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Abstract

We present a new method to extract from a classical proof of ∀x(I[x] →
∃y(O[y]∧S[x, y])) a program computing y from x. This method applies when
O is a data type and S is a decidable predicate. Algorithms extracted this
way are often far better than a stupid enumeration of all the possible outputs
and this is verified on a non trivial example: a proof of Dickson’s lemma.

1 Introduction.

Since Griffin and Felleisen [7, 8], we know a relation between classical proofs and
programs. However, it is not true that from a classical proof of the existence of an
object you can compute this object. This would clearly be a contradiction with the
existence of provably total but non computable functions (such as a function saying
if a Turing machine will stop or not).

There are two ways of extracting a program from a classical proof:

• To associate to the absurdity rule a special control operator (the C operator
of Felleisen also used by Krivine [11]) or the µ binder of Parigot [15, 16].

In this case, the proof and the theorem are unchanged, but the complexity of
the operator can make it difficult to understand the obtained algorithm.

• To translate the proof to intuitionistic logic using a Gödel translation or sim-
ilar methods adding negations in the formula.

In this case, it may be easier to understand the algorithm (the control operator
is replaced by highly functional programs) but the theorem is changed.

Let us examine informally what happens with a classical proof of ∀x(N[x] →
∃y(N[y]∧S[x, y])) with the first approach. We will not, in general, obtain the value
of y from a proof of N[x]. Nevertheless, the algorithm will indeed build a pair whose
first element is in some sense a natural number y (it is a classical proof of N[y]) and
whose second element is a classical proof p of S[x, y]. But, the natural y almost
never satisfies the specification (this is the main difference between classical and
intuitionistic proofs). However, the algorithm will backtrack and give a “better”
value for y if we put together the proof p with a proof of ¬S[x, y].

Nevertheless, Buchholz, Schwichtenberg and Berger in [2] were able to give a
method to transform classical proofs into intuitionistic ones minimizing the number

∗We wish to thank both anonymous referees for they deep comments that helped a lot in
improving this paper
†email: raffalli@univ-savoie.fr

1



of negation. They identify a class of formulas (named “goal formulas”) that do not
need negation at all. In this case, if your formula ∀x(N[x] → ∃y(N[y] ∧ S[x, y])) is
a “goal formula”, then you will really get an algorithm computing y from x after
transforming the classical proof.

In this paper, we present another method: we assume that S[x, y] is a decidable
predicate in the sense that ∀x, y(N[x] → N[y] → (S[x, y] ∨ ¬S[x, y])) is provable
in intuitionistic logic. Then we make interact the classical proof of ∀x(N[x] →
∃y(N[y] ∧ S[x, y])) and the proof of decidability until we get, from x, a natural
number y which really satisfies the specification.

The main result (section 5) in this paper is a proof that this interaction always
terminates with a correct answer (we do not limit ourselves to the case where the
input is a data type, only the output needs to be a data type).

We also test this method with a non trivial example (section 6 and 7): Dickson’s
lemma1 (suggested in [2] and treated for a restricted case in [3]). This is important,
because with a decidable predicate, there is always a trivial algorithm enumerating
all the possible outputs and testing them until it finds the correct one. This example
will show that algorithms extracted from classical proofs can be far better than this
trivial algorithm.

Finally we compare our method to the method presented in [2] and [12] (section
8).

The first three sections (2 to 4) of the paper present the framework and previous
results we use to state and prove our main theorem.

2 Second order mixed logic.

The main idea of our theorem is to make interact a classical proof and an intuition-
istic proof. Therefore, the natural way to prove our theorem is to use mixed logic
which manipulate both classical and intuitionistic reasoning.

Definition 2.1 (mixed second order formulas) They are built from a set of
intuitionistic predicate variables (infinite for each arity) and a set of classical predi-
cate variables (also infinite for each arity). We will write the intuitionistic variables
Xi, Yi, . . . and the classical variables Xc, Yc, . . ..

