
Annals of Pure and Applied Logic 114 (2002) 3–25
www.elsevier.com/locate/apal

Re"ned program extraction from classical proofs
Ulrich Bergera, Wilfried Buchholzb, Helmut Schwichtenbergb;∗

aDepartment of Computer Science, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
bMathematisches Institut der Universit#at M#unchen, Theresienstrasse 39, D-80333 M#unchen, Germany

Abstract

The paper presents a re"ned method of extracting reasonable and sometimes unexpected pro-
grams from classical proofs of formulas of the form ∀x∃yB. We also generalize previously
known results, since B no longer needs to be quanti"er-free, but only has to belong to a strictly
larger class of so-called “goal formulas”. Furthermore we allow unproven lemmas D in the proof
of ∀x∃yB, where D is a so-called “de"nite” formula. c© 2002 Elsevier Science B.V. All rights
reserved.

MSC: 03F10; 03F50

Keywords: Program extraction; A-translation; De"nite formula

1. Introduction

It is well known that it is undecidable in general whether a given program meets its
speci"cation. In contrast, it can be checked easily by a machine whether a formal proof
is correct, and from a constructive proof one can automatically extract a corresponding
program, which by its very construction is correct as well. This—at least in principle—
opens a way to produce correct software, e.g. for safety-critical applications. Moreover,
programs obtained from proofs are “commented” in a rather extreme sense. Therefore,
it is easy to maintain them, and also to adapt them to particular situations.

We will concentrate on the question of classical versus constructive proofs. It is
known that any classical proof of a speci"cation of the form ∀x∃yB with B quanti"er-
free can be transformed into a constructive proof of the same formula. However, when it
comes to extraction of a program from a proof obtained in this way, one easily ends up
with a mess. Therefore, some re"nements of the standard transformation are necessary.

In this paper we develop a re"ned method of extracting reasonable and sometimes
unexpected programs from classical proofs. We also generalize previously known re-
sults since B in ∀x∃yB no longer needs to be quanti"er-free, but only has to belong to

∗ Corresponding author. Tel.: +49-89-2394-4413; fax: +49-89-280-5246.
E-mail address: schwicht@rz.mathematik.uni-muenchen.de (H. Schwichtenberg).

0168-0072/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0168 -0072(01)00073 -2



4 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

the strictly larger class of goal formulas de"ned in Section 3. Furthermore, we allow
unproven lemmas D in the proof of ∀x∃yB, where D is a de6nite formula (also de"ned
in Section 3).

Other interesting examples of program extraction from classical proofs have been
studied by Murthy [15], Coquand’s group (see e.g. [6]) in a type theoretic context and
by Kohlenbach [12] using a Dialectica-interpretation.

There is also a diJerent line of research aimed at giving an algorithmic interpretation
to (speci"c instances of) the classical double negation rule. It essentially started with
GriLn’s observation [11] that Felleisen’s control operator C [8, 9] can be given the
type of the stability scheme ¬¬A→A. This initiated quite a bit of work aimed at
extending the Curry–Howard correspondence to classical logic, e.g. by Barbanera and
Berardi [1], Constable and Murthy [5], Krivine [13] and Parigot [16].

We now describe in more detail what the paper is about. In Section 2 we "x our
version of intuitionistic arithmetic for functionals, and recall how classical arithmetic
can be seen as a subsystem. Then our argument goes as follows. It is well known
that from a derivation of a classical existential formula ∃yA :=∀y(A→⊥)→⊥ one
generally cannot read oJ an instance. A simple example has been given by Kreisel:
Let R be a primitive recursive relation such that ∃zR(x; z) is undecidable. Clearly, we
have—even logically—

� ∀x∃y∀z:R(x; z) → R(x; y):

But there is no computable f satisfying

∀x∀z:R(x; z) → R(x; f(x))

for then ∃zR(x; z) would be decidable: it would be true if and only if R(x; f(x)) holds. 1

However, it is well known that in case ∃yG with G quanti"er-free one can read oJ
an instance. Here is a simple idea of how to prove this: replace ⊥ anywhere in the
proof by ∃∗yG (we use ∃∗ for the constructive existential quanti"er). Then the end
formula ∀y(G→⊥)→⊥ is turned into ∀y(G→∃∗yG)→∃∗yG, and since the premise
is trivially provable, we have the claim.

Unfortunately, this simple argument is not quite correct. First, G may contain ⊥,
and hence is changed under the substitution ⊥ �→ ∃∗yG. Second, we may have used
axioms or lemmata involving ⊥ (e.g. ⊥→P), which need not be derivable after the
substitution. But in spite of this, the simple idea can be turned into something useful.

To take care of lemmata we normally want to use in a derivation of ∃yG, let us
"rst slightly generalize the situation we are looking at. Let a derivation (in minimal
logic) of ∃yG from D̃ and axioms

Indn;A: A[n := 0] → ∀n(A → A[n := n + 1]) → ∀nA;
Indp;A: A[p := true] → A[p := false] → ∀pA;

1 Notice our slightly unusual formula notation: the scope of a quanti"er followed by a dot extends as far
as the surrounding parentheses allow. Otherwise, we follow the standard convention that quanti"ers bind
stronger than ∧, which binds stronger than →.



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 5

axtrue: atom(true);

axfalse;A: atom(false) → A;

be given. Here atom is a unary predicate symbol taking one argument of the type o
of booleans. The intended interpretation of atom is the set {true}; hence “atom(t)”
means “t = true”. Assume the lemmata D̃ and the goal formula G are such that

�int D̃ → Di[⊥ := ∃∗yG]; (1)

�int G[⊥ := ∃∗yG] → ∃∗yG; (2)

here �int means derivability in intuitionistic arithmetic, i.e. with the additional ax-
ioms efqA:⊥→A. The substitution ⊥ �→ ∃∗yG turns the axioms above (except efqA)
into instances of the same scheme with diJerent formulas, and hence from our given
derivation (in minimal logic) of D̃→∀y(G→⊥)→⊥ we obtain

�int D̃[⊥ := ∃∗yG] → ∀y(G[⊥ := ∃∗yG] → ∃∗yG) → ∃∗yG:
Now (1) allows to drop the substitution in D̃, and by (2) the second premise is
derivable. Hence we obtain as desired

�int D̃ → ∃∗yG:
A main contribution of the present paper is the identi"cation of classes of formulas—to
be called de6nite and goal formulas—such that slight generalizations of (1) and (2)
hold. This will be done in Section 3.

