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Gröbner Bases, Invariant Theory and
Equivariant Dynamics

KARIN GATERMANN†§ AND FRÉDÉRIC GUYARD‡¶
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This paper is about algorithmic invariant theory as it is required within equivariant
dynamical systems. The question of generic bifurcation equations (arbitrary equivariant
polynomial vector) requires the knowledge of fundamental invariants and equivariants.
We discuss computations which are related to this for finite groups and semi-simple Lie
groups. We consider questions such as the completeness of invariants and equivariants.
Efficient computations are gained by the Hilbert series driven Buchberger algorithm
because computation of elimination ideals is heavily required. Applications such as orbit
space reduction are presented.
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1. Introduction

This paper deals with algorithmic invariant theory with an emphasis on efficiency of the
involved algorithms. Elimination ideals are computed with Gröbner bases (Buchberger,
1985). When a given group action is considered, it is often needed to solve the following
problems.

A. Given a set of homogeneous invariants:

(1) What are the relation in the invariants? (This knowledge is needed for the
subsequent questions)

(2) Does the set of invariants generate the invariant ring?
(2b) Do the homogeneous invariants generate the ring up to a certain degree?
(3) How is a given invariant represented in terms of fundamental invariants?

(3b) How is the given invariant represented if the fundamental invariants form a
Hironaka decomposition?

B. Given a set of homogeneous invariants π1, . . . , πr and a set of homogeneous equi-
variants b1, . . . , bs.

(1) What are the relations?
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(2) Do the given equivariants generate the module of equivariants over the ring
generated by the given invariants π1, . . . , πr?

(2b) Is the module generated up to a certain degree?
(3) How does one represent a given equivariant in terms of fundamental invariants

and equivariants?

C. Given a representation of a finite group.

(1) How can one determine the fundamental invariants algorithmically such that
they form a Hironaka decomposition? (This means that for each invariant there
is a unique representation in terms of fundamental invariants which is linear in
the secondary invariants.)

(2) How does one determine the fundamental equivariants such that they form a
free module over the ring generated by the primary invariants?

D. Given a representation of a compact Lie group. The groups one is interested in
dynamical systems are linear reductive groups. Their invariant ring is Cohen–
Macaulay, see Bruns and Herzog (1993) and Hochster and Roberts (1974).

(1) How can one compute a homogeneous invariant for a given degree? (Observe
that the Reynolds operator for finite groups (projection onto invariants) does
not exist or can not be evaluated for continuous groups in this form.)

(2) How can one compute a fundamental set of invariants?
(3) How can one modify a fundamental set of invariants into a Hironaka decomposi-

tion? Then each invariant can be written in terms of the fundamental invariants
in a unique way.

(4) How does one determine a homogeneous equivariant of a given degree?
(5) How can one compute a generating set of equivariants over a ring generated by

a given set of invariants?
(6) Given a set of fundamental invariants and equivariants, how is a Stanley de-

composition determined?

There is a lot of information in the literature about all these questions. Table 1 gives an
overview of implementations and summarizes the relevant books and articles so far as to
whether they contain efficient algorithms. The packages Invar (Kemper, 1993) and Sym-
metry (Gatermann and Guyard, 1997) are implemented in Maple while implementations
for C. 1.) in Singular (Heydtmann, 1997) and Magma (Kemper and Steel, 1997) exist as
well.

The new contributions of this paper are the use of the multi-graded Hilbert series
driven Buchberger algorithm (Caboara et al., 1996; Gianni et al., 1996) for computation
of relations, completeness of equivariants (B. 2), restriction of completeness to certain
degree (A. 2b, B. 2b), and membership of free module. Restriction with respect to various
gradings is the key for efficiency in the partial completeness questions. This is illustrated
by examples which have been computed on a Dec Alpha workstation. These new ideas
mainly improve the efficiency of existing algorithms. The algorithmic treatment for con-
tinuous groups has been implemented and tested for the first time.

A motivation of this work and the associated software was to provide efficient tools
to perform tasks as they arise in equivariant bifurcation theory, equivariant dynamics,
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Table 1. Literature containing algorithms answering questions in invariant theory and

their implementations.
Question Task Literature Invar Symmetry
A. Given invariants

(1) Relations Becker and Weispfenning (1993, p. 269) x x
(2) Generation Sturmfels (1993, p. 32) x x
(2b) x x
(3) Representation Becker and Weispfenning (1993, p. 269) x x
(3b) Hironaka repr. Sturmfels (1993, p. 52) x x

B. Given invs. + equis.
(1) Relations x
(2) Generation x
(2b) x
(3) Representation Gatermann (1996b, p. 115) x

C. Given finite group
(1) Compute invs. Sturmfels (1993, p. 57), Kemper (1996) x x
(2) Compute equis. Worfolk (1994), Gatermann (1996b) x

D. Given Lie group
(1) Reynolds projection x
(2) Compute invs. x
(3) Compute parameters Eisenbud and Sturmfels (1994)
(4) Equiv. projection x
(5) Compute equis. x
(6) Stanley decomposition Sturmfels and White (1991)

exact solution of symmetric systems of equations by elimination methods, etc. Indeed,
these domains appear to be a natural application of algorithmic invariant theory:

(i) The first step in equivariant bifurcation theory (Golubitsky et al., 1988) is to set
up a generic equivariant vector field (the bifurcation equations) for a given ac-
tion of a group. In order to build these equation, one needs nothing else but a
set of generators of the module of equivariants for this action. On the theoretical
level the famous theorems by Schwarz and Poénaru are an essential ingredient, see
Golubitsky et al. (1988, p. 46 and p. 51). Examples of local bifurcation theory are
presented in Lari-Lavassani et al. (1997) and a singularity theory approach is done
in Gatermann and Lauterbach (1998).

(ii) A special method in equivariant dynamics is known as orbit space reduction. The
solutions of a differential equation with symmetry are linked to the solutions of a
system of differential equations for a set of fundamental invariants. By this method
the group action is ruled out. Although the reduction leads to differential equations
on an algebraic variety (restricted to a semi-algebraic set) it has been applied suc-
cessfully (Chossat, 1993; Chossat and Dias, 1995; Lauterbach and Sanders, 1995;
Leis, 1995) because the number of differential equations is often smaller than in the
original system. For theoretical results see also Koenig (1997) and Rumberger and
Scheurle (1996). The reduced phase space in Hamiltonian systems is similar to the
orbit space above.

(iii) Systems of algebraic equations can be solved by the Gröbner basis method such that
all solutions are found exactly. If symmetry is present the use of invariant theory
is helpful, see Sturmfels (1993, p. 58). In case one is interested in real solutions
only, one might as well consider a result involving the fundamental equivariants,
see Gatermann (1996b), Jaric et al. (1984) and Worfolk (1994).
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For these reasons, the examples and applications in the paper are mainly related to
problems occurring in equivariant dynamics. As a tool we use Gröbner bases for the
computation of elimination ideals (Buchberger, 1985).

2. Preliminaries: Computations with Ideals and Modules

This section gives an overview of the computations including Gröbner bases. They are
necessary in order to understand the sections on algorithmic invariant theory. Moreover,
we are using a special variant which proves to be very efficient. For those who want to
learn more about it we refer to Becker and Weispfenning (1993), Caboara et al. (1996),
Cox et al. (1992), Mishra (1993), and the references therein.

2.1. Gröbner bases and syzygies

We are dealing with ideals in a polynomial ring K[x1, . . . , xn] where the field K is in
most practical computations Q. A Gröbner basis is a special ideal basis depending on an
order of the monomials.

Definition 2.1. (Becker and Weispfenning, 1993, p. 189) ≤ is called a term or-
der, if ∀xα, xβ , xγ ∈ K[x1, . . . , xn]

xα ≤ xα

xα ≤ xβ and xβ ≤ xγ ⇒ xα ≤ xγ

xα ≤ xβ and xβ ≤ xα ⇒ xα = xβ

xα ≤ xβ or xβ ≤ xα

1 ≤ xα

xα ≤ xβ ⇒ xαxγ ≤ xβxγ .

Example 2.2. Let the matrix M ∈ Zn,n have the following properties:

(i) for each column j the first nonzero entry is positive.

∀j∃k with mij = 0 ∀i < k and mkj > 0

(ii) M has full rank.

By Mα < Mβ (⇔ ∃k with (Mα)i = (Mβ)i ∀i < k, (Mα)k < (Mβ)k) is a term order
defined. Although term orders might be defined in a different way they are almost all
equivalent to such a matrix order (Robbiano, 1985; Weispfenning, 1987).

For a polynomial f ∈ K[x] we denote by ht(f) its leading term, i.e. the monomial with
highest order and nonvanishing coefficient hc(f) in f :

f = hc(f) · ht(f) + lower order terms.

