
Constraint Logic Programming on

Boolean, Integer and Real Intervals

Fr�ed�eric Benhamou�, William J. Older and Andr�e Vellinoy

May 10, 1994

Abstract

Imperative programming languages for computing on intervals stand
in contrast to systems of relational interval arithmetic that are seam-
lessly integrated into a logic programming language like CLP(BNR).
The combined power of a symbolic, logic programming language on
the one hand and a mathematically correct, logically sound and com-
putationally e�cient programming system (constraint arithmetic on
intervals) on the other, is considerably more powerful than either taken
separately. Boolean, integer and real-valued simultaneous constraint
equations can be mixed freely in CLP(BNR), not only to contain
oat-
ing point errors and perform sensitivity analysis but also to express a
wide variety of linear and non-linear programming problems, schedul-
ing and con�guration problems as well as optimization and operations
research problems. Some simple examples of how this can be done
are given as well as a summary report on experimental applications of
this technology to industrial problems.

1 Introduction

Conventional programming systems for computing on intervals, such as en-
hanced Pascal and Fortran compilers have existed for many years [6]. More

�Groupe d'Intelligence Arti�cielle, Facult�e des Sciences de Luminy, case 901,163, avenue
de Luminy, 13288 Marseille Cedex 9 FRANCE, benham@gia.univ-mrs.fr

yBell Northern Research, Computing Research Laboratory, PO Box 3511, Station C,
K1Y 4H7 Ottawa, Ontario, Canada, fvellino,wolderg@bnr.ca

1

recently, Cleary suggested that a relational form of interval arithmetic could
be seamlessly integrated into a logic programming language (Prolog)[3]. This
idea is qualitatively di�erent from other forms of automated interval arith-
metic because the combined power of a symbolic, logic programming language
on the one hand and a mathematically correct, logically sound and compu-
tationally e�cient programming system (constraint arithmetic on intervals)
on the other, is considerably more powerful than either taken separately.

Constraint logic programming originated with the observation by Alain
Colmerauer that if one regards the terms in Prolog as forming a certain al-
gebraic structure, then the uni�cation algorithm can be regarded as a kind
of equation solving in that algebra. Since this immediately opens the door
to substituting alternate algebraic structures with their own equation solv-
ing algorithms, while keeping the rest of the language essentially unchanged,
it liberates Prolog from its somewhat con�ning relationship to SDL Reso-
lution. These ideas were carried out �rst in Prolog II, then later in Prolog
III and other systems based on boolean uni�cation, linear programming, and
Groebner base technology.

There are a number of motivations, consistent with Colmerauer's view, for
integrating relational interval arithmetic into constraint logic programming.
In the �rst place, conventional arithmetic in Prolog is essentially no di�erent
from conventional arithmetic in any procedural programming language and
su�ers from all the same problems (e.g. the mathematical incorrectness of

oating point arithmetic, rounding errors etc.). Secondly, Prolog is at heart a
declarative, relational language and the presence of conventional, procedural
arithmetic in Prolog spoils the \logical" character of the language.

The relational model for computing on real intervals centers around the
notion of narrowing. The �rst proposal for a relational arithmetic using
intervals by John Cleary in [3] was designed to address the problem that
arithmetic in Prolog is evaluated functionally (whereas Prolog is otherwise
a relational language). Just as the Prolog uni�cation mechanism \narrows"
the space of possible instantiations of a variable as computations proceed so,
in this model, the addition of constraints on an interval-bounded variable
restricts the range of reals to which it could be bound. Intervals narrow by
raising their lower bounds, lowering their upper bounds, or both. Narrowing
occurs when additional constraints are applied to an interval.

The relational character of constraints on intervals can be given a clear
lattice-theoretical model with a �xed-point semantics as shown in [7]. The

2

logical semantics for interval narrowing and its connections to existing CLP
systems such as CLP(<) and CHIP is discussed by J. Lee and M. Van Emden
in ([4]).