We will also give (in Section 5) an explicit and useful representation of the pro-
gram term extracted (by the well-known modi"ed realizability interpretation, cf. [18])
from the derivation M of D̃→∃∗yG just constructed. The program term has the form
pt1 : : : tns, where p is extracted from M and t1; : : : ; tn; s are determined by the formulas
D̃ and G only.

Since the constructive existential quanti"er ∃∗ only enters our derivation in the
context ∃∗yG, it is easiest to replace this formula everywhere by a new propositional
symbol X and stipulate that a term r realizes X iJ G[y := r]. This allows for a short and
self-contained exposition—in Section 4—of all we need about modi"ed realizability,
including the soundness theorem. In Section 5 we then prove our main theorem about
program extraction from classical proofs.

The "nal Section 6 then contains some examples of our general machinery. From a
classical proof of the existence of the Fibonacci numbers we extract in Section 6.1 a
short and surprisingly eLcient program. In Section 6.2 we treat as a further example a
classical proof of the wellfoundedness of ¡ on N. Finally, in Section 6.3 we take up
a suggestion of Veldman and Bezem [19] and present a short classical proof of (the
general form of) Dickson’s Lemma, as an interesting candidate for further study.

2. Arithmetic for functionals

The system we consider is essentially (the negative fragment of) Heyting’s intuition-
istic arithmetic in "nite types as described e.g. in [17]. It is based on GPodel’s system



6 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

T and just adds the corresponding logical and arithmetical apparatus to it. Equations
are treated on the meta level by identifying terms with the same normal form.
Types are built from ground types � for the natural numbers and o for the boolean

objects (and possibly other ground types) by �→ �. The constants are

trueo; falseo; 0�; S�→�; Ro;�; R�;�:

R�; � is the primitive recursion operator of type �→ (�→ �→ �)→ �→ � and Ro; � is
the recursion operator for the type o of booleans, i.e. is of type �→ �→ o→ � and
represents de"nition by cases. Terms are

x�; c� (c� a constant); �x�r; rs

with the usual typing rules. The conversions are those for the simply typed lambda
calculus, plus some new ones for the recursion operators. We write t + 1 for S�→�t.

Ro;�rs true �→R r;

Ro;�rs false �→R s;

R�;�rs0 �→R r;

R�;�rs(t + 1) �→R st(R�;�rst):

It is well known that for this system of terms every term strongly normalizes, and that
the normal form is uniquely determined; hence the relation r =�R s is decidable (by
normalizing r and s). By identifying =�R-equal terms (i.e. treating equations on the
meta level) we can greatly simplify many formal derivations.

Let atom be a unary predicate symbol taking one argument of type o. The intended
interpretation of atom is the set {true}; hence “atom(t)” means “t = true”. We also
allow the propositional symbols ⊥ and X (i.e. 0-ary predicate symbols). So formulas
are

⊥; X; atom(to); A → B; ∀x�A; abbreviation : ¬A := A → ⊥:
As axioms we take the induction schemes Indn;A and Indp;A for the ground types �
and o, and in addition the “truth axiom” axtrue and two schemes axfalse; A and efqA
for “ex-falso-quodlibet”, one for each of the two possibilities atom(false) and ⊥ to
express falsity (see introduction). Note that every instance ⊥→A of ex-falso-quodlibet
is derivable from ⊥→X and ⊥→ atom(false); this will be useful in Section 4 (when
we de"ne the extracted program <M = of a derivation M).
Derivations are within minimal logic. They are written in natural deduction style,

i.e. as typed �-terms via the well-known Curry–Howard correspondence:

uB (assumptions); axioms;

(�uAMB)A→B; (MA→BNA)B;

(�x�MA)∀x
�A; (M∀x�At�)A[x�:=t�]



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 7

where in the ∀-introduction �xMA; x must not be free in any B with uB ∈ FA(M); here
FA(M) is the set of free assumption variables of M .

Let ZX denote this system of intuitionistic arithmetic; Z is obtained from ZX by
omitting X . Z0 (ZX

0 , resp.) is Z (ZX , resp.) without the axioms efqA. For every
Z0-derivation M let MX denote the ZX

0 -derivation resulting from M by substituting
X for ⊥. Write CX :=C[⊥ :=X ]. – L[X ] (L, resp.) denotes the language of ZX

(Z , resp.). We use P for atomic L-formulas and A; B; C; D; G for L[X ]-formulas. �
denotes derivability in minimal logic.

Note that in our setting derivability in ZX is essentially the same as in ZX
0 :

Lemma 2.1. Let F := atom(false) and AF :=A[⊥ :=F]. Then

ZX � A ⇔ ZX
0 � AF:

Proof. ⇒ holds since efqFA is axfalse; AF .
⇐. We have ZX �⊥ ↔ F by efqF and axfalse;⊥. This implies the claim.

Since our formulas do not contain the constructive existential quanti"er ∃∗, we can
derive stability for all L-formulas. Hence, classical arithmetic (in all "nite types) is a
subsystem of our present system Z :

Lemma 2.2 (Stability). Z �¬¬A→A for every L-formula A.

Proof. Induction on A.
Case atom(t). We have Z �∀p:¬¬atom(p)→ atom(p) by boolean induction, again

using Z �⊥ ↔ ⊥ and the truth axiom axtrue: atom(true).
Case ⊥. Obviously Z �¬¬⊥→⊥.
Case A→B. By induction hypothesis for B:

u:¬¬B → B

v:¬¬(A → B)

u1:¬B
u2:A → B w:A

B
⊥ →+u2¬(A → B)

⊥ →+u1¬¬B
B

Case ∀xA. Clearly it suLces to show Z � (¬¬A→A)→¬¬∀xA→A:

u:¬¬A→A

v:¬¬∀xA

u1:¬A
u2:∀xA x

A
F → +u2¬∀xA

⊥ → +u1¬¬A
A

This concludes the proof.



8 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

Lemma 2.3 (Cases). ZX � (¬C→A)→ (C→A)→A for every quanti6er-free L-for-
mula C.