Then, from a set of first order terms T build over a language L and a set of first
order variables (written x, y, . . .), we build the set of formulas using the following
grammar:

F = Xi(T , . . . , T ) | Xc(T , . . . , T ) | F → F | ∀xF | ∀XiF | ∀XcF

Definition 2.2 (classical formulas) A formula of mixed logic is said to be clas-
sical if its right most atomic formula is build using a classical predicate variable
(regardless if it is a free or a bound predicate variable).

Definition 2.3 (translation of formulas) If A is a usual second order formula
(using only one kind of predicate variable), We will write Ai (resp. Ac) the for-
mula obtained by replacing all the predicate variables in A by intuitionistic (resp.
classical) predicate variables with the same name.

Definition 2.4 In second order mixed logic, there are many ways to define the
usual connectives (in fact each definition is duplicated). We define the one we use
here.

• ⊥c := ∀XcXc and ⊥i := ∀XiXi

1We use PhoX[17] to formalize the proof and to extract and run the program.
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Table 1: The rules of mixed logic

Ax
x : A,Γ `m x : A

Γ `m t : (A→ ⊥c)→ ⊥c A classical
absurd

Γ `m C t : A

x : A,Γ `m t : B
→i

Γ `m λx.t : A→ B

Γ `m t : A→ B Γ `m u : A
→e

Γ `m t u : B

Γ `m t : A x 6∈ Γ
∀1
i

Γ `m t : ∀xA
Γ `m t : ∀xA

∀1
e

Γ `m t : A [x/t]

Γ `m t : A Xi 6∈ Γ
∀2i
i

Γ `m t : ∀XiA

Γ `m t : ∀XiA ∀2i
e

Γ `m t : A [Xi ⇐ λx1, . . . , xn.B]

Γ `m t : A Xc 6∈ Γ
∀2c
i

Γ `m t : ∀XcA

Γ `m t : ∀XcA B classical
∀2i
e

Γ `m t : A [Xc ⇐ λx1, . . . , xn.B]

• ¬cA := A→ ⊥c and ¬iA := A→ ⊥i
• A ∨c B = ∀Xc((A→ Xc)→ (B → Xc)→ Xc)

• A ∨i B = ∀Xc((A→ Xi)→ (B → Xi)→ Xi)

• A ∧c B = ∀Xc((A→ B → Xc)→ Xc)

• A ∧i B = ∀Xi((A→ B → Xi)→ Xi)

• ∃cxA = ∀Xc(∀x(A→ Xc)→ Xc) and ∃ixA = ∀Xi(∀x(A→ Xi)→ Xi)

Remark: we will also use the same definitions for usual second order predicates
with only one kind of variables, for instance A∨B = ∀X((A→ X)→ (B → X)→
X).

The rules of mixed logic and the corresponding λ-terms are given in the table
1. We use Krivine’s λC-calculus [11] to interpret the algorithmic contents of the
proofs. One should also say that the idea of Mixed logic is not new: Nour uses it
to give a very general type to storage operators [14].

Definition 2.5 If we restrict the rules of mixed logic to formulas using only one
kind of predicate variables, we obtain the usual rules for intuitionistic or classical
logic. We will write Γ `i t : A for provability in intuitionistic logic and Γ `c t : A
for provability in classical logic.

Lemma 2.6 If Γ `i t : A then we have Γi `m t : Ai and Γc `m t : Ac. If Γ `c t : A
then we have Γc `m t : Ac.

Proof : Trivial induction on the size of the proofs. �

3 Semantics of mixed logic.

The main tool in this paper is the semantics of mixed logic. We use Krivine’s “stack
semantics” [10, 11].

Definition 3.1 (stacks) A stack is a finite sequence of λ-terms. If π = (t1, . . . , tn)
then uπ represents the term u t1 . . . tn.
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Notation 3.2 We write Λ(ω) the set of all stacks.