1.1 Overview

Cleary's ideas were �rst fully implemented at Bell-Northern Research (BNR)
in 1987 on a Macintosh. Since then, the language has evolved into CLP(BNR)
(constraint logic programming on Booleans Naturals and Reals), implemented
on Unix workstations, which includes constraints on integer-bounded inter-
vals and on boolean intervals as well as constraints on real-valued intervals.
A general description of the technique of relational interval arithmetic and
its abstract semantics is given in [7] and [2]. A detailed description of how
to program in CLP(BNR) can be found in [8].

In general terms, constraint interval arithmetic can be described as a
method for taking a set of mathematical relations between certain quanti-
ties, and constructing from them a process which maps initial intervals on all
quantities to �nal intervals for these quantities. It does this by constructing
a proof (using interval �xed point iteration) that any solutions in the initial
intervals must lie in the �nal intervals. The mapping from initial to �nal
intervals is contracting (the �nal intervals are subintervals of their initial val-
ues), idempotent (repeating the same constraint has no e�ect on the interval
values), and inclusion monotone (smaller initial intervals yield smaller �nal
intervals). Moreover, the mapping from initial to �nal intervals is indepen-
dent of the order in which constraints are imposed and of the details of the
implementation.

In CLP(BNR) the user can write a set of simultaneous arithmetic equa-
tions and inequalities that relate and constrain interval-bounded variables.
These equations are then compiled into a constraint network whose nodes
are instances of primitive arithmetic relations supported by the system. The
variables of the problem are associated with a pair of
oating point numbers
that determines the interval's upper and lower bounds; these intervals are
partially ordered by set inclusion. The constraint network then de�nes an
operator on intervals which is monotone and contracting with respect to the
partial order, and which is also idempotent and correct. Correctness here
means that no valid solution (e.g., in the theoretical real numbers) is ever
eliminated during contraction; as a consequence of correctness the separa-

3

tion of multiple solutions must involve a mechanism such as backtracking or
or-parallelism. This technique, since it works by removing non-solutions, can
be regarded as a model elimination proof procedure, and this gives it quite
di�erent characteristics from constructivist exact arithmetic systems.

Because the boolean, integer and real-valued intervals in CLP(BNR) share
the same fundamental implementation and logical framework, it is possible to
mix all three types of variables in a single problem. Thus CLP(BNR) can be
used, not only to contain
oating point errors and perform sensitivity analysis
but also to express a wide variety of linear and non-linear programming prob-
lems, scheduling and con�guration problems as well as optimization problem.
In the reals, we have found that it can deal e�ectively with general non-linear
functions, transcendental functions, and non-continuous functions, all on the
same footing. The solutions to sets of simultaneous non-linear equations can
be obtained by systematically narrowing constrained intervals using divide
and conquer or branch and bound techniques.

One advantage of the relational character of interval arithmetic is that
it encourages an economy of coding: inverse functions, for example, do not
need to be de�ned explicitly. But its most important feature is that, since
the same expressions can be used either to evaluate numeric or symbolic
values, it is possible to combine symbolic techniques with numerical tech-
niques. Furthermore, we can prove that numerical and symbolic techniques
can be mixed with impunity, without concern for generating incorrect results,
because interval arithmetic preserves the algebraic properties of expressions
and interval operations are declarative, logical and provably correct.

2 Theory of Narrowing Algebras

The particular form that CLP(BNR) has assumed was in a large part dictated
by that of its host language BNR Prolog. Whereas most of the CLP languages
can be seen as the result of substituting an alternative algebraic structure in
place of term uni�cation in Prolog, BNR Prolog began with a lattice-oriented
view of uni�cation. If general Prolog terms are interpreted as a representation
of their sets of ground instances, partially ordered by inclusion, and if one
adds an empty term representing Prolog `failure', then uni�cation of two
terms becomes a matter of replacing each by their common intersection or
`meet'. This leads naturally to the consideration of substituting the standard

4

Prolog lattice of �nite trees with alternate lattices, e.g. the lattice of (freely
generated) in�nite terms over a �nite symbol (atom) space.