Definition 2.3. An ideal basis {f1, . . . , fm} of I = (f1, . . . , fm) is called a Gröbner
basis, if the ideal of the leading terms equals the ideal generated by all leading terms of
elements of I:

(ht(f1), . . . , ht(fm)) = (ht(f))f∈I .
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So, the theory of Gröbner bases is closely related to the theory of monomial ideals.
Gröbner bases are used to solve systems of equations. From a mathematical point of
view it is even more important that the quotient ring K[x]/I with respect to a term
order has unique representatives which are computable by a division algorithm modulo
on a Gröbner basis. The division algorithm is defined for a set of polynomials F . Then
normalf (f, F ) or short f̄F denotes the result of the division applied to f and is called
normal form. The result may still depend on how the division is done. It is an important
fact that the result of the division algorithm modulo a Gröbner basis is unique.

Definition 2.4. A Gröbner basis {f1, . . . , fm} such that {ht(f1), . . . , ht(fm)} forms a
minimal basis of the monomial ideal and the fi are inter-reduced is called a reduced
Gröbner basis.

A reduced Gröbner basis is unique. Although there exists infinitely many term orders
for each ideal only a finite number of reduced Gröbner basis exists (Bayer and Morrison,
1988; Mora and Robbiano, 1988; Sturmfels, 1996).

Definition 2.5. Given a set F = {f1, . . . , fm} with leading terms ht(fi) a syzygy is a
tuple (s1, . . . , sm) ∈ K[x]m such that

m∑
i=1

si · hc(fi)ht(fi) = 0.

The set of all syzygies form aK[x]-module denoted by S(F ). Each syzygy s corresponds
to a polynomial in the ideal generated by F by defining s·F =

∑m
i=1 sifi. The Buchberger

algorithm is based on the fact that special sparse syzygies

Sij ∈ S(F ), 1 ≤ i < j ≤ m, (2.1)

form a module basis, where Sijk = 0, ∀k 6= i, k 6= j, and

Siji = lcm(ht(fi), ht(fj))
ht(fi)

lc(fj), Sijj = − lcm(ht(fi), ht(fj))
ht(fj)

lc(fi).

S(fi, fj) := Sij · F is called S-polynomial.
F is a Gröbner basis if

normalf (s · f, F ) = 0, ∀s ∈ S(F ).

This condition is satisfied if it holds for a module basis of S(F ), e.g. for the basis Sij , 1 ≤
i < j ≤ m. It turns out that Sij do not form a minimal basis. Some can be dropped by
the Buchberger criteria.

(1) Buchberger criterion: If ht(fi), ht(fj) are coprime then Sij is superfluous.

(2) Buchberger criterion: If ht(fj) lcm(ht(fi), ht(fk)) and Sij , Sjk are consid-
ered then Sik is superfluous.
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2.2. graded rings and graded modules

Definition 2.6. (Eisenbud, 1995, p. 25) A ring is called graded if a direct sum de-
composition R =

⊕∞
i=0Ri exists such that

Ri ·Rj ⊆ Ri+j ,
holds for all i, j ∈ N.

Example 2.7. The polynomial ring K[x] with the usual degree is a graded ring. Besides
this natural grading there are other gradings: let w1, . . . , wn ∈ N be weights on the
variables x1, . . . , xn. (W : {x1, . . . , xn} → N,W (xi) = wi). The weighted degree is defined
by

degW (xα) =
n∑
i=1

wiαi.

Polynomials f =
∑
α∈A aαx

α with the property degW (xα) equal for all α ∈ A are
called W -homogeneous. Homogeneous polynomials of a certain degree form vector spaces
yielding the graded structure

K[x] =
∞⊕
i=0

HW
i (K[x]).

The weights 1, . . . , 1 refer to the natural grading. All gradings of K[x] are given in this
way (Becker and Weispfenning, 1993, p. 467). If all wi > 0 then HW

0 (K[x]) = K and all
K-vector spaces HW

i (K[x]) have finite dimension.

Of course a ring may be graded several times.

Definition 2.8. (Eisenbud, 1995, p. 42) Let R be a graded ring. A module M is
called graded, if it is the direct sum M =

⊕∞
j=0Mj such that RiMj ⊂Mi+j∀i, j ∈ N .

Example 2.9. (i) Let K[x1, . . . , xn] be graded with weights w1, . . . , wn. If z1, . . . , zm are
additional variables then Γ : {x1, . . . , xn, z1, . . . , zm} → N

Γ(xi) = 0, i = 1, . . . , n, Γ(zj) = 1, j = 1, . . . ,m,

defines a grading on K[x1, . . . , xn, z1, . . . , zm] yielding

K[x, z] =
∞⊕
i=0

HΓ
i (K[x, z]).

Each HΓ
i (K[x, z]) is a K[x]-module. HΓ

1 (K[x, z]) is especially interesting because each
finitely generated, free K[x]-module is isomorphic to a HΓ

1 (K[x, z]).
The grading W on K[x] may be extended to K[x, z] by weights on zj :

Θ : {z1, . . . , zm} → N,Θ|K[x] = W.

A restriction is a grading of the module HΓ
1 (K[x, z]):

K[x, z] =
∞⊕
k=0

HΘ
k (K[x, z]), (2.2)



Gröbner Bases and Invariant Theory 281

HΓ
1 (K[x, z]) =

∞⊕
k=0

HΓ,Θ
1,k (K[x, z]) with HΓ,Θ

1,k (K[x, z]) = HΓ
1 (K[x, z]) ∩HΘ

k (K[x, z]).

(2.3)

(ii) A second example for a graded module is an ideal I of a Θ-graded ring K[x] which
is generated by Θ-homogeneous polynomials.

Definition 2.10. A Θ-homogeneous ideal I of K[x] where K[x] is Θ-graded, is an ideal
which respects the grading, i.e. is a Θ-graded module.

For each Θ-homogeneous ideal I the quotient ring K[x]/I is a graded module over
K[x] as well.

Definition 2.11. (Atiyah and MacDonald, 1969, p. 116) Let M be a finitely gen-
erated, graded module (M =

⊕∞
i=0Mi) over a Noetherian graded ring R =

⊕∞
i=0Ri such

that R0 = K is a field. Then

HP(λ) =
∞∑
i=0

dim(Mi)λi,

is called the Hilbert–Poincaré series of M . Here dim(Mi) denotes the dimension of the
K-vector space Mi.

If M is multi-graded the multiple Hilbert series is defined in a similar way.

Definition 2.12. (Caboara ET AL., 1996) A tuple of gradings (W1, . . . ,Wr) of K[x] is
a weight system if for all i = 1, . . . , n exists j ∈ {1, . . . , r} with Wj(xi) > 0.

Example 2.13. If K[x] is graded by W such that all values W (xi) = wi are positive
then this grading is a weight system. Then all K-vector spaces Hi(K[x]/I) have finite
dimension which equals the codimension of Hi(I) in Hi(K[x]). Thus the Hilbert series
HPWK[x]/I is well defined.

For monomial ideals the corresponding Hilbert series (single graded or multi-graded)
may be computed by an algorithm described in Bayer and Stillman (1992). It is imple-
mented in Macaulay and in Maple in the moregroebner package (Gatermann, 1996a).
The input consists of a finite set of monomials and a list of gradings forming a weight
system.

It is an important and well-known fact about Gröbner bases that they enable the com-
putation of Hilbert series of homogeneous ideals as was already pointed out in Buchberger
(1965).

Lemma 2.14. (Macaulay, 1927) Let (W1, . . . ,Wr) be a weight system for K[x] and I
a W -homogeneous ideal. Let LT (I) be the monomial ideal generated by all leading terms
ht(f) of f ∈ I with respect to a term order of K[x]. Then the Hilbert series of I and
LT (I) are equal.

As the leading terms {ht(f), f ∈ GB} of a Gröbner basis GB generate the monomial
ideal LT (I) the series HPK[x]/I is easily computed.
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2.3. Hilbert series driven Buchberger algorithm

Definition 2.15. Let U = {U1, . . . , Ur} be a set of gradings of K[x] and I a homoge-
neous ideal with respect to U . Let d ∈ Nr be a fixed degree. A finite set of U -homogeneous
polynomials F ⊂ I is called a d-truncated Gröbner basis of I with respect to U and de-
noted by GB(

⊕
j≤dH

U
j (I)), if

{ht(f) | f ∈ F and degUi(f) ≤ di, i = 1, . . . , r},
generates (as an ideal, but restricted in degree)

r⋂
i=1

di⊕
ji=0

HUi
ji

(LT (I)) =
⊕
j≤d

HU
j (LT (I)).

Observe that this definition only makes sense for homogeneous ideals and that there
is no restriction on the term order.

This definition is useful in at least two ways.

Definition 2.16. (Becker and Weispfenning, 1993) Consider K[x, z] with the
grading Γ(xi) = 0,Γ(zj) = 1. A module Gröbner basis of a submodule of HΓ

1 (K[x, z]) is
a truncated Gröbner basis of degree 1 with respect to Γ.

