xv` s (Av )~ rv~
!xv~s (Av)` rv`. It can be seen that

the two terms in bin(v) have no common factors and that the above choice of slack
exponents is the smallest possible that will ensure bin (v)3I

A{
. Given two vectors

v, w3Zn and the refined cost function c, S-bin
c
(bin(v), bin (w)) equals bin(v!w) up

to sign and multiplication by a monomial.
The (b, u)-fiber of n

A{
is the polytope P I

(b,u )
"convM(x, s, r)3N2n`d :Ax#

I
d
s"b, I

n
x#I

n
r"uN and let Q I

(b,u )
"convMx3Nn :Ax6b,x6uN. Under the

above interpretation of binomials in I
A{

, the generators of I
A{

in Lemma 3.1 are the
n unit vectors in Rn.

Observation 3.2 ¹here exists a connected undirected graph in every polytope Q I
(b,u )

for b3Nd and u3Nn, where the nodes are the lattice points in Q I
(b,u )

and edges are
translations of the unit vectors in Rn.

The above observation follows from the non-negativity of the data since one
can construct a path from every lattice point x3Q I

(b,u )
to the origin by consecut-

ively subtracting unit vectors and keeping all intermediate points in Q I
(b,u )

. The
observation also follows from a general fact about generating sets for toric ideals:
a set of binomials Mya

i
!yb

i
, Aa

i
"Ab

i
, a

i
, b

i
3Nn, i"1, . . . , pN generates the

toric ideal I
A
-k[y] if and only if, in every fiber of n

A
, we can build a connected

(undirected) graph in which nodes are the lattice points in the fiber and edges are
translations of the segments [a

i
, b

i
]. The argument is completed by noting the

bijection between lattice points in P I
(b,u )

and Q I
(b,u )

.
We now show that a number of algebraic operations required in Section 2 can

be reduced to easy checks on vectors, for the programs IP
A,b, c,u,6

. As in
the previous section, n

A{
defines a multivariate grading of I

A{
under which the

degree of bin(v) is n
A{

(bin(v))"A
Av~#(Av)`

v`#v~ B . However, Av~#(Av)`"max

MAv`,Av~N where max computes the componentwise maximum of vectors. The
(b, u)-Buchberger algorithm considers the S-binomial bin (v) for reduction if and
only if n

A{
(bin(v))6(b, u). This yields the following lemma.

Lemma 3.3 An S-binomial of the form bin (v) will be considered for reduction by the
algorithm (b, u)-Buchberger if and only if Av`6b, Av~6b and 06v`, v~6u.

In this section we will assume that all S-binomials considered are of the form
bin(v), i.e., the common terms in the two monomials have been removed. This is not
required for the truncated Buchberger algorithm described in the previous section.
We do this here in order to be able to store a binomial without ambiguity, as
a vector equal to the difference of its exponent vectors. A vector v3Zn satisfies
Av`6b, Av~6b and 06v`, v~6u if and only if v is the difference of two
feasible solutions of IP

A,b, c,u,6
. Therefore, the algorithm (b, u)-Buchberger con-

siders an S-binomial bin(v) only if, v is the difference of two feasible solutions of
IP

A,b, c,u,6
. As remarked earlier, for a general integer matrix A and right hand side

vector b, checking whether the n
A
-degree of an S-binomial is less than or equal to

b with respect to the partial order ) , amounts to checking feasibility of an integer
program. In the case of the programs IP

A{, (b,u),c{,/
studied here, this check reduces

to the above easy check on the vectors v` and v~. This allows the algorithm
(b, u)-Buchberger to be implemented without relaxations.
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Since IP
A{, (b,u),c{,/

is a maximization problem, if cv'0, the leading term of the
binomial bin(v) with respect to c is xv~ s (Av)`rv` which is the monomial correspond-
ing to v~. Therefore, the binomial bin(v) reduces the leading term of the binomial
bin(w), where cw'0, if xv~ s (Av)` rv` divides xw~ s (Aw)` rw`. We may write this as an
operation between the vectors v and w. For a vector d3Zn, let d c"d if cd'0 and
dc"!d otherwise. If v is written without a superscript, we assume cv'0.