In this lattice theoretic framework, a Prolog \call" (predicate call/procedure
invocation) can be seen as an operator (self-map/lattice automorphism) which
replaces the initial on-entry argument terms with their return values. With
respect to the lattice ordering, the results are always as small as, or smaller
than (i.e. less general than) the input values, so we are dealing with contrac-
tion mappings. In addition, since Prolog's logic variables are \write-once"
variables that remain unchanged once instantiated (backtracking, of course,
excluded), operators are almost always persistent , that is, act as the identity
on anything smaller than their return values. (There are exceptions to this
such as the meta-logical primitive var and any constructs that use it.) A
less obvious common property is monotonicity, said of maps that preserve
the partial order of terms; this captures the intuitive idea that more vague
questions get (and deserve) more vague answers.

Contraction operators are called pure when they are both monotone and
persistent. Uni�cation, for example, is a pure operator, and indeed the
quintessential pure operator, for every pure operator is equivalent to a uni�-
cation. Pure operators commute, so their order of application is immaterial,
and for such operators the \," connective is therefore commutative. Hence,
non-commutativity of \," can always be traced to a failure of either mono-
tonicity or persistence of one of the built-in \extra-logical" primitives.

The standard Prolog built-in arithmetic, although persistent, is not mono-
tone, since it depends on the instantiation of its variables; it is perhaps the
most important source of impurity in most Prolog programs. In addition to
this formal failing,
oating point arithmetic has the serious problem of being
simply incorrect because of the usual rounding errors.

Cleary's original proposal for a \logical arithmetic" (based on primitive
arithmetic relations computed using functional interval arithmetic) had the
virtues of being relational (and hence compatible with a relational host lan-
guage), strictly correct (because rounding errors were contained within inter-
val bounds by outward rounding), and monotone (because of the \inclusion
isotone" property of functional interval arithmetic). Persistence, however,
was lacking, as was commutativity. But since the weaker property of idempo-
tence was present, it appeared plausible that persistence could be maintained
arti�cially by retaining every operation in a \constraint store" or \constraint
network" and reapplying the operator as often as necessary using a kind of

5

arc-consistency algorithm. This raised a number of theoretical issues, how-
ever, which were not fully resolved until later and which are discussed below.

Another problem with Cleary's original formulation concerned opera-
tions (such as multiplication/division of sign-inde�nite intervals) in which
the needed function interval operation did not exist. For various reasons,
Cleary's solution to this problem which involved the introduction of choice
points, was not followed in BNR Prolog, which chose in e�ect to postpone
such choices, as suggested in the \Aurora Principle." As more complex prim-
itives (e.g. trigonometric relations) were added to the system, this problem
arose with increasing frequency, and Cleary's recipe for the construction of
primitives was eventually replaced by a more general relational algebra pre-
scription no longer dependent on this `interval convexity' property (see [4],
[2]). These issues became of crucial signi�cance when the system was ex-
tended in 1992 to handle boolean and discrete variables.

In analogy with Prolog terms, the internal states of the relational interval
arithmetic constraint system were represented as vectors of (closed) intervals,
conceptually regarded as a Cartesian product of intervals qua sets, partially
ordered by set inclusion, and with the null set representing Prolog failure.
The meet operation is de�ned by set intersection. By adding a largest pos-
sible state one gets a complete lattice L in which the join of states is de�ned
as the smallest state larger than all of them; note that this is not set union,
and the lattice that results is non-distributive.

A constraint network over this lattice L is a �nite collection of instances of
primitive narrowing operators: idempotent monotone contractions. Thus one
is concerned theoretically with the subalgebras of the space of monotone con-
tractions CM(L) which are �nitely generated by idempotents. Conveniently,
CM(L) is a lattice with respect to the induced partial order, meet, and join
operations, and has top 1 (the identity map) and bottom 0 (fail map). As a
collection of maps under composition as product, it is a monoid with iden-
tity 1 and two-sided zero 0. Furthermore, these two algebraic structures are
nicely intertwined since the monoid product is jointly monotone with respect
to the partial order to form a lattice-ordered monoid.

The �rst fundamental fact about this algebraic structure is that the ab-
sorption relations (de�ned solely in terms of the product) that express the
relative strengths of idempotents coincide with both the induced partial order
on idempotents and with the set inclusion order on their respective families of
�xed points. That is the idempotent operator p is smaller than the idempo-

6

tent q $ pq = p$ qp = p$ every �xed point of p is also a �xed point of q.
The second fundamental fact is that the join of �xed points of an idempotent
is also a �xed point.