Lemma 2.17. Let U = {U1, . . . , Ur} be a set of gradings of K[x] and d ∈ Nr a fixed
degree. Assume GB ⊂ K[x] is a d-truncated Gröbner basis of a U -homogeneous ideal I
with respect to U . Let f ∈ K[x] be a polynomial with degUi(f) ≤ di, i = 1, . . . , r. Then

f ∈ I ⇔ normalf (f,GB) = 0.

This is the generalization of Theorem 10.39, p. 471 in Becker and Weispfenning (1993)
from one grading to multiple grading.

The gradings U = {U1, . . . , Ur} give rise to gradings on the module of syzygies S(F )
for a set F = {f1, . . . , fm} in the following way:

S ∈ HU1...Ur
j1...jr

(S(F )) :⇔ Sk · ht(fk) ∈ HU1...Ur
j1...jr

(K[x]), k = 1, . . . ,m.

The syzygies Skl as defined in (2.1) are especially homogeneous of degree

degU (lcm(ht(fk), ht(fl))).

If the Hilbert series in known information on the structure of the ideal is available it is
exploited in order to gain efficiency. Superfluous S-polynomials may be dropped.

Theorem 2.18. Let U = {U1, . . . , Ur} be a set of gradings of K[x] and the gradings
W = (W1, . . . ,Ws) be a weight system of K[x]. Let I ⊂ K[x] be an ideal which is U -
homogeneous and W -homogeneous. Let d ∈ Nr be a degree, F = {f1, . . . , fm} ⊂ I a set of
U -homogeneous, W -homogeneous polynomials. Assume the Hilbert series HPWK[x]/I(λ) =∑
i∈Ns a

iλi is given. Let the Hilbert series of (LT (F )) be denoted by HPWK[x]/(LT (F ))(λ) =∑
i∈Ns b

iλi. Assume for all degrees i ∈ Ns

ai = bi or for all syzygies S := Skl
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with
degUj (S) ≤ dj , j = 1, . . . , r,

and
degWν

(S) ≤ iν , ν = 1, . . . , s normalf (S · F, F ) = 0.
Then F is a d-truncated Gröbner basis of I with respect to U .

Proof. In order to show that F is a d-truncated Gröbner basis we need to show that
for all j ≤ d

∀S ∈ HU
j (S(F )) normalf (S · F, F ) = 0 holds.

We take advantage of the weight system W and look at the decomposition

HU
j (S(F )) =

⊕
i∈Ns

HW,U
i,j (S(F )).

We need to show for all j ≤ d and all i ∈ Ns

∀S ∈ HW,U
i,j (S(F )) normalf (S · F, F ) = 0 holds. (2.4)

Consider one fixed pair (i, j). The vector space HW,U
i,j (S(F )) is part of a module which

is generated by the syzygies Skl. Only syzygies Skl of degree degU (Skl) ≤ j ≤ d and
degW (Skl) ≤ i generate elements in HW,U

i,j (S(F )). This implies: if normalf (S · F, F ) = 0
for all Skl of degree degU (Skl) ≤ j ≤ d and degW (Skl) ≤ i then for all S ∈ HW,U

i,j (S(F ))
normalf (S · F, F ) = 0 holds. So condition (2.4) is satisfied for this particular pair (i, j).
But there is a second possibility to check condition (2.4) which avoids the computation
of the normal forms of S-polynomials. This argumentation uses a second decomposition

HW
i (S(F )) =

⊕
ν∈Nr

HW,U
i,ν (S(F )). (2.5)

We are interested in the case ν = j for the moment. Considering the two Hilbert series
HPWK[x]/I(λ) =

∑
i∈Ns a

iλi and HPWK[x]/(LT (F ))(λ) =
∑
i∈Ns b

iλi the equality of dimen-
sions ai = bi implies

∀S ∈ HW
i (S(F )) normalf (S · F, F ) = 0.

The decomposition (2.5) tells us that particularly for ν = j

∀S ∈ HW,U
i,j (S(F )) normalf (S · F, F ) = 0,

which is condition (2.4). Since the argumentation is similar for all degrees (i, j) with
j ≤ d and we used only the assumptions in the theorem the proof is complete. 2

An implementation using this theorem motivated by the nontruncated version of the
multi-graded Hilbert series driven Buchberger algorithm in Caboara et al. (1996) is avail-
able by on-line, (Gatermann, 1996a). The basic idea is to climb up by W -degree and to
exploit the Hilbert series. At degree i there are bi − ai polynomials missing in order
to form a nontruncated Gröbner basis. If bi = ai then the remaining S-polynomials S-
polynomials of W -degree i are discarded. As S-polynomials of U -degree > d are neglected
one may not come to the point where S-polynomials are discarded because of the Hilbert
series information. In this case the normal form computation for all S-polynomials needs
to be carried out.
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Observe that the exploitation of the Buchberger criteria is not affected by the trunca-
tion because the gradings give rise to gradings on the module of syzygies.

2.4. elimination

Let I ⊂ K[x1, . . . , xn, y1, . . . , ym] be an ideal.

Definition 2.19. Ĩ = I ∩K[y] is called the elimination ideal of I in K[y].

Definition 2.20. A monomial order ≤ of K[x, y] is called an elimination order, if

xαyγ ≥ yδ

for all cases with xα 6= 1.

By Becker and Weispfenning (1993, p. 257 Lemma 6.14) it is sufficient to demand

xα ≥ yδ ∀xα 6= 1, yδ.

Example 2.21. Elimination orders on K[x1, . . . , xn, y1, . . . , ym] include

(a) the lexicographical order.
(b) all matrix orders with matrix M = (Mij) with first column M1i = 1, i = 1, . . . , n,

M1i = 0, i = n + 1, . . . , n + m. This includes the elimination order by Bayer and
Stillman.

(c) block orders ≥ consisting of orders ≥x and ≥y on K[x] and K[y], respectively.
(xαyγ > xβyδ ⇔ xα >x x

β or xα = xβ and yγ >y yδ).

Lemma 2.22. (Becker and Weispfenning, 1993, p. 269; Cox et al., 1992, p. 329)
Let f1, . . . , fm∈K[x1, . . . , xn] and ≤ be an elimination order for K[x1, . . . , xn, y1, . . . , ym].
Let GB be a Gröbner basis of

I = (f1(x)− y1, . . . , fm(x)− ym).

Then GB ∩K[y] is a Gröbner basis of the elimination ideal with respect to ≤|K[y].

(i) f(x) ∈ K[f1, . . . , fm]⇔ normalf (f,GB)(x, y) ∈ K[y].
(ii) if f ∈ K[f1, . . . , fm] then g := normalf (f,GB) ∈ K[y] gives a rewriting f(x) =

g(f1(x), . . . , fm(x)).

Observe that normalf (f,GB) depends in general on the term order. The relevance of
Lemma 2.22 is that K[f1(x), . . . , fm(x)] and K[y]/Ĩ are isomorphic as rings.

3. Gröbner Bases for Invariants and Equivariants

In equivariant dynamics we are concerned with the invariant ring and the module
of equivariants. Assume G is a group and ϑ : G → GL(Kn) its representation. Let
ρ : G → GL(Km) be another representation. (Of course the field K is R in theory, but
for practical computations it often will be Q or an extension of it.) Moreover, we assume
that ϑ, ρ are orthogonal.
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p ∈ K[x] is called invariant, if

p(ϑ(g)x) = p(x), ∀g ∈ G.
By K[x]ϑ we denote the invariant ring. f ∈ K[x]m is called ϑ-ρ-equivariant, if

f(ϑ(g)x) = ρ(g)f(x), ∀g ∈ G.
The K[x]ϑ-module of ϑ-ρ-equivariants is denoted by K[x]ρϑ.

In equivariant dynamical systems one studies

ẋ = f(x),

where f is a generic equivariant vector field. f is polynomial if a truncation of the Taylor
expansion has been performed. So the knowledge of generators of the invariant ring and
the module are the key for investigation of generic equivariant dynamical systems.

3.1. relations

Let {p1, . . . , pk} denote the Hilbert basis of the invariant ring K[x]ϑ. The relations
among the basis elements are easily determined with the help of Gröbner bases. Recall
that the relations are polynomials r ∈ K[y1, . . . , yk] with r(p1(x), . . . , pk(x)) ≡ 0. They
form an ideal.

Algorithm 3.1. (Relations in Fundamental Invariants up to Degree d)

Input: Invariant polynomials p1(x), . . . , pk(x) ∈ K[x],
homogeneous with respect to the natural grading N on K[x]
Output: relations r1, . . . , rl ∈ K[y1, . . . , yk]
(i) Compute the Hilbert series HPK[x,y]/(y1,...,yk) with respect to the induced grading
W : {x, y} → N,W|{x} = N , W (yi) = degN (pi(x)), i = 1, . . . , k.
(ii) Choose an elimination order ≤ on K[x, y] which eliminates x.
(iii) Compute a Gröbner basis GB(

⊕
i≤dH

W
i (I)) of the ideal

I := (p1(x)− y1, . . . , pk(x)− yk) ⊂ K[x, y],

with respect to the elimination order, using the Hilbert series driven Buchberger algorithm
with the Hilbert series under (i), truncate with respect to the grading W up to degree d.
The polynomials GB ∩K[y] are W|{y}-homogeneous and form a truncated Gröbner basis
of degree d with respect to W of the ideal of relations Ĩ ⊂ K[y].