Definition 3.4 [17] A vector w90 can be reduced by v if v`6w`, v~6w~ and
(Av)`6(Aw)`. If the above conditions are satisfied, we obtain (w!v)c by reducing
w by v.

By the above definition, v reduces w if the leading term of bin (v) divides the
leading term of bin(w). In the usual theory of Gröbner bases, the binomial bin(v)
reduces bin(w) if the leading term of bin(v) divides either term of bin (w). By the
above definition, if the leading term of bin(v) divides the trailing term of bin (w), we
would have to say that v reduces !w. On the same lines, we may think of the
reduction of a homogeneous binomial in I

A{
by a set of homogeneous binomials in

I
A{

as an operation on vectors.
The specializations of the algebra to the case of IP

A{, (b,u), c{,/
described above,

allow the algorithm (b, u)-Buchberger to be described combinatorially. This is
precisely Algorithm 3.7 in [17].

A combinatorial (b, u)-Buchberger algorithm for IP
A,b,c,u,6

(1) Set B
old

:"0, B :"Me
i
: i"1, . . . , nN

(2) While B
old

9B repeat the following:
(2.1) Set B

old
:"B

(2.2) For all pairs of vectors v, v@3B
old

such that cv(cv@ perform the following
steps:

(2.2.1) If Av`6b, Av~6b, 06v`, v~6u, set r"v@!v.
(2.2.2) As long as possible, find v3B such that p3Mr,!rN can be reduced

by v, and replace r by p!v.
(2.2.3) Set B :"BXMrcN.

Theorem 3.5 ¹he output of the combinatorial (b, u)-Buchberger algorithm is a min-
imal test set for all programs IP

A,b{,c,u{,6
for which b@6b and u@6u.

The set of generators of the toric ideal I
A{

that is used as input to the
(b, u)-Buchberger algorithm is the set Mx

j
!sa

j
r
j
, j"1, . . . , nN. The n

A{
-degree of

x
j
!sa

j
r
j
is (a

j
, e

j
) for j"1, . . . , n. We may assume without loss of generality that

a
j
6b and u

j
71 for j"1, . . . , n since otherwise, we could have removed column

j from the matrix A. Therefore, all generators of I
A{

take part in the algorithm
(b, u)-Buchberger.

We refer the reader to [17] for computational tests of the above combinatorial
algorithm, on a wide variety of integer programming problems. Below we demon-
strate on five test instances considered in [17], that the truncated Gröbner bases
may be considerably smaller and computed much faster than the entire reduced
Gröbner basis. We use the convention that x denotes the number of rows and y the
number of columns of the instance inst.x.y. All instances are 0/1 integer programs,
i.e., the vector u of upper bounds is equal to the vector of all ones. Columns 2 and
3 give the number of elements, denoted card(0, 1), in the truncated Gröbner bases
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Problem Time(0, 1) Card(0, 1) Time Cardinality

knap.10.6 0 : 00 59 0 : 00 285
knap.10.10 0 : 03 749 70552*
knap.10.15 4 : 51 9395 88581*
knap.1.20 0 : 01 540 0 : 01 747
cov.13.9 0 : 01 549 0 : 03 992

(truncated by u) and the time needed for this computation, in minutes: seconds,
denoted time(0, 1), on a SUN Sparc 5. Accordingly, the entries in Columns 4 and
5 represent the number of elements in the full reduced Gröbner bases (without the
0,1 condition on the variables) and the corresponding running times. The two
entries marked with a * show the number of elements in the partial Gröbner basis
after 5 hours of CPU time. The entire Gröbner basis could not be computed within
this time bound.

In the remainder of this section we examine the geometry of the elements in the
test sets produced by (b, u)-Buchberger. We denote by ºGB

A
(b, u), the universal

(b, u)-Gröbner basis of I
A{

. As before, let QI
(b{,u{ )

"convMx3Nn :Ax6b@, x6u@N
and PI

(b{,u{ )
"convM (x, s, r)3N2n`d :Ax#I

d
s"b@, I

n
x#I

n
r"u@N. If [p, q] is an

edge of a polytope P where p and q are adjacent vertices of P, we say that p!q (up
to sign) is an edge direction of P. By Corollary 2.12, we know that the elements in
ºGB

A
(b, u), thought of as vectors in Z2n`d, are the primitive edge directions in the

polytopes PI
(b{,u{ )

for b@6b and u@6u. Since all interpretations so far were done in
n-space, we think of ºGB

A
(b, u) as a subset of Zn and give an elementary

combinatorial proof of the following fact.