Proof. We may assume that ⊥ does not occur in C, since Z �⊥ ↔ atom(false). Note
that for every such quanti"er-free formula C we can easily construct a boolean term
tC such that Z0 � atom(tC) ↔ C. Hence, it suLces to derive

∀p:((atom(p) → atom(false)) → A) → (atom(p) → A) → A:

This is done by induction on p, using the truth axiom axtrue: atom(true).

3. De�nite and goal formulas

A formula is relevant if it “ends” with ⊥. More precisely, relevant formulas are
de"ned inductively by the clauses
• ⊥ is relevant,
• if C is relevant and B is arbitrary, then B→C is relevant, and
• if C is relevant, then ∀xC is relevant.
A formula which is not relevant is called irrelevant.

We de"ne goal formulas G and de6nite formulas D inductively. These notions are
related to similar ones common under the same name in the context of extensions of
logic programming. Recall that P ranges over atomic L-formulas (including ⊥).

G := P |D → G provided (D irrelevant ⇒ D quanti"er-free)

| ∀xG provided G irrelevant;

D := P |G → D provided (D irrelevant ⇒ G irrelevant)

| ∀xD:

Lemma 3.1. For de6nite formulas D and goal formulas G we have

ZX � (¬D → X ) → DX for D relevant; (3)

ZX � D → DX ; (4)

ZX � GX → G for G irrelevant; (5)

ZX � GX → (G → X ) → X: (6)

Proof. Simultaneous induction on formulas.
(3) Let D be relevant. Case ⊥. Clearly ((⊥→⊥)→X )→X is derivable.



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 9

Case G→D.

|
(¬D→ X ) →DX

|
GX → (G→X )→X GX

(G→ X ) → X

¬(G→D) → X

¬D
G→D G

D
⊥

¬(G→D)

X
G→ X

X
¬D→ X

DX

(¬(G→D) → X ) →GX →DX

Here we have used the induction hypotheses (3) for D and (6) for G.
Case ∀xD.

|
(¬D→X )→DX

¬∀xD→X

¬D
∀xD
D

⊥
¬∀xD

X
¬D→X

DX

∀xDX

(¬∀xD→X )→∀xDX

Here we have used the induction hypothesis (3) for D.
(4) Case D relevant.

|
(¬D→X )→DX

⊥→X
¬D D

⊥
X

¬D→X

DX

D→DX

Here we have used (3) and ⊥→X .
Case D irrelevant.
Subcase P. Then PX =P and the claim is obvious.
Subcase G→D. Then D is irrelevant, hence also G is irrelevant.

|
D→DX

G→D

|
GX →G GX

G
D

DX

(G→D)→GX →DX

Here we have used the induction hypotheses (5) for G and (4) for D.
Subcase ∀xD. By the induction hypothesis (4) for D we have D→DX , which clearly

implies ∀xD→∀xDX .



10 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

(5) Let G be irrelevant. Case P. Then PX =P and the claim is obvious.
Case D→G.

|
GX →G

DX →GX

|
D→DX D

DX

GX

G
(DX →GX )→D→G

Here we have used the induction hypotheses (5) for G and (4) for D.
Case ∀xG. |

GX →G
∀xGX

GX

G
∀xG

∀xGX →∀xG
Here we have used the induction hypothesis (5) for G.

(6) We may assume that G is relevant, for otherwise the claim clearly follows from
(5). Case ⊥. Obvious, since ⊥X =X .

Case D→G. Our goal is (DX →GX )→ ((D→G)→X )→X . Let D1[DX →GX ;
(D→G)→X ] be

|
GX → (G→X )→X

DX →GX DX

GX

(G→X )→X

(D→G)→X
G

D→G
X

G→X
X

DX →X

(using the induction hypothesis (6) for G) and D2[(D→G)→X ] be

(D→G)→X

¬D D
⊥
G

D→G
X

¬D→X

Note that the passage from ⊥ to G can be done by means of introduction rules, since
G is relevant.
Subcase D relevant.

D1[DX →GX ; (D→G)→X ]

|
DX →X

|
(¬D→X )→DX

D2[(D→G)→X ]

|
¬D→X

DX

X
(DX →GX )→ ((D→G)→X )→X

Here we have used the induction hypothesis (3) for D.



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 11

Subcase D irrelevant. Then D is quanti"er-free. We use case distinction on D from
Lemma 2.3, in the form (D→X )→ (¬D→X )→X . So it suLces to derive from
DX →GX and (D→G)→X both premises; recall that our goal was (DX →GX )→
((D→G)→X )→X . The negative case is provided by D2[(D→G)→X ], and the
positive case by

D1[DX →GX ; (D→G)→X ]

|
DX →X

|
D→DX D

DX

X
D→X

Here we have used the induction hypothesis (4) for D.

Lemma 3.2. For goal formulas G̃=G1; : : : ; Gn we have

ZX � (G̃ → X ) → G̃X → X:

Proof. By Lemma 3.1(6) we have

ZX � GX
i → (Gi → X ) → X

for all i= 1; : : : ; n. Now the assertion follows by minimal logic: Assume G̃→X and
G̃X ; we must show X .

Because of GX
1 → (G1 →X )→X it suLces to prove G1 →X . Assume G1.

Because of GX
2 → (G2 →X )→X it suLces to prove G2 →X . Assume G2.

Repeating this pattern, we "nally have assumptions G1; : : : ; Gn available, and obtain
X from G̃→X .

Theorem 3.3. Assume that for de6nite formulas D̃ and goal formulas G̃ we have

Z0 � D̃ → ∀ỹ(G̃ → ⊥) → ⊥:
Then we also have

ZX � D̃ → ∀ỹ(G̃ → X ) → X:

In particular; substitution of the formula

∃∗ỹ:G̃ := ∃∗ỹ:G1 ∧ · · · ∧ Gn

for X yields

Z � D̃ → ∃∗ỹ:G̃:

Proof. Substitution of X for ⊥ in the given derivation yields

ZX
0 � D̃X → ∀ỹ(G̃X → X ) → X:

Now by Lemma 3.1(4) we can drop X in D̃X , and by Lemma 3.2 also in G̃X .



12 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

The second assertion follows from the "rst one since ∀ỹ:G̃→∃∗ỹ:G̃ clearly is
derivable.