Proof. Without exploiting homogeneity the correctness of the algorithm is given by
Lemma 2.22. As the polynomials pi(x) − yi, i = 1, . . . , k are homogeneous with respect
to the induced grading W , it makes sense to use truncation and the Hilbert series driven
Buchberger algorithm. By the 1. Buchberger criterion the polynomials pi(x) − yi form
a Gröbner basis of I with respect to a term order which select yi as leading terms. The
Hilbert series HPWK[x,y]/I(λ) is given by the series of the monomial ideal (y1, . . . , yk) by
Lemma 2.14. The restriction W|{y} is a weighted grading on K[y]. As pi − yi are homo-
geneous all other polynomials in the Buchberger algorithm are homogeneous, especially
GB(Ĩ). Thus the ideal of relations is W -homogeneous and it makes sense to consider the
part up to degree d. 2
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Remark 3.2. (i) Different choices of elimination term orders in (ii) give different sets
of output polynomials. Nevertheless, the same space

⊕d
i=0H

W
i (Ĩ) is generated. (ii) In

case no Hilbert series driven Buchberger algorithm is available, special choices of an
elimination order greatly influence the cpu time. Good experience has been gained with
a matrix order with first row given by W . As pi − yi are W -homogeneous this does not
affect the final Gröbner basis, but gives good exploitation of the Buchberger criteria
because the S-polynomials are ordered with respect to sugar and then ties are broken by
the term order.

Given some homogeneous invariant polynomials p1(x), . . . , pk(x) and some homoge-
neous equivariants f1(x), . . . , fl(x) ∈ K[x]ρϑ one denotes by relations the set of polyno-
mials

R = {r ∈ K[y, u] | r(p(x), f(x)) ≡ 0, r ∈ HΓ
1 (K[y, u])},

where Γ : {y, u} → N,Γ|{y} = 0,Γ|{u} = N is a Kronecker grading.
It is interesting to know a generating set of R since the K[p(x)]-module generated

by f1, . . . , fl is isomorphic to the K[y]/Ĩ-module HΓ
1 (K[y, u])/R, where Ĩ is the ideal of

relations in the invariants.
A Gröbner basis GB(Ĩ) gives some generators ui · g, g ∈ GB(Ĩ), i = 1, . . . , l, of R. By

the following algorithm these are completed to a generating set of R.

Algorithm 3.3. (Relations in Fundamental Invariants and Equivariants up
to Degree d)

Input: homogeneous invariants p1(x), . . . , pk(x)
homogeneous equivariants f1(x), . . . , fl(x) ∈ K[x]m

degree d
Output: relations r1, . . . , rs ∈ HΓ

1 (K[y, u])
(i) Choose slack variables z1, . . . , zm.
(ii) Choose a term order ≤ on K[x, z, y, u] which eliminates x and z.
(iii) W : {x, z, y, u} → N, W|{x} = N, W|{z} = 0, W (yi) = degN (pi(x)), i = 1, . . . , k,
W (ui) = degN (fi(x)), i = 1, . . . , l.
(iv) Compute GB(

⊕
i≤dH

W
i (I)) with respect to ≤|K[x,y] of

I = (p1(x)− y1, . . . , pk(x)− yk) ⊂ K[x, y] by Algorithm 3.1.
(v) Use grading U : {x, z, y, u} → N, U|{x,y} = 0, U|{z,u} = N .
(vi) gi(x, z) :=

∑m
j=1(fi(x))jzj , i = 1, . . . , l. Define

J = (p1(x)− y1, . . . , pk(x)− yk, g1(x, z)− u1, . . . , gl(x, z)− ul) ⊂ K[x, z, y, u].

(vii) Compute the Hilbert series HPW+U,W
K[x,z,y,u]/J equal to the Hilbert series given by

(y1, . . . , yk, u1, . . . , ul).
(viii) Compute GB(

⊕
(i,j)≤(d,1)H

W,U
i,j (J)) with respect to ≤ of J . Use the Hilbert series

driven Buchberger algorithm with Hilbert series HPW+U,W
K[x,z,y,u]/J as under (vii) and as input

use

GB

⊕
i≤d

HW
i (I)

 and normalf (gi(x, z)− ui,GB

⊕
i≤d

HW
i (I)

 , i = 1, . . . , l.

(ix) The relations are GB ∩HU
1 (K[y, u]).
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Proof. By using the slack variables the relations in pi and gj of degree 1 equals the set
R, the relations in pi and fj . The grading U enables the restriction to the module. The
Gröbner basis of J gives a Gröbner basis of J̃ = J ∩ K[y, u] by Lemma 2.22. With U

one obtains a Gröbner basis of
⊕1

i=0H
U
i (J̃) where H0(J̃) = Ĩ. As I ⊂ J one can first

compute a Gröbner basis of I. Because J is homogeneous with respect to W and the
Buchberger algorithm preserves homogeneity one can restrict to degree d. 2

Remark 3.4. (i) If no Hilbert series driven Buchberger algorithm is available Remark
3.2 is valid analogously.

(ii) If the representation ρ : G→ GL(Km) contains no trivial irreducible representation
in its isotypic decomposition the efficiency can be improved significantly by using a term
order which eliminates x only. If ρ contains not the trivial representation the slack vari-
ables are eliminated automatically. ρ induces an action on z as ρt : G → GL(Km), g 7→
ρ(g)t. The polynomials gi(x, z) are (ρ+ ρt)-invariant. J ∩HU

1 (K[z, y]) is generated over
K[y] by the ρt-invariant in K[z] of degree 1. As ρ has no trivial irreducible representation
there exists no ρt-invariant of degree 1 and thus J ∩ HU

1 (K[z, y]) is empty. Because of
the symmetry this is equivalent to J ∩HU

1 (K[z, y, u]) = J ∩HU
1 (K[y, u]).

(iii) If ρ contains the trivial representation then one should use an elimination order
which first eliminates x and in a second step z.

(iv) It is preferable to use the weight system [U + W,W ] instead of [U,W ] because
U +W is already a weight system. This is used in the Hilbert series driven version of the
Buchberger algorithm.

Example 3.5. In order to investigate a Takens–Bogdanov point with D3-symmetry in
Matthies (1996) a generic equivariant vector field is investigated for the action of D3

generated by

flip(v, w) = (v̄, w̄), and rotation (v, w) = (ei
2π
3 v, ei

2π
3 w),

which decomposes as two times the natural two-dimensional action. The invariants and
equivariants in these coordinates are suggested as

s1 = vv̄ , s2 = ww̄ , t0 = w3 + w̄3, t3 = v3 + v̄3,

s3 = vw̄ + v̄w, t1 = vw2 + v̄ w̄2, t2 = v2w + v̄2w̄ .

g0 =
(
v
0

)
, g1 =

(
0
v

)
, g2 =

(
w
0

)
, g3 =

(
0
w

)
,

and

fj =
(
v̄jw̄3−j−1

0

)
, hj =

(
0

v̄jw̄3−j−1

)
, j = 0, 1, 2.

The complex notation is chosen since this is common in analysis and is appropriate for
hand calculations. For computation in a Computer Algebra Package one chooses different
coordinates: v = vr + i · vi, w = wr + i · wi. Then the invariants and equivariants are

s1 = v2
r + v2

i , s2 = w2
r + w2

i , t0 = 2w3
r − 6wrw2

i ,

t3 = 2v3
r − 6vrv2

i , s3 = 2vrwr + 2viwi,
t1 = 2vrw2

r − 2vrw2
i − 4viwrwi, t2 = 2v2

rwr − 4vrviwi − 2v2
iwr,

g0 = [vr, vi, 0, 0], g1 = [0, 0, vr, vi], g2 = [wr, wi, 0, 0], g3 = [0, 0, wr, wi],
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Table 2. Computation of relations in invariants and equivariants for D3 +D3 with and without use of

Hilbert series and as in Algorithm 3.3.

Relations in invariants Relations in equivariants
No HP With HP 1 GB no HP 1 GB with HP GB Alg. 3.3

Total nr of pairs 3003 1743 26478 16775 15419
Elim. pairs by trunc. 39952 21148 23362
Elim. pairs by criteria 2502 1276 23126 13558 12681
Elim. pairs by HP 322 2469 2290
Treated pairs 501 145 3352 748 448
CPU 807 s 239 s 10.5 h 6.2 h 4.9 h

f0 = [w2
r − w2

i ,−2wrwi, 0, 0], f1 = [vrwr − viwi,−vrwi − viwr, 0, 0],
f2 = [v2

r − v2
i ,−2vrvi, 0, 0],

h0 = [0, 0, w2
r − w2

i ,−2wrwi], h1 = [0, 0, vrwr − viwi,−vrwi − viwr],
h2 = [0, 0, v2

r − v2
i ,−2vrvi].