Definition 3.3 (weak-head reduction) The weak-head reduction is a relation
on the λ-calculus enriched with two constants C and A. It is defined as the smallest
relation such that:

• (λx.t)uπ � t[x/u]π

• C t π � t λx.(A(xπ))

• A t π � t

Remark: the weak-head reduction does not preserve types, because the second
rule simplifies the term by removing the C combinator. We can do that when we
know that the term will not receive further arguments, which is the case in the
definition of the semantics below.

Definition 3.4 (stable sets) We define P(Λ)β (resp. P(Λ)�) the set of all sets
of λ-terms closed by β-equivalence (resp. closed by weak-head expansion and β-
equivalence). This means that if Φ ∈ P(Λ)�, t ∈ Φ and if t′ � t or t′ 'β t then
t′ ∈ Φ.

Definition 3.5 (stack duality) If ⊥⊥ is a set of λ-terms and if Π is a set of
stacks, then we define Π, the dual of Π by

Π = {t ∈ Λ | ∀π ∈ Π, t π ∈ ⊥⊥}.

Definition 3.6 (implication) If Φ and Ψ are sets of λ-terms, we define

Φ→ Ψ = {t ∈ Λ | ∀u ∈ Φ, t u ∈ Ψ}.

Definition 3.7 (interpretation) An interpretation I is given by

• an interpretation t 7→ |t|I from first order terms to a set D given by an
interpretation of first order variables in D and an interpretation of function
symbols as functions from Dn to D as usual,

• a set of λ-terms ⊥⊥I ∈ P(Λ)�,

• for each intuitionistic predicate variable Xi of arity n a function |Xi|I from
Dn to P(Λ)β.

• for each classical predicate variable Xc of arity n a function |Xc|I from Dn to
P(Λ(ω)). We can remark, that since ⊥⊥I is closed by β-equivalence, for any

(t1, . . . , tn) ∈ Dn, |Xc|I(t1, . . . , tn) ∈ P(Λ)β.

Remark: To simplify writing, in the notation for Π, we omit ⊥⊥. In practice, we
always use this notation in a context where there is an interpretation I, and the ⊥⊥
being used in Π will always be ⊥⊥I .

Remark(bis): in the definition of interpretation, we ask all the sets to be closed
by β-equivalence while ⊥⊥I is also closed by weak-head expansion. This is funda-
mental to get the correctness of the semantics, because intuitively, ⊥⊥I is the set of
programs that can really be evaluated on a machine and the reduction for C only
apply to those terms.

Definition 3.8 The interpretation of a formula of mixed logic is defined by induc-
tion as follows:

• |Xi(t1, . . . , tn)|I = |Xi|I(|t1|I , . . . , |tn|I)
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• |Xc(t1, . . . , tn)|I = |Xc|I(|t1|I , . . . , |tn|I)

• |A→ B|I = |A|I → |B|I

• |∀xA|I =
⋂
u∈D |A|I[x/u]

• |∀XiA|I =
⋂

Φ:Λn 7→P(Λ)β |A|I[Xi/Φ]

• |∀XcA|I =
⋂

Φ:Λn 7→P(Λ(ω)) |A|I[Xc/Φ]

Let I be an interpretation, if Γ = x1 : A1, . . . , xn : An is a context, we write
σ ∈ |Γ|I if σ is a substitution such that for all i ∈ {1, . . . , n} we have xi[σ] ∈ |Ai|I .

Lemma 3.9 For any interpretation I, the interpretation of a formula A belongs to
P(Λ)β and if A is classical, then it is the dual of a set of stacks.

Proof : By induction on the formula A:

• The atomic case is trivial.

• For the implication case, we have: |A→ B|I = {t ∈ Λ | ∀u ∈ |A|I , t u ∈ |B|I}.
From that fact that |B|I is closed by β-equivalence, we know that the same
is true for |A→ B|I .
Moreover, if A → B is classical, that is if B is classical, by induction hy-
pothesis, we know that |B|I = Π for some Π ∈ Λ(ω). Therefore, we have
|A→ B|I = Π′ with Π′ = {(u, t1, . . . , tn) | u ∈ |A|I and (t1, . . . , tn) ∈ Π}.