The theorem can be viewed in the standard way to yield a method for program
extraction from classical proofs. However, in Section 5 we give a "ner analysis of the
extracted programs, and an explanation of the role of de"nite and goal formulas.

Example. Let us check the mechanism of working with de"nite and goal formulas for
Kreisel’s “non-example” given in the introduction. There we gave a trivial proof in
classical logic of a ∀∃-formula that cannot be realized by a computable function, and
we better make sure that our general result also does not provide such a function. The
example amounts to a proof in minimal logic of

∀z(¬¬R(x; z) → R(x; z)) → ∀y((R(x; y) → ∀zR(x; z)) → ⊥) → ⊥:

Here R(x; y)→∀zR(x; z) is a goal formula, but the premise ∀z:¬¬R(x; z)→R(x; z) is
not de"nite. Replacing R by ¬S (to get rid of the stability assumption) does not help,
for then ¬S(x; y)→∀z¬S(x; z) is not a goal formula. A third possibility would be
to use the fact that R is primitive recursive and write atom(rxy) instead of R(x; y).
However, then ∀y((atom(rxy)→∀zatom(rxz))→⊥)→⊥ could only be proved in Z ,
not in Z0 as required in Theorem 3.3.

3.1. How to obtain de6nite and goal formulas

To apply these results we have to know that our assumptions are de"nite formulas
and our goal is given by goal formulas. For quanti"er-free formulas this clearly can
always be achieved by inserting double negations in front of every atom (cf. the
de"nitions of de"nite and goal formulas). This corresponds to the original (unre"ned)
so-called A-translation of Friedman [10] (or Leivant [14]). However, in order to obtain
reasonable programs which do not unneccessarily use higher types or case analysis we
want to insert double negations only at as few places as possible.

We describe a more economical general way to obtain de"nite and goal formulas,
following [2, 3]. It consists in singling out some predicate symbols as being “critical”,
and then double negating only the atoms formed with critical predicate symbols; call
these critical atoms.

Assume we have a proof in minimal arithmetic Z of

∀̃x1C1 → · · · → ∀̃xnCn → ∀ỹ(B̃ → ⊥) → ⊥

with C̃; B̃ quanti"er-free (among the premises ∀̃xiCi we may have efq-axioms for
quanti"er-free formulas, hence in fact the situation described applies to intuitionistic
logic). Let

L := {C1; : : : ; Cn; B̃ → ⊥}:



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 13

The set of L-critical predicate symbols is de"ned to be the smallest set satisfying
(i) ⊥ is critical.
(ii) If (C̃1 →R1(̃s1))→ · · · → (C̃m→Rm(̃sm))→R(̃s) is a positive subformula of for-

mulas of L, and if some Ri is L-critical, then R is L-critical.
Now if we double negate every L-critical atom diJerent from ⊥ we clearly obtain def-
inite assumptions C̃′ and goal formulas B̃′. Furthermore, the proof term of the given
derivation can easily be transformed into a correct derivation of the translated for-
mula from the translated assumptions (by inserting the obvious proofs of the translated
axioms).

However, in particular cases we might be able to obtain de"nite and goal formulas
with still fewer double negations: it may not be necessary to double negate every
critical atom.

Of course this method will be really useful only if besides atom and ⊥ there are
other predicate symbols available. Our results could be easily adapted to a language
with free predicate symbols.

4. Program extraction

We assign to every formula A an object +(A) (a type or the symbol ∗). +(A) is
intended to be the type of the program to be extracted from a proof of A, assuming
that a proof of X carries computational content of some given type ,.

+(X ) := ,;

+(P) := ∗ (in particular +(⊥) = ∗);

+(∀x�A) :=

{ ∗ if +(A) = ∗;
� → +(A) otherwise;

+(A → B) :=



+(B) if +(A) = ∗;
∗ if +(B) = ∗;
+(A) → +(B) otherwise:

We now de"ne, for a given derivation M of a formula A with +(A) �= ∗, its extracted
program <M = of type +(A).

<uA= := u+(A);

<�uAM = :=

{
<M = if +(A) = ∗;
�u+(A)<M = otherwise;

<MA→BN = :=

{
<M = if +(A) = ∗;
<M = <N = otherwise;



14 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

<�x�M = := �x�<M =;

<Mt= := <M =t:

We also need extracted programs for the axioms.

<Indp;A= := Ro;�: � → � → o → � with � := +(A) �= ∗;

<Indn;A= := R�;�: � → (� → � → �) → � → � with � := +(A) �= ∗;

<efqX = := dummy,;

where dummy, is an arbitrary closed term of type ,. For derivations M of A with
+(A) = ∗ we de"ne <M = := - (- some new symbol). This applies in particular if A is an
L-formula.

Finally, we de"ne modi6ed realizability for formulas in L[X ]. For the propositional
symbol X we need a comprehension term A := �y,A0 with an L-formula A0; write
A(r) for A0[y, := r]. More precisely, we de"ne formulas rmrA A, where r is either a
term of type +(A) if the latter is a type, or the symbol - if +(A) = ∗.

rmrA X = A(r);

rmrA P = P;

rmrA∀xA =

{ ∀x:-mrA A if +(A) = ∗;
∀x:rxmrA A otherwise;

rmrA(A → B) =



-mrA A → rmrA B if +(A) = ∗;
∀x:xmrA A → -mrA B if +(A) �= ∗ = +(B);

∀x:xmrA A → rxmrA B otherwise:

Note that for L-formulas A we have +(A) = ∗ and -mrA A=A. For the formulation of
the soundness theorem it will be useful to let u+(A) := - if uA is an assumption variable
with +(A) = ∗.

Theorem 4.1 (Soundness). Assume that M is a ZX -derivation of B. Then there is a
Z-derivation of <M =mrA B from the assumptions {u+(C) mrA C | uC ∈ FA(M)}.

Proof. Induction on M . Case Indn;A. Take R�; �. Case Indp; A. Take Ro; �. Case efqA :⊥
→A. Then

<efqA=mrA(⊥ → A) = ⊥ → <efqA=mrA A;

which is an instance of the same axiom scheme. The inductive steps are straightforward.