Table 2 shows some statistics of the computations of the relations. With the algorithms
in Subsection 3.2 it could be shown that the invariant ring and the module of equivariants
are generated completely, which Matthies had previously done using polar coordinates.

3.2. completeness

Given some homogeneous invariants it is easily checked by using Gröbner bases whether
the invariant ring K[x]ϑ is generated up to degree d. Without restriction in degree this
is Algorithm 2.2.5 p. 32 in Sturmfels (1993).

Algorithm 3.6. (Completeness of Invariants up to Degree d)

Input: Molien series of invariant ring HPK[x]ϑ(z),
homogeneous invariants p1(x), . . . , pk(x),
degree d
Output: true or minimal degree of missing invariant
(i) Compute relations GB(

⊕
i≤dH

W
i (Ĩ)) by Algorithm 3.1.

(ii) LT := {ht(f)|f ∈ GB}
(iii) Compute HPWK[y]/(LT )(z)
(iv) If HPWK[y]/(LT )(z) ≡ HPWK[x]ϑ

(z) then “invariants generate invariant ring
completely”.

If series(HPWK[y]/(LT )(z), d) ≡ series(HPWK[x]ϑ
(z), d) then true

else mindeg(series(HPWK[x]ϑ
(z)−HPWK[y]/(LT )(z), d)

Proof. As p1, . . . , pk are invariants we have K[p(x)] ⊂ K[x]ϑ. As pi are homogeneous
in the natural grading N we have, moreover,

HN
i (K[p]) ⊂ HN

i (K[x]ϑ), i = 0, . . . ,
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and thus
dimHN

i (K[p]) ≤ dimHN
i (K[x]ϑ), i = 0, . . . .

Thus one only needs to compare HPNK[p](z) and HPNK[x]ϑ
(z) (up to degree d). As the

ideal of relations Ĩ ⊂ K[y] is homogeneous with respect to the induced grading W
the residue ring K[y]/Ĩ is graded by W|{y} as well. Moreover, K[y]/Ĩ with respect to
W and K[p(x)] with respect to the natural grading are isomorphic as graded rings.
Thus HPWK[p](z) = HPW

K[y]/Ĩ
(z). By Lemma 2.14 the Gröbner basis GB of Ĩ yields

HPNK[p](z) = HPW
K[y]/LT (Ĩ)

(z). If one truncates the Gröbner basis to degree d the last
equality is only valid for degrees 0, 1, . . . , d. 2

For the equivariants the algorithmic treatment is analogous.

Algorithm 3.7. (Completeness of Fundamental Equivariants up to Degree d)

Input: Hilbert–Poincaré series HPNK[x]ρϑ
(z) of K[x]ϑ-module of equivariants K[x]ρϑ,

homogeneous invariants p1(x), . . . , pk(x),
homogeneous equivariants f1(x), . . . , fl(x), degree d
Output: true, if K[x]ρϑ is generated by f1, . . . , fl as K[p]-module up to degree d else
minimal degree of missing part.
(i) Compute GB(

⊕
(i,j)≤(d,1)H

W,U
i,j (J̃) as in Algorithm 3.3.

(ii) Define LT := {ht(f)|f ∈ GB}.
(iii) Compute the Hilbert series of the K[p]-module M generated by f1, . . . , fl by
hp := 0

for j from 1 to l do
Ti = {yα ∈ K[y]|yα ∈ LT or uiyα ∈ LT}
hp := hp+ zdeg(fi) · HPWK[y]/(Ti)(z)
HPNM (z)|0..d = HPWHU1 (K[y,u])/R(z)|0..d := hp(z)|0..d

(iv) If HPNM (z) = HPNK[x]ρϑ
(z) then “module is generated completely”.

If series(HPNM (z), d) = series(HPNK[x]ρϑ
(z), d) then true

else mindeg(series(HPNM (z)−HPNK[x]ρϑ
(z), d)).

Proof. As in the proof of correctness of Algorithm 3.6 we use that K[p] and K[y]/Ĩ are
isomorphic as graded rings with respect to the natural grading N and W|{y}, respectively.
For J̃ := J ∩K[y, u] the submodule HU

1 (J̃) = R is a module over K[y] and as HU
0 (J̃) = Ĩ

and
⊕l

i=0 uiĨ ⊂ HU
1 (J̃) the module is a K[y]/Ĩ-module. As HU

1 (J̃) is generated by
W|{y,u}-homogeneous elements the quotientHU

1 (K[y, u]/HU
1 (J̃) is graded by the quotient

grading of W over the graded ring K[y]/Ĩ.
In fact, the K-vector spaces

HW
i

(
HU

1 (K[y, u])/HU
1 (J̃)

)
and HN

i (M)

are isomorphic for all i. Together U,W form a weight system. Thus the spaces have the
same dimension and the Hilbert series are equal.

In a generalization of Lemma 2.14 the K[y]/Ĩ-module HU
1 (K[y, u])/HU

1 (J̃) and the
K[y]/LT (Ĩ)-moduleHU

1 (K[y, u])/LT (HU
1 (J̃)) are isomorphic asW -graded modules. The
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Table 3. Timings for completeness of invariants and equivariants for O(2)× S1.

Invariants Equivariants
Degree Cpu Complete up to Cpu Complete up to

5 9 s 5 18 min 5
6 20 s 6 53 min 6
7 28 s 7 2.0 h 8
8 47 s ∞ 4.6 h 10

11 21.9 h ∞
∞ 265 s ∞

monomial module LT (HU
1 (J̃)) is easily determined from the Gröbner basis GB(HU

0 (J̃)+
HU

1 (J̃)). The monomials
⋃l
i=1 uiLT (GB(HU

0 )) and

{m ∈ LT (GB(HU
0 (J̃) +HU

1 (J̃))|degU (m) = 1}
generate LT (HU

1 (J̃)).

By exploiting LT (HU
1 (J̃)) =

⊕l
i=1 ui ·(Ti) the modules HU

1 (K[y, u])/HU
1 (J̃) and

⊕l
i=1

K[y]/(Ti) are isomorphic. As graded modules one needs to take into account the shifts
in the gradings by degW (ui) = degN (fi).

In case the Gröbner basis is only computed up to degree d the computed Hilbert series
is of course only valid up to degree d. 2

Example 3.8. In Leis (1995) a Hopf bifurcation with O(3) symmetry is investigated.
After reduction to a fixed point space one is left with the action

rθ(z−2, z0, z2) = (e−iθz−2, z0, e
iθz2),

κ(z−2, z0, z2) = (z2, z0, z−2),
φ(z−2, z0, z2) = (eiφz−2, e

iφz0, e
iφz2),

of O(2)×S1 where S1 comes in due to the Hopf bifurcation. The invariants are suggested
as

π1 = |z0|2, π2 = |z−2|2 + |z2|2, π3 = |z−2|2 · |z2|2,

π4 =
1
2
(z0

2z−2z2 + z2
0z−2 z2), π5 =

i

2
(z0

2z−2z2 − z2
0z−2 z2).

For the equivariants Leis has given

e1 =

 0
z0

0

 , e2 =

 z−2

0
z2

 , e3 =

 z−2|z2|2
0

z2|z−2|2

 ,

e4 =
1
2

 z2
0 z̄2

2z−2z2z0

z2
0z−2

 , e5 = − i
2

 z2
0 z̄2

−2z−2z2z0

z2
0z−2

 ,

such that the equivariants are Ei = (ei, ēi). These coordinates are very common in
dynamical systems. Then the multiplication for a complex number c is meant to be
c · Ei = (c · ei, c̄ · ēi). In order to be able to compute one needs to change coordinates:
z−2 = 1

2

√
2(x1 + i · y1), z0 = 1

2

√
2(x2 + i · y2), z2 = 1

2

√
2(x3 + i · y3) or equivalently

(z, z̄) = A · (x, y). The transformed equivariants are

A−1 · Ei(A · (x, y)), A−1 · ( i · ei(A · (x, y))− i · ei(A · (x, y)) ) , i = 1, . . . 5,
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which gives 10 equivariants. The Molien series and the equivariant Molien series have
been computed in Leis (1995) with the Weyl integral formula and theorem of residues to
be

HPO(2)×S1(λ) =
1 + λ4

(1− λ2)2 · (1− λ4)2
, HPO(2)×S1

O(2)×S1(λ) =
4λ+ 6λ+ 2λ5

(1− λ2)2 · (1− λ4)2
.

The completeness question for the equivariants turned out to be a hard problem. Table 3
gives some timings. In Leis (1995) the question has been considered up to degree 5 only.
Our procedure allows to make the calculation of complete generation of the module for
the first time.