If two idempotents commute, then their product is also an idempotent.
But if they do not commute, then one can iterate their product and it will
converge to an idempotent. This de�nes an \iterated product" construction
for generating a new idempotent p � q from a given ordered pair of idempo-
tents. Given a constraint network regarded as a set of idempotents, there are
then possibly many di�erent ways to form an iterated product of them, but
if this operation can be shown to be both commutative and associative then
all these di�erent implementations will produce the same result, the unique
operator de�ned by the network.

To show this, one �rst uses the closure of �xed points under join to show
that there is a bijective correspondence between narrowing operators and
join-closed families of �xed points. This, together with the observation that
a state is a �xed point of an iterated product p�q i� it is both a �xed point of
p and of q, implies that the correspondence can be extended to meet: r is the
largest idempotent smaller than both p and q$ r = p�q $ r = q�p$ every
�xed point of r is a common �xed point of p and q. Hence, the idempotents
themselves form a lattice with respect to the underlying partial order, with
the iterated product providing the meet and (it turns out) the underlying
join as join, and this implies (among other things) the uniqueness of the
operator associated with a constraint network, however it may have been
implemented among the many choices available.1

It is worth noting that this theory applies to the constraint network in its
entirety, but as a user one can usually only observe the action on a relatively
few \visible" variables and the vast array of intermediate variables remain
hidden. It is therefore signi�cant that such a projection of the lattice of
narrowing operators also appears as a lattice of narrowing operators over the
visible variables, the projection mapping being monotone, while, in general,
the underlying monoid structure and CM-structure is not preserved under
such projections.

1Regarded just as an abstract piece of mathematics, this structure is fascinating partly
because of its several connections with classically important constructs. It can be regarded,
for example, as a generalization (because it lacks an involution) of the lattice dual of the
theory of re
exive binary relations, or as a generalization of the interior operators of
general topology.

7

3 Relational vs. Functional Interval Arith-

metic

Relational interval arithmetic in CLP(BNR) has many connections with the
mathematical and computational disciplines of interval analysis and func-
tional interval arithmetic founded by Moore in 1966 [5]. The basic concept of
using intervals with
oating-point representable bounds to contain roundo�
error in
oating point computations and the importance of the monotonicity
property are common to both. However, this overlap of concepts and vocab-
ulary can obscure the signi�cant di�erences between the two paradigms.

We believe that, at bottom, there is only one fundamental di�erence
between the paradigms: interval analysis is a language for talking about

intervals, while CLP(BNR) is a language for using intervals to talk about
reals. This distinction has so many rami�cations and consequences that it
can be most easily described through these diverse manifestations.

3.1 Functional Interval Arithmetic

Functional interval arithmetic has been codi�ed as a mathematical theory
of intervals, where an interval object can be represented as a pair [L,U] of
reals with L =< U. Point intervals, those for which L=U, are then isomorphic
to the reals and is convenient to think of the reals as being embedded in the
intervals in this way. Intervals are partially ordered by set inclusion. For
each of the primitive mathematical functions on the reals there is a \lifted"
or extended version for intervals (which however may be only a partial func-
tion, as for example, division by intervals containing 0 is unde�ned.) The
extended function is uniquely determined by the requirements that it pro-
duces intervals that agree with the usual functions on point arguments, and
that it be monotonic with respect to interval inclusion, and that it contain
no points that are not actually necessary.

Intervals are considered to be equal if and only if they have the same
endpoints, or equivalently, if each includes the other. With this notion of
equality and primitive functions, some of the fundamental axioms of the reals,
such as the distributive law, no longer hold and consequently the algebraic
structure is quite di�erent from that of the reals (or any other standard
structure). Mathematically equivalent expressions over the reals thus become

8

in general inequivalent when extended, and this captures the fact that some
may be better approximations or better behaved than others.

Implementations of this mathematical model naturally provide an interval
type or data structure and the library of implemented interval functions
(ideally as an Abstract Data Type) within either a conventional procedural
or functional programming language. The entire package is quite consistent,
and apart from relatively minor details, there are no basic decisions to make
nor alternatives to consider.