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 15

5. Computational content of classical proofs

For a smooth formulation of the following theorem when writing an application ts
where s is of type ∗, we mean simply t. Similarly abstractions of the form �w∗t stand
for t.

Theorem 5.1. Let D̃=D1; : : : ; Dn and G̃=G1; : : : ; Gm be arbitrary L-formulas. As-
sume that we have terms t1; : : : ; tn; s1; : : : ; sm; r such that

Z � D̃ → tj mrA DX
j for 1 6 j 6 n; (7)

Z � D̃ → wi mrA GX
i → (Gi → A(vi)) → A(siwivi) for 1 6 i 6 m; (8)

Z � D̃ → ∀ỹ:G̃ → A(rỹ): (9)

Let M be a Z0-derivation of D̃→∀ỹ(G̃→⊥)→⊥; and
s := �ỹ�w̃:s1w1(: : : (smwm(rỹ)) : : :):

Then

Z � D̃ → A(<MX =t1 : : : tns):

Proof. From the Z0-derivation M we obtain by the substitution ⊥ �→X a ZX
0 -derivation

MX : D̃X →∀ỹ(G̃X →X )→X . The soundness Theorem 4.1 yields

<MX =mrA(D̃X → ∀ỹ(G̃X → X ) → X )

= ∀ũ∀v:̃umrA D̃X → (vmrA∀ỹ:G̃X → X ) → A(<MX =̃uv)

= ∀ũ∀v:̃umrAD̃X → ∀ỹ∀w̃(w̃mrAG̃X → A(vỹw̃)) → A(<MX =̃uv): (10)

Instantiate (10) with t̃ for ũ and s for v. Clearly t̃mrA D̃X is derivable from D̃ by (7),
so it remains to show D̃→ w̃mrAG̃X →A(sỹw̃).

Let am+1 := rỹ and ai := siwiai+1, hence s= �ỹ�w̃ a1. We show by induction on
j :=m− i

D̃ → G1 → · · · → Gi → wi+1 mrA GX
i+1 → · · · → wmmrA GX

m → A(ai+1): (11)

Basis. For j= 0 we have i=m and (11) holds by (9). Step. From the IH (11) and
assumption (8) we obtain

D̃ → G1 → · · · → Gi−1 → wi mrA GX
i → · · · → wmmrA GX

m → A(siwiai+1):

For j=m we have i= 0 and hence we obtain from (11)

D̃ → w1 mrA GX
1 → · · · → wmmrA GX

m → A(a1);

which was to be shown.



16 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

In order to apply Theorem 5.1, we need A= �yA0 and terms tj; si; r such that
(7)–(9) hold. The choice of A and r of course depends on the application at hand
and should be done such that (9) holds. The rest follows from Lemma 3.1 by the
soundness Theorem 4.1:

Theorem 5.2. For every de6nite formula D and goal formula G we have terms t; s
such that for an arbitrary A= �yA0 with an L-formula A0:

Z � D → tmrA DX ; (12)

Z � wmrA GX → (G → A(v)) → A(swv): (13)

Proof. (12) Let ND be the ZX -derivation of D→DX from Lemma 3.1(4). The sound-
ness theorem yields

Z � <ND=mrA(D → DX ) i:e: Z � D → <ND=mrA DX :

(13) Let HG be the ZX -derivation of GX → (G→X )→X from Lemma 3.1(6). By
the soundness theorem

Z � <HG=mrA(GX → (G → X ) → X )

i:e: Z � wmrA GX → (G → A(v)) → A(<HG=wv):

Corollary 5.3. Let D̃=D1; : : : ; Dn be de6nite formulas and G a goal formula. Let M
be a Z0-derivation of D̃→∀y(G→⊥)→⊥. Then

Z � D̃ → G[y := <MX =t1 : : : tns];

where t1; : : : ; tn; s are determined by the formulas D̃; G only.

6. Examples

We now want to give some simple examples of how to apply Theorems 5.1 and
5.2. Here we will always have a single goal formula G and A will always be chosen
as �yG. Hence (9) trivially holds with r := �yy.

6.1. Fibonacci numbers

Let 1n be the nth Fibonacci number, i.e.

10 := 0; 11 := 1; 1n := 1n−2 + 1n−1 for n¿ 2:

We want to give a (classical) existence proof for the Fibonacci numbers. So we need
to prove

∀n∃kG(n; k) i:e: ∀k(G(n; k) → ⊥) → ⊥



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 17

from assumptions expressing that G is the graph of the Fibonacci function, i.e.

G(0; 0); G(1; 1); ∀n∀k∀l:G(n; k) → G(n + 1; l) → G(n + 2; k + l):

Clearly the assumption formulas are de"nite and G(n; k) is a goal formula. So Theorems
5.1 and 5.2 can be applied without inserting double negations.

To construct a derivation, assume

v0: G(0; 0);

v1: G(1; 1);

v2: ∀n∀k∀l:G(n; k) → G(n + 1; l) → G(n + 2; k + l)

u: ∀k:G(n; k) → ⊥:
Our goal is ⊥. To this end we "rst prove a strengthened claim in order to get the
induction through:

∀nB with B := ∀k∀l(G(n; k) → G(n + 1; l) → ⊥) → ⊥:
This is proved by induction on n. The base case follows from v0 and v1. In the step case
we can assume that we have k; l satisfying G(n; k) and G(n+1; l). We need k ′; l′ such
that G(n+1; k ′) and G(n+2; l′). Using v2 simply take k ′ := l and l′ := k+l. – To obtain
our goal ⊥ from ∀nB, it clearly suLces to prove its premise ∀k∀l:G(n; k)→G(n +
1; l)→⊥. So let k; l be given and assume u1:G(n; k) and u2:G(n+1; l). Then u applied
to k and u1 gives our goal ⊥.