3.3. orbit space reduction

In equivariant dynamics there is one method known as orbit space reduction, see
Chossat (1993), Chossat and Dias (1995), Lauterbach and Sanders (1995) and Koenig
(1997). Assume an equivariant system

ẋ = f(x), x ∈ Rn, (3.1)

where f ∈ R[x]ϑϑ. Without restriction we may assume that ϑ is orthogonal because this
is true for compact Lie groups, see Fulton and Harris (1991). Let p1(x), . . . , pk(x) be
the fundamental invariants which generate R[x]ϑ. Then the dynamic of (3.1) is closely
related to the dynamic of a system

ẏ = g(y), y ∈ Rk+ algebraic relations (3.2)

because

∂

∂t
pi(x) =

(
dpi
dx

)t
ẋ =

(
dpi
dx

)t
f(x) =

(
dpi
dx

, f(x)
)

= hi(x) = gi(p1(x), . . . , pk(x)),

for i = 1, . . . , k, where gi ∈ R[y] exist with this property because hi is invariant. The
gradient of an invariant is equivariant and the inner product of two equivariants is an
invariant because the inner product (·, ·) is invariant for orthogonal representations. There
is a lot to say about the topological structure but that is beyond the scope of this paper.
Here we are only interested in those calculations which are often done by hand but can
be done by computer.

The algebraic relations are computed by Algorithm 3.1. It is well known in Computer
Algebra but not in Analysis that the rewriting of hi in gi(p(x)) is done with Gröbner
bases, see Lemma 2.22.

Algorithm 3.9. (Orbit Space Reduction)

Input: equivariant f(x) ∈ K[x]ϑϑ,
homogeneous invariants p1(x), . . . , pk(x) generating K[x]ϑ

Output: ẏ = g ∈ K[y1, . . . , yk]k, relations

d := max(deg(p1), . . . ,deg(pk)) + deg(f)− 1
Compute the Gröbner basis GB(

⊕d
i=0H

W
i (I)) as in Algorithm 3.1.

Then compute the normal forms gi(y) = normalf (dpi(x)
dx · f(x),GB), i = 1, . . . , k.
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Table 4. Timings of Algorithm 3.9 (orbit space reduction) for examples from literature.

Example Group Cpu time
(Chossat, 1993) O(2) 5 s
(Chossat and Dias, 1995) O(2)× S1 72 s
(Leis, 1995) O(3)× S1 160 s

Remark 3.10. (i) Observe that we do not need a full Gröbner basis in Algorithm 3.9.
(ii) In case the invariants form a Hironaka decomposition (that means that the sec-

ondary invariants ps+1, . . . , pk form a free module over the ring R[p1, . . . , ps] and thus
each invariant has a unique representation

∑k
i=s+1 ai(p1, . . . , ps) · pi) one would like to

compute the unique representations
∑
aipi in Algorithm 3.9. This is done, if the eliminat-

ing term order ≤ on K[x, y] is such that the matrix representing the order ≤|K[y] starts
with first row with 0’s for y1, . . . , ys and 1’s for ys+1, . . . , yk (Sturmfels, 1993, p. 52).

(iii) The polynomial gi may also be found by linear algebra technique. But the advan-
tage of Gröbner bases is the unique way of representation once a term order has been
chosen.

3.4. computing invariants

For finite groups there is one famous algorithm in Sturmfels (1993) for the computation
of invariants which appeared first in Sturmfels and White (1991). It makes use of the
fact that the invariant ring K[x]ϑ is Cohen–Macaulay, which means whenever we have
polynomials p1, . . . , pn such that K[x]ϑ is a finitely generated module over the subring
K[p(x)] then it is a free module.

The generators are called secondary invariants in contrast to the primary invariants
pi. The algorithm searches first primary invariants until the set of common zeros of
p1, . . . , pn is {0} (the nullcone). The degrees of the secondaries are then known by the
Molien series of K[x]ϑ.

Algorithm 3.11. (Sturmfels, 1993, p. 57)

Input: finite group ϑ : G→ GL(Kn)

(i) find primary invariants p1, . . . , pn
(ii) find secondary invariants: for degrees di there are ci many, i = 1, . . . ,m

S = {1}
for i = 1, . . . ,m

for j = 1, . . . , ci
q :=nextcandidate ∈ HN

di
(K[x]ϑ)

while q(x) is not an element of the free K[p]-module generated by S
q :=nextcandidate

S := S ∪ {q}

There are at least four ways in performing the task

q(x) ∈?
⊕
s∈S

s(x)K[p1(x), . . . , pn(x)],
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Table 5. Timings for Algorithm 3.11 for various variants.

Group Ref. Degrees of Up Invariants
primary secondary to a b c d

D3(ϑ2 + ϑ3)
Gatermann and
Werner (1996)

2,2,3 4 all 6 s 9 s 9 s 6 s

D3 +D3 Matthies (1996) 2,2,3,3 2,3,3,4,6 all 23 s 243 s 343 s 19 s

D4(ϑ2 + ϑ5)
Campbell and
Holmes (1992)

2,2,4 3 all 4 s 5 s 5 s 4 s

Z4 · Z4
2 Worfolk (1994) 2,4,4,8 6,6,6, 8 108 s 466 s 529 s 107 s

8,8,8,14 all 213 s >1 h >1 h 179 s

whether q is a member of the free module generated by S = {1, s2, . . . , sl} over K[p]. It
is used that qi is homogeneous of degree di = degN (q(x)).

(a) Pure linear algebra:
Build all terms spj11 · · · pjnn with s ∈ S, j = (j1, . . . , jn) such that degN (spj) = di and
determine linear dependence of q(x) on these polynomials by comparing coefficients.

(b) Normal form with respect to Hironaka decomposition:
Compute a Gröbner basis GB(

⊕di
j=1H

N
j (I)) of

I = (p1(x)− y1, . . . , pn(x)− yn, η2 − s2(x), . . .)

with respect to a term order which eliminates first x and on K[y, η] eliminates η,
starting with natural degree on η, see Sturmfels (1993, p. 52). (Use the Hilbert series
driven Buchberger algorithm with HPWK[x,y,η]/I given by (y1, . . . , yn, η2, . . . , ηl).) If
normalf (q,GB) ∈ K[y, η] and is linear in η then q ∈

⊕
s∈S s · K[p]. Once a new

secondary invariant is found the Gröbner basis needs to be updated.
(c) Restriction to module with slack variable: choose a variable z and consider the grad-

ings W : {x, y, η, z} → N W|{x} = N, W (yi) = degN (pi(x)), i = 1, . . . , n, W (ηi) =
degN (si(x)), i = 2, . . . , l, W (z) = 0 for restriction in degree and U : {x, y, η, z} →
N, U|{x,y} = 0, U|{η} = N, U(z) = 1 for restriction to the module. For

I := (y1 − p1(x), . . . , yn − pn(x), η2 − z · s2, . . . , ηl − z · sl),

compute GB = GB(
⊕

k≤di,j=0,1H
W,U
k,j (I)). (Use the Hilbert series HPW,UK[x,y,η,z]/I

given by (y1, . . . , yn, η2, ηl).) If g(x, y, η, z) = normalf (z · q,GB) does not depend on
x then q is a member of the module and g(p(x), s(x), 1) = q(x). Like method (b)
the Gröbner basis needs updating after a new secondary invariant was found.

(d) Using one Gröbner basis: the Gröbner basis GB(
⊕max(di)

j=0 HN
j ((p1(x), . . . , pn(x)))

with respect to any term order is computed once in the beginning. Consider the set
of normal forms S̃ = {normalf (s,GB)|s ∈ S} and q̃ := normalf (q,GB) ∈ K[x].
If q̃ isK-linear dependent on S̃ (on those of degree di) then q(x) =

⊕
s∈S s(x)·Bs(x)

with Bs(x) ∈ (p1(x), . . . , pn(x)) members of the ideal. Because of the invariance
Bs(x) can be assumed to be invariant and thus to be members of K[p]. Here one
can use restriction to actual degree.

In Invar (Kemper, 1993) method (d) is used. We tested these methods for various
examples and give their timings in Table 5. Methods (b) and (c) need more time because
more information than needed, namely the representation in p(x) and s ∈ S, is computed.
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Table 6. Timings for computation of equivariants for various variants.
Group Ref. degrees of up equivariants

equivariants to a c d

D3(ϑ2 + ϑ3)
Gatermann and
Werner (1996)

1,1,2,2,3,3 all 37 s 85 s 35 s

D3 +D3 Matthies (1996) 1,1,1,1,2,2,2,2,2,2, 2 45 s 185 s 46 s
3,3,3,3,4,4,4,4,4,4,5,5,5,5 all 324 s >1 h 229 s

D4(ϑ2 + ϑ5)
Campbell and
Holmes (1992)

1,1,2,2,3,4 all 70 s 129 s 69 s

Z4 · Z4
2 Worfolk (1994) 1,3,3,3,3,(7*5), 3 158 s 274 s 164 s

(8*7), (7*9), (4*11),13 all 4290 s >3 h 2581 s

Method (d) is most efficient because it exploits the underlying structure as much as
possible.

3.5. equivariants

As the module of equivariants is Cohen–Macaulay for finite groups the second part of
the Algorithm 3.11 transfers immediately to the equivariant case, see Gatermann (1996b)
and Worfolk (1994).