Proposition 3.6 ¹he set ºGB
A
(b, u) consists of all primitive edge directions in the

polytopes QI
(b{,u{ )

with b@6b and u@6u.

Proof. We start by showing that every primitive edge direction among the poly-
topes QI

(b{,u{ )
, with b@6b, u@6u must be contained in ºGB

A
(b, u). Let e"y!z be

a primitive edge direction where z and y are adjacent vertices of QI
(b{,u{ )

for some
b@6b and u@6u. Let c be a cost function such that cy'cz'cp, for all
p3MNnWQI

(b{,u{ )
N C My, zN. Such a c exists since [z, y] is an edge of QI

(b{,u{ )
. Hence the

only vector that can be added to z to get an improved solution is e. Therefore,
¹

c
(b, u) and hence ºGB

A
(b, u) must contain e"y!z.

Next we consider the reverse inclusion. Let v3ºGB
A
(b, u) and c be a cost

function such that v3¹
c
(b, u) with cv`'cv~. Define u@ :"v`#v~ and

b@"Av~#(Av)`. Since (b@, u@)"n
A{

(bin(v))6(b, u) we have u@6u and b@6b.
The vector v"v`!v~ is primitive since it belongs to ºGB

A
(b, u). We will show

that [v`, v~] is an edge of QI
(b{,u{ )

. Notice that v` and v~3QI
(b{,u{ )

WNn since,
06v`, v~6v~#v`"u@, Av~6Av~#(Av)`"b@, and Av`"Av~#

(Av`!Av~)"Av~#Av"Av~#(Av)`!(Av)~6Av~#(Av)`"b@.
For any z3QI

(b{,u{ )
WNn distinct from v` and v~, we have (z!v~)7!v~

since z70. Also, z6u@"v`#v~ implies (z!v~)6v`. Therefore (z!v~)`6v`
and (z!v~ )~6v~. Moreover, Az6b@ implies that Az"Av~#A(z!v~)
"Av~#(A (z!v~))`!(A (z!v~) )~6b@"Av~#(Av)`. The last relation
implies that (A (z!v~))`6(Av)` since (A(z!v~ ) )` and (A(z!v~ ))~ have
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disjoint supports. Putting these arguments together we see that every z3QI
(b{,u{ )

satisfies the conditions (z!v~)`6v`, (z!v~ )~6v~ and (A (z!v~) )`
6(Av)`. Therefore, if c(z!v~ )'0 then z!v~ reduces v and v cannot be in
¹

c
(b, u) which is a contradiction. Therefore, cz(cv~(cv` for every z3QI

(b{,u{ )
distinct from v` and v~.

Now we show that v` and v~ are vertices of QI
(b{,u{ )

. Suppose that v` is not
a vertex of QI

(b{,u{ )
. Then v`"+

w|W
j
w
w#j

0
v~ where ¼ is a subset of vertices in

QI
(b{,u{ )

and j
0
#+

w|W
j
w
"1, j

w
70 for all w3¼ and j

0
70. Clearly, j

0
"0

since v~ and v` have disjoint supports. Therefore, v`"+
w|W

j
w
w which is

impossible because cw(cv` for all w3¼. This implies that v` is a vertex of
QI

(b{,u{ )
. Similarly v~ is a vertex of QI

(b{,u{ )
.

It remains to be shown that the vertices v` and v~ are adjacent. If not, then
there exists a point z on the line connecting v` and v~ that can be written as
a convex combination of vertices in QI

(b{,u{ )
different from v` and v~. I.e.,

z"kv`#pv~ with k#p"1, k, p'0 has a representation as z"+
w|W

j
w
w,

+ j
w
"1, j

w
70, with ¼ being a subset of vertices in QI

(b{,u{ )
not containing v` and

v~. Again, we obtain a contradiction, since cz'cv~'cw for every w3¼. This
completes the proof. m
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