The derivation term is

M = �vG(0;0)
0 �vG(1;1)

1 �v∀n∀k∀l:G(n;k)→G(n+1;l)→G(n+2;k+l)
2 �u∀k:G(n;k)→⊥

Indn;BMbaseMstepn(�k�l�uG(n;k)
1 �uG(n+1;l)

2 :uku1)

where

Mbase = �w∀k∀l:G(0;k)→G(1;l)→⊥
0 :w001v0v1;

Mstep = �n�wB�w∀k∀l:G(n+1;k)→G(n+2;l)→⊥
1

w(�k�l�uG(n;k)
3 �uG(n+1;l)

4 :w1l(k + l)u4(v2klu3u4)):

Now let A := �kG(n; k), and MX be obtained from M by replacing every occurrence
of ⊥ by X . Therefore

<MX = = �u�→�:R�;(�→�→�)→�<MX
base= <MX

step=n(�k�l:uk);

where

<MX
base= = �w�→�→�

0 :w001;



18 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

<MX
step= = �n�w(�→�→�)→��w�→�→�

1 :w(�k�l:w1l(k + l)):

Since there are no relevant formulas involved, the extracted term according to
Theorem 5.1 is

<MX =(�xx) = R�;(�→�→�)→�<MX
base= <MX

step=n(�k�l:k):

This algorithm might be easier to understand if we write it as a Scheme program:

(define (fibo n) (fibo1 n (lambda (k l) k)))

(define (fibo1 n1 f)

(if (= n1 0)

(f 0 1)

(fibo1 (- n1 1) (lambda (k l) (f l (+ k l))))))

This is a linear algorithm in tail recursive form. It is somewhat unexpected since it
passes �-expressions (rather than pairs, as one would ordinarily do), and hence uses
functional programming in a proper way. This clearly is related to the use of classical
logic, which by its use of double negations has a functional Qavour.

To remove some of the tedium of doing all that by hand, we certainly want machine
help. We have done such an implementation within our system MINLOG; here is the
original printout of the extracted term, with only some indentation added.

(lambda (n^1)

(((((nat-rec-at

(quote (arrow (arrow nat (arrow nat nat)) nat)))

(lambda (hh^2) ((hh^2 (num 0)) (num 1))))

(lambda (n^2)

(lambda (ff^3)

(lambda (hh^4)

(ff^3 (lambda (n^5)

(lambda (n^6)

((hh^4 n^6) ((plus-nat n^5) n^6)))))))))

n^1) (lambda (n^2) (lambda (n^3) n^2))))

It is rather obvious that this can be translated into the SCHEME program above.

Remark. Of course, in this example there is no need to do the proof classically; in
fact, it is more natural to work with the constructive existential quanti"er ∃∗ instead.
Here is the term extracted from this proof (original output of MINLOG).

(lambda (n^1)

(car ((((nat-rec-at (quote (star nat nat)))

(cons (num 0) (num 1)))

(lambda (n^2)

(lambda (nat*nat^3)



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 19

(cons (cdr nat*nat^3)

((plus-nat (car nat*nat^3))

(cdr nat*nat^3)))))) n^1)))

A more readable Scheme program is

(define (constr-fibo n) (car (constr-fibo-aux n)))

(define (constr-fibo-aux n)

(if (= 0 n)

(cons 0 1)

(let ((prev (constr-fibo-aux (- n 1))))

(cons (cdr prev)

(+ (car prev) (cdr prev))))))

So the resulting algorithm is linear again, but passes pairs rather than �-expressions.

6.2. Wellfoundedness of N

There is an interesting phenomenon which may occur if we extract a program from
a classical proof which uses the minimum principle. Consider as a simple example the
wellfoundedness of ¡ on N, i.e.

∀f�→�∃k:f(k + 1) ¡ f(k) → ⊥:

If one formalizes the classical proof “choose k such that f(k) is minimal” and extracts
a program one might expect that it computes a k such that f(k) is minimal. But this
is impossible! In fact the program computes the least k such that f(k+1)¡f(k) → ⊥
instead. This discrepancy between the classical proof and the extracted program can of
course only show up if the solution is not uniquely determined.

We begin with a rather detailed exposition of the classical proof, since we need
a complete formalization. Our goal is ∃k f(k) 6 f(k + 1), and the classical proof
consists in using the minimum principle to choose a minimal element in ran(f) :=
{y | ∃x f(x) = y}, the range of f. This suLces, for if we have such a minimal element,
say y0, then it must be of the form f(x0), and by the choice of y0 we have f(x0) 6
f(x) for every x, so in particular f(x0) 6 f(x0 + 1).

Next we need to prove the minimum principle from ordinary zero-successor-
induction. The minimum principle

∃k R(k) → ∃k:R(k) ∧ ∀l ¡ k:R(l) → ⊥ (14)

is to be applied with R(k) := k ∈ ran(f). Now (14) is logically equivalent to

∀k(R(k) → ∀l¡k(R(l) → ⊥) → ⊥) → ∀k:R(k) → ⊥: (15)



20 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

The premise of (15) expresses the “progressiveness” of R(k) → ⊥ w.r.t. ¡; we ab-
breviate it to

Prog := ∀k:∀l ¡ k(R(l) → ⊥) → R(k) → ⊥:
We prove (15) by zero-successor-induction on n w.r.t. the formula

B := ∀k¡n:R(k) → ⊥:
Base: B[n := 0] follows easily from the lemma

v1:∀m:m ¡ 0 → ⊥:
Step: Let n be given and assume w2:B. To show B[n := n + 1] let k be given and

assume w3: k¡n + 1. We will derive R(k) → ⊥ by using w1: Prog at k. Hence we
have to prove

∀l ¡ k:R(l) → ⊥:
So, let l be given and assume further w4: l¡k. From w4 and w3: k¡n + 1 we infer
l¡n (using an arithmetical lemma). Hence, by induction hypothesis w2:B at l we get
R(l) → ⊥.