In terms of usage, much (but not all) of the literature of interval analy-
sis gives the impression that the intent of the usual application is to gain a
greater control over the sources of error in conventional deterministic algo-
rithms.

3.2 Relational Arithmetic in CLP(BNR)

The CLP(BNR) world, on the other hand, begins with the notion of (logic)
variables constrained to only take values of a speci�c type (boolean, integer,
or real) and the corresponding sets of constant values. The system will main-
tain estimates of the bounds of each integer and real variable (as an interval),
and as constraints are added to the system the bounds of each variable gen-
erally approach one another and may eventually result in the instantiation
of the variable to a point. Since these bounds contain information about
the variable and can be queried using a meta-predicate, the constrained logic
variable becomes in practice a somewhat di�erent thing, perhaps something
like the intuitive Newtonian notion of a \quantity" or physical variable that
we all understood once upon a time, before becoming mathematicians and
computer scientists.

Relational expressions using the primitive relations f�;+;�;�; exp; sing
in these entities can be used to impose constraints between variables.2 For
convenience, the syntax of the expression language is the usual functional
expression language, but the semantics are fully relational. Thus the ternary
product relation is actually written as:

2It is important to note that the primitive interval relations of the language denote the
corresponding mathematical relations on the reals in the strict sense that in the point limit
in in�nite precision the interval relations converge to the mathematical relation. (Away
from this asymptotic limit the representation may become very approximate.)

9

Z == X * Y

(or, alternatively, as X == Z/Y or Y == Z/X) rather than as in the predicate
form product(X,Y,Z), but the latter is what is meant.

Furthermore, with relations (unlike functions) it is always permissible to
write such expressions, even if X or Y contain 0, since what would be domain
violations in a functional world are handled just by appropriately narrowing
the arguments in the relational world. For example, the statement:

R**2 == X**2 + Y**2

can compute R from known X and Y, X from known R and Y, and Y from
known R and X, among many other things.

In particular, the evaluation of a relational constraint equation can narrow
the bounds on each of the variables. For example evaluating the equation
X + Y == Z, for initial values X=[3,7], Y=[2,8] and Z=[4,6] narrows all three
intervals: X to [3,4], Y to [2,3] and Z to [5,6]3.

Just as � denotes the usual multiplication relation and + the usual ad-
dition relation, == denotes the usual equality relation.4 As a consequence of
this, the usual algebraic laws (universally quanti�ed axioms and theorems)
are preserved in CLP(BNR), which is, in this respect, quite di�erent from
traditional interval arithmetic. Thus instances of the distributive law

X * (Y + Z) == X * Y + X * Z

are tautologies (equivalent to true). Furthermore, any symbolic transforma-
tion of equations which can be justi�ed by such laws preserves their denota-
tion.

This mathematical constraint language lives in a logic programming world
(very similar to Prolog) which provides the necessary programming con-
structs. This language, however, should be construed as an implementa-
tion of an intuitionist predicate calculus. An intuitionist `or' is provided

3In this example the declarative reading of X + Y == Z, in the numeric interpretation
is \the sum of some point in [3,4] and some point in [2,3] is equal to some point in [5,6]".

4The implementation of == is radically di�erent from the equality used in standard in-
terval analysis, as it involves narrowing both of its arguments to their common intersection,
in exact analogy with uni�cation.

10

through backtracking as in Prolog, and negation is formally Brouwerian, i.e.
not(not(P)) is not equivalent to P.5

The entire package (constraint equational language plus Prolog) is quite
natural, and apart from relatively minor details, there are no basic decisions
to make nor alternatives to consider. (However, the implementation has
many decisions to make and there are many alternatives to consider, although
they a�ect only performance and not meaning.)

CLP(BNR) has been applied in a variety of experimental applications
(see section 7 below) and we conclude from our experience that the success-
ful application of this technology requires the relinquishing of all attempts
to micromanage the algorithmic details of computation in favour of concen-
trating on �nding an adequate and practically useful formulation of a usually
nondeterministic problem.