Only the task q(x) ∈?
⊕

e∈E e(x)K[p(x)] where q(x) ∈ K[x]r and E ⊂ K[x]r of order
m needs to be discussed. The methods (a), (c) and (d) are valid analogously, but (b) has
no generalization. Timings are given in Table 6.

4. Invariants and Equivariants for Continuous Groups

The algorithms given in Section 3.4 cannot be generalized straightforward to contin-
uous groups. We will consider here a different method based on properties of the Lie
algebra associated to a compact Lie group. This is a direct extension of a method al-
ready used in Sattinger (1978) for the computation of the equivariants for SO(3) and
O(3). It holds for the class of semi-simple Lie groups which includes most of the common
classical groups (SO(n) and O(n) with n > 2, SU(n) and U(n), . . .). There is a huge
amount of bibliography concerning Lie groups and Lie algebras. Let us cite, for example,
Bröcker and tom Dieck (1985), Humphreys (1980), Humphreys (1982), or Fulton and
Harris (1991).

From now on, the group G will be a connected Lie group, i.e. a connected subgroup of
GL(n). Our approach can also be generalized to cases where a finite group H is involved.
We indicate at the end of this section how to generalize the algorithms of this section
in some particular cases. In equivariant dynamics problems, we are often interested in
subgroups of GL(n,R) acting on real vector spaces. However, for most of the interest-
ing groups (including SO(n), SL(n), Sp(2n)) the real representations of subgroups of
GL(n,R) can be obtained by restriction to the real part of complex representations of
subgroups of GL(n,C).

4.1. Lie group—Lie algebra

For a connected compact Lie group G let ϑ : G → GL(Cn) and ρ : G → GL(Cm)
be two linear representations where ϑ is faithful. The aim of the following sections is
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the computation of a generic homogeneous equivariant of degree d, i.e. one computes a
vector space basis of HN

d (C[x]ρϑ). Observe that for m = 1, ρ(g) = 1 the case of invariants
is included.

The key for the algorithm is the use of a associated Lie algebra. Recall that a connected
Lie group is a manifold and the tangent space at the identity TeG has the special meaning
of the Lie algebra g, i.e. TeG is a vector space and additionally is provided with a Lie
bracket.

Each Y ∈ g is thus given by a path γ : [−1, 1] → G, γ(0) = e, ddsγ(s)|s=0 = Y . The
group action ϑ induces by the representation Θ : G→ Aut(C[x]m),

Θ(g)(f(x)) = f(ϑ(g−1)x), g ∈ G,
to an action of the Lie algebra on the polynomial vectors. Elements of the tangent space
of Tϑ(e)ϑ(G) are given by paths

γ : [−1, 1]→ G, γ(0) = e, γ′(0) = Y ∈ g,

ζ : g→ GL(Cn), ζ(Y ) =
d

ds
ϑ(γ(s))|s=0.

Analogously, we have TΘ(e)Θ(G) by θ : g→ Aut(C[x]m)

θ(Y )(f(x)) =
d

ds
Θ(γ(s))(f(x))|s=0 =

d

ds
f(ϑ(γ(s)−1)x)|s=0

=
d

dx
f(x) · d

ds
ϑ(γ(s)−1)|s=0 · x =

d

dx
f(x) · ζ(−Y ) · x

= − d

dx
f(x) · ζ(Y ) · x.

Let the Lie algebra action associated to ρ be denoted by %. The main ingredient in the
algorithmic treatment is the following well-known lemma.

Lemma 4.1. f ∈ C[x]m is ϑ-ρ equivariant iff for all generators Y of g

θ(−Y )(f(x)) = %(Y ) · f(x).

Special structure of the Lie algebra allows for more simplification as described in the
following section. Besides this two simplifications are obvious. Assume ϑ decomposes into
subrepresentations and the coordinates are such that the representation matrices have
block diagonal form

ϑ(g) =

ϑ1(g) 0
. . .

0 ϑr(g)

 .

The set of variables then decomposes into r subsets x = (x1, . . . , xr). Then the Kronecker
gradings Ni : {x1, . . . , xn} → N,

Ni(xj) =
{

1, if xj ∈ xi
0, else

define a grading of C[x] such that the invariant ring is multi-graded by N = (N1, . . . , Nr)
as well:

Hd(C[x]ϑ) =
⊕

k1+···+kr=d

H
N
k (C[x]ϑ).
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The module of equivariants is multi-graded analogously.
The second simplification is given by a decomposition of ρ in block diagonal form ρ(g) =

diag(ρ1(g), . . . , ρs(g)). The ϑ-ρ-equivariants are given by the ϑ-ρi-equivariants f̃ since
(0, . . . , f̃ , 0, . . . , 0) is a ϑ-ρ-equivariant.

Observe that the case ϑ = ρ = ϑ1 + ϑ2 includes the case which in the theory of
dynamical systems is known as mode interaction.

4.2. properties of semi-simple Lie algebras

We consider now the case where the group G is a finite dimensional complex semi-
simple Lie group G. Let us recall that a connected Lie group is called semi-simple if
it does not contain any nontrivial solvable normal subgroup. Similarly, a Lie algebra is
called semi-simple if it contains no proper nontrivial Abelian ideal. Now a connected Lie
group is semi-simple iff its Lie algebra g is semi-simple (Humphreys, 1980, p. 89). The
classical complex Lie algebras sln(C), son(C) (n > 2) and sp2n(C) are semi-simple. A
maximal Abelian subalgebra g0 of g is called a Cartan subalgebra. Let us recall that the
adjoint representation of g is the action of g on itself using the Lie bracket i.e.

ad : g −→ GL(g),

such that for X,Y ∈ g, ad(X)(Y ) = [X,Y ].
The action of g0 on g can be thought of as diagonal (Theorem 9.20 in Fulton and

Harris (1991)) i.e. all matrices ad(X) for X ∈ g0 can be simultaneously diagonalized.
This property suggests a so-called Cartan decomposition of g

g = g0 ⊕α gα, (4.1)

where each root space gα is a one-dimensional eigenspace for the elements of g0 in the
adjoint action of g. Each α occurring in the Cartan decomposition (4.1) is a linear form
on g0. We denote by R the set of these linear forms which are called roots. For any root
space gα, the form α ∈ g∗0 is defined by

α(X)Y = ad(X) Y = [X,Y ], X ∈ g0, Y ∈ gα.

If gα is a root space then g−α is also a root space. Furthermore, there exists a particular
basis of g such that the elements of root spaces act in a nice way via the adjoint action.

Theorem 4.2. (The Cartan–Weyl Form) Let g be a complex semi-simple Lie alge-
bra with the Cartan decomposition (4.1). There exists a basis {Hi : i = 1, . . . , r} of g0

and for each α ∈ R some Eα generates gα such that

(i) ad(Hi) Eα = [Hi, Eα] = α(Hi) Eα,

(ii) ad(Eα) E−α = [Eα, E−α] =
r∑
i=1

α(Hi) Hi = Hα,

(iii) ad(Eα) Eβ = [Eα Eβ ] = Nα,β Eα+β with Nα,β = 0 unless α+ β ∈ R,

with Nα,β = −Nβ,α = N−β,−α = −N−α,−β.

Example 4.3. The Cartan subalgebra of so(3) is generated by J3 and there are two
root spaces generated by J+ and J−. Then

[J3, J±] = ±J±, [J+, J−] = 2J3.
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Now consider an action % : g → GL(V ) where V is a complex vector space. V can be
provided with a decomposition similar to (4.1). More precisely,

V =
⊕
β∈W

Vβ , (4.2)

where W is a subset of the linear forms on g0. Each weight space Vβ is characterized by

∀v ∈ Vβ , ∀X ∈ g0, %(X)(v) = β(X)v.

and the elements β inW are called the weights of the representation. The dimension of a
weight space Vβ is called its multiplicity. If dim Vβ = 1 then the weight β is said simple.
In some sense the adjoint action is a special case of this. So the roots α of the algebra
are the weights of the adjoint representation.
The rest of the Lie algebra g acts on V in the following way

%(gα)(Vβ) ⊂ Vβ+α if α+ β ∈ W, %(gα)(Vβ) = 0 if α+ β 6∈ W.

Now, the set R can be decomposed as R = R+ ∪ R−. The roots in R+ (resp. R−)
are called positive (resp. negative) roots. This decomposition can be done in such a way
that there exists a weight space Vβ called a highest weight space such that

%(Eα)Vβ = 0 for all α ∈ R+. (4.3)

Using this notation the key result is:

Theorem 4.4. (Fulton and Harris, 1991, Proposition 14.13) For any semi-sim-
ple complex Lie algebra g the following holds.

(i) Every finite-dimensional representation on V of g possesses a highest weight space.
Take one vector v in this space.

(ii) The subspace W of V generated by the images of the highest weight vector v un-
der successive applications of generators Eα of root spaces gα for α ∈ R− is an
irreducible subrepresentation.