Now a complete formalization is easy. We express x 6 y by y¡x → ⊥ and take
∀x f(x) �= k for R(k) → ⊥. The derivation term is

M := �v∀m:m¡0→⊥
1

�u∀k:(f(k+1)¡f(k)→⊥)→⊥:

MProg→∀y∀xx:f(x)	=y
cvind Mprog(f0)0Lf0=f0;

where

Mcvind = �wProg
1 �k:Indn;BMbaseMstep(k + 1)kLk¡k+1;

Mbase = �k�wk¡0
0 �x�w̃f(x)=k

0 :v1kw0;

Mstep = �n�wB
2 �k�w

k¡n+1
3 :w1k(�l�wl¡k

4 :w2l(Ll¡n[w4; w3]));

Mprog = �k�u∀l:l¡k→∀xf(x)	=l
1 �x�uf(x)=k

2

×ux�wf(x+1)¡f(x)
5 :u1(f(x+1))Lf(x+1)¡k [w5; u2](x+1)Lf(x+1)=f(x+1):

Here we have used the abbreviations

Prog = ∀k:[∀l:l ¡ k → ∀x:f(x) �= l] → ∀x:f(x) �= k;

B= ∀k:k ¡ n → ∀x:f(x) �= k:



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 21

For term extraction let

A := �k:f(k + 1) ¡ f(k) → F;

and let MX denote the result of replacing every formula C in the derivation M by CX .
Then

<MX = = �v�→�
1 �u�→�→�:<MX

cvind= <MX
prog=(f0)0;

where

<MX
cvind= = �w�→(�→�→�)→�→�

1 �k:R�;�→�→�<MX
base= <MX

step=(k + 1)k;

<MX
base= = �k�x:v1k;

<MX
step= = �n�w�→�→�

2 �k:w1k(�l:w2l);

<MX
prog= = �k�u�→�→�

1 �x:ux(u1(f(x + 1))(x + 1)):

Note that k is not used in <MX
prog=; this is the reason why the optimization below is

possible.
Now by (12) we generally have D → <ND=mrA DX for every relevant de"nite for-

mula D. In our case for D = ∀k:k¡0 → ⊥ we clearly can derive directly

∀k(k ¡ 0 → ⊥) → (�n0)mrA ∀k:k ¡ 0 → X;

since we can use ex-falso. So we may assume <ND= = �n0. Also, by (13) we generally
have

wmrA GX → (G → A(v)) → A(<HG=wv):

In our case, with G = f(k + 1)¡f(k) → ⊥, we can derive directly

(f(k + 1) ¡ f(k) → A(w)) → ((f(k + 1) ¡ f(k) → ⊥) → A(v))

→ A(if f(k + 1) ¡ f(k) then w else v):

So we may assume <HG= = �w�v:if f(k + 1)¡f(k) then w else v. Now let

s := �k�w:<HG=wk = �k�w:if f(k + 1) ¡ f(k) then w else k:

Then the extracted term according to Theorem 5.1 is

<MX = <ND=s =� <MX
cvind=′<MX

prog=′(f0)0

where ′ indicates substitution of <ND=; s for v1; u, so

<MX
cvind=′ =�3 �w1�k ′:R(�k�x0)(�n�w2�k:w1kw2)(k ′ + 1)k ′;

<MX
prog=′ =� �k�xu1�x:if f(x + 1) ¡ f(x) then u1(f(x + 1))(x + 1) else x:



22 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

Therefore, we obtain as extracted algorithm

<MX = <ND=s =�

R(�k�x:0)

(�n�w�→�→�
2 �k�x:if f(x + 1) ¡ fx then w2(f(x + 1))(x + 1) else x)

((f0) + 1)(f0)0:

To make this algorithm more readable we may write

<MX = <ND=s = h(f(0) + 1; f(0); 0);

where

h(0; k; x) = 0

h(n + 1; k; x) = if f(x + 1) ¡ fx then h(n; f(x + 1); x + 1) else x

The extracted program (original output of Minlog) is

(lambda (h^1)

((((((nat-rec-at (quote (arrow nat (arrow nat nat))))

(lambda (n^2)

(lambda (n^3) n000)))

(lambda (n^2)

(lambda (hh^3)

(lambda (n^4)

(lambda (n^5)

(((if-nat

((<-strict-nat (h^1 ((plus-nat n^5) (num 1))))

(h^1 n^5)))

((hh^3 (h^1 ((plus-nat n^5) (num 1))))

((plus-nat n^5) (num 1))))

n^5))))))

((plus-nat (h^1 (num 0))) (num 1)))

(h^1 (num 0)))

(num 0)))

We can rewrite this as a Scheme program as follows.

(define (wf f) (wf-aux f (+ (f 0) 1) (f 0) 0))

(define (wf-aux f n k x)

(if (= 0 n)

0

(if (< (f (+ x 1)) (f x))



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 23

(wf-aux f (- n 1) (f (+ x 1)) (+ x 1))

x)))

Note that k is not used here (this will always happen if the induction principle is used
in the form of the minimum principle only), and hence we may optimize our program
to

(define (wf1 f) (wf1-aux f (+ (f 0) 1) 0))

(define (wf1-aux f n x)

(if (= 0 n)

0

(if (< (f (+ x 1)) (f x))

(wf-aux f (- n 1) (+ x 1))

x)))

Now it is immediate to see that the program computes the least k such that f(k + 1)
¡f(k) → ⊥, where f(0) + 1 only serves as an upper bound for the search.

6.3. Towards more interesting examples

Veldman and Bezem [19] suggested Dickson’s lemma [7] as an interesting case study
for program extraction from classical proofs. It states that for k given in"nite sequences
f1; : : : ; fk of natural numbers and a given number l there are indices i1; : : : ; il such that
every sequence f5 increases on i1; : : : ; il, i.e. f5(i1) 6 · · · 6 f5(il) for 5 = 1; : : : ; k.
Here is a short classical proof, using the minimum principle for undecidable sets.

Call a unary predicate (or set) Q ⊆ N unbounded if ∀x∃y:Q(y) ∧ x¡y.

Lemma 6.1. Let Q be unbounded and f a function from a superset of Q to N. Then
the set Qf of left f-minima w.r.t. Q is unbounded; here

Qf(x) := Q(x) ∧ ∀y:Q(y) → x ¡ y → f(x) 6 f(y):

Proof. Let x be given. We must "nd y with Qf(y) and x¡y. The minimum principle
for {y |Q(y) ∧ x¡y } with measure f yields

(∃y:Q(y) ∧ x ¡ y) → ∃y:Q(y) ∧ x ¡ y ∧ ∀z:Q(z) → x ¡ z → f(y) 6 f(z):

(16)

Since Q is assumed to be unbounded, the premise is true. We show that the y provided
by the conclusion satis"es Qf(y), i.e.

Q(y) ∧ ∀z:Q(z) → y ¡ z → f(y) 6 f(z):

So let z with Q(z) and y¡z be given. From x¡y we obtain x¡z, hence f(y) 6 f(z)
by the conclusion of (16).