4 Symbolic Methods

Even though interval arithmetic is a numeric technique it enhances any sym-
bolic methods with which it is made to cooperate. Unlike conventional
oat-
ing point, interval arithmetic formally honors the algebraic laws of real arith-
metic, in the sense that symbolic transformations based on those axioms can
never lead to bogus contradictions due to rounding problems. Thus \redun-
dant" relations, which conventionally can cause problems because of such
bogus contradictions, become a positive enhancement instead of a problem.
For example, in a linear system problem in constraint interval arithmetic, a
pivoting operation produces an additional redundant equation rather than a
replacement for one of the original relations.

Symbolic methods have, of course, the great advantage of generality, when
they can be applied. But a numeric approach is often necessary because there
is no symbolic solution, such as roots of polynomials of degree greater than
4, or because the symbolic solution is too unwieldy. Furthermore, numeric
methods can take advantage of the speci�c quantitative situation in ways that
are not available to general symbolic techniques. For example, constraint re-

5When P is a constraint expression,the success of not(P) indicates that P is prov-
ably inconsistent with the current state (other existing constraints), and the success of
not(not(P)) indicates that it is possible that P may be consistent with the current state
(without actually imposing the constraint P).

11

lations which are topologically close (in the sense of having \nearby" graphs)
will generally behave in a qualitatively similar fashion, although one may be
symbolically tractable and the other symbolically intractable.

However, the numeric nature of this technique implies that any system
of �nite precision
oating point arithmetic with which it is implemented
renders the precise bounds of computed intervals sensitive to the speci�c
formulation of the problem. For example, Y1 is (A + B) + (C + D) and
Y2 is (((A + B) + C) + D) may result in di�erent computed bounds for
Y because of the non-associativity of
oating point arithmetic. However, in
interval arithmetic, since both Y1 and Y2 are supersets of the answer Y, ; 6= Y

� Y1 \ Y2 is always true. Given a particular one of the many mathematically
equivalent formulations (e.g. a speci�c set of parentheses for an expression)
the theory developed in [7] then implies that �nal bounds are independent
of the order in which the constraints are processed.

5 Computations as Proofs

The other aspect of constraint interval arithmetic, and one which makes it
very di�erent from traditional numerical techniques, is that its computa-
tions represent proofs, and these are always proofs of the non-existence of
solutions. As proofs, they carry a degree of logical force generally absent
from traditional
oating point numerical computing, which is, by compar-
ison, concerned only with heuristics. The fact that its proofs are always
non-existence proofs also makes it very di�erent from traditional exact (ra-
tional) arithmetic, in which computations can be thought of as constructive
proofs of existence.

It is precisely because interval proofs are non-existence proofs that they
can be interpreted as referring to the mathematical reals, even though only
bounded precision constants actually appear in the proofs themselves and the
constraint system itself has no notion of \real number" in the full mathemat-
ical sense. (Of course, these proofs refer as well to the rationals, computable
reals, and non-standard reals.)

To take full advantage of this proof aspect of the technique, it is useful
to formulate problems negatively, so that a \failure" indicates a successful
proof. Thus in the problem of formal system veri�cation mentioned above,
one asks questions of the form: if components all lie within their speci�ed

12

tolerance intervals, can a system parameter lie outside its speci�cation? A
\no" answer then indicates that a successful proof of compliance has been
constructed, thus achieving a formal veri�cation for all systems characterized
by the model and initial intervals. If, however, a contradiction is not found,
then the �nal intervals indicate conditions in which the speci�cations might
not be met, and thus provide a direct indication of where the design may be
marginal.

The art of computation-as-proof is particularly striking in interval search
techniques, as in problems of global non-linear optimization, where it is used
to eliminate subregions where the optimum cannot occur. These algorithms,
essentially of the branch-and-bound type, were originally developed in the
context of functional interval arithmetic, but become much more elegant in
the context provided by Prolog and relational interval arithmetic where Pro-
log backtracking automatically manages the housekeeping chores associated
with branching, while the interval machinery provides the necessary bounds
automatically.

6 CLP(BNR)

This section is intended to whet the reader's appetite with a taste of what it
is like to program with the CLP(BNR) system (code excerpts from [8]).

An interval can be created using syntax of the form:

V:real(LB,UB) V:integer(LB,UB) V:boolean

where LB and UB are either expressions which evaluate to numeric values or
they are unbound variables, representing �1. Arithmetic relations on inter-
vals, i.e., constraints, will either fail (in the usual Prolog sense), or succeed,
in which case the bounds of the intervals may have been changed (narrowed).