(iii) An irreducible representation possesses a unique highest weight vector up to multi-
plication by scalar, i.e. the dimension of the highest weight space is one.

The negative roots allow us to determine explicitly a basis of an irreducible represen-
tation once that a highest weight vector is determined. It is, however, possible to find
a refinement of this method in order to obtain a more efficient way. Indeed, it can be
shown that only a subset of R− is necessary. More precisely, we call primitive positive
(resp. negative) roots the subset of R+ (resp. R−) of roots that cannot be expressed
by positive (resp. negative) roots. In the previous theorem, R− can be replaced by the
subset Rp− of primitive negatives roots. More precisely,

Proposition 4.5. (Fulton and Harris, 1991, Observation 14.16) Any irreduc-
ible representation V is generated by the images of its highest weight vector v under suc-
cessive applications of roots spaces gα where α ranges over the primitive negative roots.

Furthermore, the highest weight space Vβ0 is uniquely characterized by the property

%(Eα)Vβ0 = 0 for all α ∈ Rp+. (4.4)
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Two other results are also useful for our construction:

Proposition 4.6. (a) If a representation is irreducible, its highest weight is simple.
(b) Two irreducible representations are equivalent if their highest weights are equal.

The root systems are well known for the semi-simple complex Lie algebras. There are
various equivalent ways to determine the sets of positive, negative and primitive roots
(negative or positive) as well as classification of the corresponding highest weight space
(see, for instance, Fulton and Harris, 1991). Nevertheless, this information can be found
in the literature on Lie groups and Lie algebras.

Before closing this section, we need to introduce a bit more terminology. We assume
that the representation space V is decomposed as in (4.2) and that Vβ0 denotes the
maximal weight space. Let Rp− = {α1, . . . , αq} be a set of negative primitive roots. For
any weight space Vβ , there is a word P = Ep1Ep2 · · ·Epn with pi, i = 1, . . . , n in Rp−
such that

%(Ep1Ep2 · · ·Epn)Vβ0 ⊂ Vβ .
For a given weight vector β the length of words P ′ = Ep′1 · Ep′2 · · ·Ep′m such that

%(P ′)(Vβ0) ⊂ Vβ is unique (this length is the sum of the coordinates of the point β in
the lattice in g∗0 generated by α1, . . . , αq and with the origin in β0). We collect all weight
spaces of the same length n into a set, called the nth layer ∆n. With this definition,
Vβ0 ∈ ∆0 as a corollary of proposition (4.5). The layer ∆n+1 can be generated by suc-
cessive applications of elements Eα with α in Rp− on the weight spaces of the layer ∆n.
Furthermore, since V is finite dimensional, the number of layers is finite.

4.3. computing invariants and equivariants

We describe in this section an algorithm to determine a vector space basis of the
equivariants f : V → W , homogeneous of a certain degree of a connected semi-simple
compact Lie groupG, acting on finite-dimensional vector spaces V andW of dimensions n
and m, respectively, This algorithm does not distinguish between primary and secondary
invariants. Nevertheless, Molien series and Gröbner basis may be useful to recover some
part of this information.

Let us choose a basis of V consisting of bases for each irreducible component which
yields a decomposition of the variables into groups x = (x1, . . . , xr). So the action of G
on V is given by ϑ : G→ (Cn). Let Θ, ζ, θ be the associated actions as in Section 4.1. On
W the choice of the basis respects the irreducible components as well yielding a block
diagonal representation ρ : G→ GL(Cm), ρ(g) = diag(ρ1(g), . . . , ρs(g)). The associated
representation of the Lie algebra is denoted % : g → GL(Cm) and is diagonal as well.
Additionally we assume that the basis is chosen such that they form a basis of the weight
spaces, i.e. in Cm unit vectors correspond to the elements of the weight spaces. Indexing
by the weights β we have the basis wiβ,j , i = 1, . . . , s, j = 1, . . . ,dimVβ where β is a
weight of %i and

Eα : wiβ,j →
dimVγ∑
k=1

%i(Eα)β,j,α+β,k w
i
α+β,k,

for all generators Eα of root spaces gα. Analogously for the generators Hl of the Cartan
subalgebra %i(Hl) is a diagonal matrix with entries β(Hl). For both ρ and % we use the
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same coordinate system such that ρ(exp(g)) = exp(%(g)). For ϑ and ζ the same is true. ϑ
and ρ describe how in these coordinates C[x]ρϑ corresponds to the equivariant polynomial
mappings V →W . The following algorithm generalizes the description given in Sattinger
(1979) for SO(3).

Algorithm 4.7. (Computation of Generic Equivariant)

Input:
connected semi-simple Lie group given by associated Lie algebra represented by generators
Hl of the Cartan subalgebra and primitive positive roots Eα ∈ Rp+ and primitive negative
roots Eα ∈ Rp−,
matrices ζ(Eα), ζ(Hl), matrices %(Eα), %(Hl),
degree k = (k1, . . . , kr).
Output: a vector space basis of HN

k (C[x]ρϑ).

Let M ⊂ HN
k (C[x]) denote the set of monomials of multidegree k. For i = 1, . . . , s.

A generic homogeneous polynomial is of the form

P (x1, . . . , xr) =
(i)∑

m∈M
aim ·m(x)

where aim are unknowns. This is an ansatz for the component corresponding to the highest
weight space f iβ0

(x) = P (x). The other components f iβ,k(x) remain undetermined until
step (iii).

(ii) The unknowns aim are determined by the following conditions

∀ generators Hl θ(−Hl)(f i(x)) = %(Hl) · f i(x),

∀α ∈ Rp+ θ(Eα)(f i(x)) = 0.

By comparing coefficients in the component f iβ0
this gives linear equations in the un-

knowns aim. Solve this system and substitute the solution into f iβ0
which then still depends

on a subset of the aim. This determines the layer 40.
(iii) Assume the components f iβ,k for all weights β in the layer 4n are known. Then the
components α + β, j corresponding to the weight spaces in the following layer 4n+1 are
determined by α ∈ Rp− by

θ(−Eα)f i(x) = %i(Eα)f i(x).

For α ∈ Rp− and components β, k this means

d

dx
f iβ,k(x) · ζ(Eα) · x =

∑
α+β,j

%i(Eα)β,k,α+β,jf
i
α+β,j ,

where on the left-hand side f iβ,k(x) are polynomials and f iα+β,j on the right-hand side
are unknown components. By linear manipulation this gives the components f iα+β,j of
the layer 4n+1.
Altogether f = (f1(x), . . . , fs(x)) is a generic equivariant.

Proof. This algorithm is a direct application of the results of the previous section. The
determination of the component f iβ0

(x) is provided by the fact that the maximal weight
is in the kernel of all primitive positive roots and is an eigenspace for the elements in the
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Cartan subalgebra. Now, the successive applications of all primitive negative roots on the
highest weight provides a set of basis of the full representation space W. Each iteration in
the algorithm allows us to determine a basis for the n+1-th layer from the knowledge of
the n-th layer. As the number of layers is finite, the algorithm reaches necessarily a layer
∆n′ = {0} which is empty. As unit vectors correspond to weight spaces the result is an
equivariant vector field in the orthonormal basis {wiβ0

, wiβ1,1
, . . . , wiβq,tq , i = 1, . . . , s}. 2

Remark 4.8. (i) For real Lie groups such as SO(3) the method is also applicable. The
real associated Lie algebra can be embedded into a complex one by complexification
gc = g×R C. Now if g is a simple Lie algebra (i.e. without proper nontrivial ideal) then
its complexified gc is also simple (see Fulton and Harris (1991)). Then the irreducible
representations of g are just obtained by restriction to the real part of the irreducible
representations of gc.

(ii) For compact Lie groups being generated by a semi-simple connected component
G and a finite group H one computes generic G-invariants and G-equivariants. For the
generators of H additional linear equations in the generic coefficients are derived and
solved. This yields generic invariants and equivariants.

(iii) For groups G×H which are a direct product with a finite group H the application
of the Reynolds projection of H onto a G-invariant yields an invariant. The G × H-
equivariants are obtained from the G-equivariants by use of the equivariant Reynolds
projection analogously. Concerning the multi-grading observe that less blocks might exist
in the diagonalized form of ϑ(G×H) than of ϑ(G). Thus there may exist less grading of
the invariant ring and the module of equivariants.

(iv) If G is normal in K, the fundamental K-invariants are obtained from fundamental
G-invariants because NK(G)/G is operating on the vector space of G-invariants and its
conjugates. The NK(G)/G-invariants of this action yield the K-invariants, see Kempf
(1987), or more readably in Rumberger (1995).

Example 4.9. For the representations l = 1 and l = 2 of SO(3) and degree k = (2, 3)
the computation of the generic invariant and generic equivariant takes 148 s and 298 s,
respectively.

Algorithm 4.7, together with the algorithms for completeness in Section 3.2, yields an
algorithmic determination of fundamental invariants and fundamental equivariants for
special compact Lie groups. Details of these algorithms will appear elsewhere.
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