24 U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25

Lemma 6.2. Let Q be unbounded and f1; : : : ; fk be functions from a superset of Q to
N. Then there is an unbounded subset Q1 of Q such that f1; : : : ; fk increase on Q1;
i.e.

Q1(x) ∧ Q1(y) ∧ x ¡ y →
k∧∧

5=1

f5(x) 6 f5(y):

Proof. By induction on k. Let Q2 be Q if k = 1, and in case k ¿ 2 be an un-
bounded subset of Q where f2; : : : ; fk increase (i.e. given by the induction hypothesis
for f2; : : : ; fk). Let Q1 be the set of left f1-minima w.r.t. Q2, i.e.

Q1(x) := Q2(x) ∧ ∀y:Q2(y) → x ¡ y → f1(x) 6 f1(y):

By lemma 6.1 Q1 is an unbounded subset of Q2. Now on Q1 f1 increases, and because
of Q1 ⊆ Q2 also f2; : : : ; fk increase.

Corollary 6.3. For every k; l we have

∀f1; : : : ; fk∃i0; : : : ; il
∧∧
�¡l

:i� ¡ i�+1 ∧
k∧∧

5=1

f5(i�) 6 f5(i�+1):

For k = 2 (i.e. two sequences) this example has been treated in [4]. However, it is
interesting to look at the general case, since then the brute force search takes time
O(nk), and we can hope that the program extracted from the classical proof is better.

Acknowledgements

Klaus Weich originally proposed the functional algorithm computing the Fibonacci
numbers. Monika Seisenberger—apart from being a coauthor of [4]—and Felix
Joachimski have contributed a lot to the Minlog system, particularly to the implemen-
tation of the translation of classical proofs into constructive ones. We also bene"tted
from helpful comments by Peter Selinger and Matteo Slanina, who presented this ma-
terial in a seminar in Stanford, in the fall of 2000. The "rst and third authors gratefully
acknowledge the hospitality of the Mittag-LeUer Institute in the spring of 2001.

References

[1] F. Barbanera, S. Berardi, Extracting constructive content from classical logic via control-like reductions,
in: M. Bezem, J.F. Groote (Eds.), Typed Lambda Calculi and Applications, Lecture Notes in Computer
Science, vol. 664, Springer, Berlin, 1993, pp. 45–59.

[2] U. Berger, Programs from classical proofs, in: M. Behara, R. Fritsch, R.G. Lintz (Eds.), Symposia
Gaussiana, Proc. 2nd Gauss Symp., Conf. A: Mathematics and Theoretical Physics. Munich, Germany,
August 2–7, 1993, Walter de Gruyter, Berlin, 1995, pp. 187–200.

[3] U. Berger, H. Schwichtenberg, Program extraction from classical proofs, in: D. Leivant (Ed.), Logic
and Computational Complexity, International Workshop LCC’94, Indianapolis, IN, USA, October 1994,
Lecture Notes in Computer Science, vol. 960, Springer, Berlin, 1995, pp. 77–97.



U. Berger et al. / Annals of Pure and Applied Logic 114 (2002) 3–25 25

[4] U. Berger, H. Schwichtenberg, M. Seisenberger, The Warshall algorithm and Dickson’s lemma: two
examples of realistic program extraction, J. Automat. Reason. 26 (2001) 205–221.

[5] R.L. Constable, C. Murthy, Finding computational content in classical proofs, in: G. Huet, G. Plotkin
(Eds.), Logical Frameworks, Cambridge University Press, Cambridge, 1991, pp. 341–362.

[6] T. Coquand, H. Persson, GrPobner basis in type theory., in: T. Altenkirch, W. Naraschewski, B. Reus
(Eds.), Types for Proofs and Programs, Lecture Notes in Computer Science, vol. 1657, Springer, New
York, 1999.

[7] L.E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime
factors, Am. J. Math. 35 (1913) 413–422.

[8] M. Felleisen, D.P. Friedman, E. Kohlbecker, B.F. Duba, A syntactic theory of sequential control,
Theoret. Comput. Sci. 52 (1987) 205–237.

[9] M. Felleisen, R. Hieb, The revised report on the syntactic theory of sequential control and state, Theoret.
Comput. Sci. 102 (1992) 235–271.

[10] H. Friedman, Classically and intuitionistically provably recursive functions, in: D.S. Scott, G.H. MPuller
(Eds.), Higher Set Theory, Lecture Notes in Mathematics, vol. 669, Springer, Berlin, 1978, pp. 21–28.

[11] T.G. GriLn, A formulae-as-types notion of control, in: Conf. Record 17th Annu. ACM Symp. on
Principles of Programming Languages, 1990, pp. 47–58.

[12] U. Kohlenbach, Analysing proofs in analysis, in: W. Hodges, M. Hyland, C. Steinhorn, J. Truss (Eds.),
Logic: from Foundations to Applications. European Logic Colloquium (Keele, 1993), Oxford University
Press, Oxford, 1996, pp. 225–260.

[13] J.-L. Krivine, Classical logic, storage operators and second-order lambda-calculus, Ann. Pure Appl.
Logic 68 (1994) 53–78.

[14] D. Leivant, Syntactic translations and provably recursive functions, J. Symbolic Logic 50 (3) (1985)
682–688.

[15] C. Murthy, Extracting constructive content from classical proofs, Technical Report 90-1151, Ph.D.
Thesis, Department of Computer Science, Cornell University, Ithaca, New York, 1990.

[16] M. Parigot, �7-calculus: an algorithmic interpretation of classical natural deduction, in: Proc. Log. Prog.
Automatic Reasoning, St. Petersburg, Lecture Notes in Computer Science, vol. 624 Springer, Berlin,
1992, pp. 190–201.

[17] A.S. Troelstra (Ed.), in: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
Lecture Notes in Mathematics, vol. 344, Springer, Berlin, 1973.

[18] A.S. Troelstra, Dirk van Dalen, in: Constructivism in Mathematics, An Introduction, Studies in Logic
and the Foundations of Mathematics, vols. 121 and 123, North-Holland, Amsterdam, 1988.

[19] M. Bezem, W. Veldman, Ramsey’s theorem and the pigeonhole principle in intuitionistic mathematics,
J. London Math. Soc. 47 (1993) 193–211.