Establishing a constraint propagates information from the known to the
less known

?- X:real(1,3), Y**2==X.

==> X : real(1.0, 3.0),

Y : real(-1.73205080756888, 1.73205080756888)

Here is the same relation with both integer arguments; note that X be-
comes bound:

13

?- X:integer(1,3), Y:integer, Y**2==X.

==> X : 1

Y : integer(-1, 1)

If Y is constrained to be positive, then Y also becomes bound to its unique
answer:

?- X:integer(1,3), Y:integer, Y**2==X, Y>0.

==> X : 1

Y : 1

Similar rules apply to general boolean relations:

?- B:boolean, 1 == B and (C or ~D) .

==> B : 1

C : boolean

D : boolean

?- B:boolean, 1 == B and (C or ~D), 0 == B and C .

==> B : 1

C : 0

In some cases where an equation has a unique solution, equation solving
is automatic:

?- [X,Y]:real, 1 == X + 2*Y, Y - 3*X == 0. % pair of linear eqns.

==> X : real(0.142857142857143, 0.142857142857143)

Y : real(0.428571428571429, 0.428571428571429)

Here is a more interesting example, but with non-linear (including tran-
scendental) equation solving:

?- [X,Y]:real,X>=0,Y>=0, tan(X) == Y, X**2+Y**2 == 5.

==> X : real(1.09666812870547, 1.09666812870547)

Y : real(1.94867108960995, 1.94867108960995)

Note that although the upper and lower bounds in these answers print
the same at this printing precision, the internal binary forms must di�er by

14

at least one bit in the last place, or else the variables would have been bound
to the exact answer.

For more complex problems, which may have multiple solutions, there
is a \solve" predicate, written entirely in CLP(BNR) itself, which separates
the solutions (by backtracking) and forces convergence. For example, to �nd
roots of polynomials:

?- X:real(0,1), 0== 35*X**256 - 14*X**17 + X, solve(X).

==> X : 0.0 % 1st sol.

==> X : real(0.847943660827315, 0.847943660827315) % 2nd sol.

==> X : real(0.995842494200498, 0.995842494200498) % last sol.

It is easy to see how one could go about implementing di�erent search-
ing algorithms (such as branch-and-bound) to explore the space of possible
solutions to a set of equations.

The application of this technology to really complex problems is not al-
ways straightforward, because di�erent formulations of the same problem can
sometimes have quite di�erent performance characteristics. Finding \good"
formulations is therefore still a process of discovery, guided by experience, in-
tuition, and a handful of basic principles, such as the deferring of choices, the
�rst fail principle, and the controlled use of redundancy. Once found, how-
ever, such formulations are usually transparently clear (but possibly subtle)
statements of the problem.

7 Applications

The prototype implementation of CLP(BNR) became available for experi-
mental purposes in late 1992, and in the subsequent months it was used in
a number of small (mostly a few days to a few weeks) exploratory projects
dealing with a variety of topics of real interest. A workshop (ARIA'93) was
held in Ottawa in August of 1993 to report on the results of these projects
and the following is a brief summary of these workshop presentations.

One of the areas of computer engineering that requires solutions to simul-
taneous non-linear equations is the Performance Analysis of Client Server
Tasking Systems. The application is a straightforward narrowing applica-
tion on continuous variables, but it is interesting because of the particular
kinds of its nonlinearity and the large size (aprox. 30MBytes) of some of the

15

constraint networks (This work is being done by Prof. Shikharesh Majumdar
and others at Carleton University.)

In the area of discrete combinatorial problems, of course, the problem
of System Con�guration looms large. Constraints that specify which pieces
of equipment require others, how many objects can �t in a container and
so forth are typical in this area and CLP(BNR) can be used to tackle the
problem. One of the authors (Vellino) has explored a simple, declarative
language for describing a class of discrete bin-packing problems, a procedure
to compile it into a CLP(BNR) constraint generator, and the associated enu-
meration algorithms for solving speci�c packing problems. Experimentation
with di�erent problems illustrated the sensitivity of solution times, not only
to enumeration algorithms, but also to problem formulation.

Another kind of con�guration problem that has been tackled with CLP(BNR)
is the problem of Resource Allocation in Field Programmable Gate Arrays
(FPGAs). Rick Workman and Mike Kelly at BNR showed that in compiling
code to small Field Programmable Gate Arrays (FPGAs) there is a combina-
torial problem involved in assigning functions to di�erent parts of the FPGA
in such a way as to minimize the resources being used. A rapid prototype
FPGA compiler was developed that used CLP techniques to prune a huge
space (aprox. 1010) of possible assignments and produced solutions in just a
few seconds.

A di�erent kind of combinatorial problem, described by Prof. Bernard
Nadel from Wayne State University, is the problem of the Mechanical Design

of Gear Trains . The problem is that of searching the design space for 5-speed
transmissions (aprox. 108 qualitatively di�erent designs) for a design that
meets speci�c performance requirements. It illustrates quite elegantly the
value of having mixed boolean, integer and continuous constraints.

An interesting and complicated problem in the continuous domain is the
problem of Timing Requirement Veri�cation in digital circuits. Dave Brown,
Tammer Kamel and William Older from BNR designed an e�cient prototype
veri�cation system in CLP(BNR) which could either prove that a possible
timing violation could never occur (given certain assumptions about delays
and external event timings) or else provide a detailed description of the event
timing circumstances under which a violation might occur, including the
e�ects of nonlinear correlations between various delays.

The other problems discussed at this conference included applying inter-
val constraints to solve Geometric Combinatorial Problems (Gilles Pesant,

16

University of Montreal); using boolean satis�ability to analyse the structural
properties (e.g. possible deadlocks and livelocks) of Petri Nets (Angelo Bean,
BNR, Montreal); using branch-and-bound techniques to compute exact so-
lutions to small (N < 20)Traveling Salesman problems and experimentation
with the enumeration of Kuhn-Tucker points within a branch-and-bound
framework to solve small but classically di�cult Nonlinear Constrained Op-

timization problems (both by William Older).
In all of these cases the �nal formulations are remarkably short and de-

ceptively simple, although the process of arriving at them was occasionally
not a direct one, and in the most interesting cases involved major conceptual
changes to how to think about the problem.

8 Conclusions

CLP(BNR) combines the strengths of symbolic computation in a declarative
language and the mathematical correctness of interval arithmetic. A large
variety of problems in system design and analysis that involve simultaneous
non-linear equations or scheduling or con�guration or optimization can be
expressed e�ectively in CLP(BNR) and have produced encouraging prelimi-
nary results. However di�erent formulations of the same problem often have
quite di�erent performance characteristics which can make the process of
�nding e�cient solutions quite di�cult for inherently hard problems (such
as travelling salesman). Further research deserves to be done in, for exam-
ple, exploring the synergy between this technology and known techniques in
numerical analysis and operations research.

References

[1] Benhamou F. and Colmerauer A. (eds), Constraint Logic Programming: Se-
lected Research, MIT Press, 1993.

[2] Benhamou F. and Older W., \Applying Interval Arithmetic to Integer and
Boolean Constraints" in Journal of Logic Programming (to appear).

[3] Cleary, J. C. \Logical Arithmetic", Future Computing Systems,2 (2), pp.125{
149, 1987.

17

[4] J.H.M. Lee and M.H. van Emden, \Adapting CLP(<) to Floating Point Arith-
metic", in Proceedings of the Fifth Generation Computer Systems Conference,
Tokyo, Japan, 1992

[5] Moore, R. E. (Ed.) Interval Analysis, Prentice Hall, New Jersey, 1966.

[6] Moore, R. E. (Ed.) Reliability in Computing (The role of Interval Methods in
Scienti�c Computing), Perspectives in Computing, 19, Academic Press 1988.

[7] Older W. and Vellino A., \Constraint Arithmetic on Real Intervals" in Con-
straint Logic Programming: Selected Research, Benhamou F. and Colmerauer
A. (eds), MIT Press, 1993.

[8] Older W. and Benhamou F., Programming in CLP(BNR), BNR Research
report, 1993.

18