• For the quantification case, the closure under β-reduction is trivial. For clas-
sical formulas, the result comes from the fact that

⋂
i∈I Πi =

⋃
i∈I Πi. �

Theorem 3.10 (Correctness) If Γ `m t : A and if I is an interpretation and σ
is a substitution such that σ ∈ |Γ|I, then tσ ∈ |A|I.

Proof : By induction on the proof of Γ `m t : A using the previous lemma for the
case of the two elimination rules of the second order quantifiers. We will treat the
only difficult case: the case of the absurdity rule:

Remark: we get easily that |⊥c|I = {t ∈ Λ | ∀π ∈ Λ(ω), t π ∈ ⊥⊥I} and this
implies that if t ∈ ⊥⊥I then A t ∈ |⊥c|I (because A t π � t and ⊥⊥I is closed by
weak-head expansion). Moreover, we also have |⊥c|I ⊂ ⊥⊥I using the empty stack.

We choose σ ∈ |Γ|I and define t′ = tσ. By induction hypothesis, we have
t′ ∈ |(A → ⊥c) → ⊥c|I . We must prove C t′ ∈ |A|I . We know that A is classical
and therefore, we know that |A|I = Π = {u ∈ Λ | ∀π ∈ Π, u π ∈ ⊥⊥I}.

Therefore, we choose π ∈ Π and we must prove C t′ π ∈ ⊥⊥I . Because ⊥⊥I is
closed by weak-head expansion, it is enough to prove t′ λx.(A (xπ)) ∈ |⊥c|I ⊂ ⊥⊥I .
To do so, using the induction hypothesis, it is sufficient to prove λx.(A (xπ)) ∈ |A→
⊥c|I . Then, we choose v ∈ |A|I and we prove (λx.(A (xπ))) v � A (v π) ∈ |⊥c|I .
By the previous remark, we just have to prove (v π) ∈ ⊥⊥I which is true because
v ∈ |A|I = Π and π ∈ Π. �

4 Results about data types.

We give now a definition of “data types”. There are many possible definitions (see
[6]) and nobody knows if they are all equivalent. The one we give is a variation on
these definitions, suited for our theorem. What is really important is that the data
types we use verify this definition.
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Definition 4.1 An interpretation I is faithful for a given data type if the inter-
pretation of all its constructors (which are function from Dn to D) are injective
functions with disjoint images.

Definition 4.2 (Data types) A data type is a second order predicate O[x] with
only one free first-order variable, such that

• O has only positive second-order quantification (it may have negative first-
order quantification).

• For any faithful interpretation I, if t ∈ |Oi[x]|I then there exists a λ-term t′

and a closed first order term u such that t 'β t′, `i t′ : O[u] and |x|I = |u|I .

Lemma 4.3 If O is a data type, then we have the following properties:

• For any faithful interpretation I, |Oi[x]|I ⊂ |Oc[x]|I. The converse is in
general not true.

• For any faithful interpretation I, if t ∈ |Oi[x]|I then t is β-equivalent to a
closed term.

Proof : The first property is immediate because O has only positive universal
quantifiers and no free second order predicate variable. The second property is a
trivial consequence of the second property in the definition. �

Proposition 4.4 The following types are data types, if D is a data type itself (we
assume that the language contains the constants 0 and nil, the unary function symbol
S and the binary function symbol “::”):

• N[x] = ∀X(X(0)→ ∀y(X(y)→ X(Sy))→ X(x)) : this is the type of Church
numerals.

• LD[l] = ∀X(X(nil)→ ∀y, n(D[n]→ X(y)→ X(n :: y))→ X(x)) : this is the
type of lists of elements of D.

Proof : See [6, 9]. We will at least give the proof for natural numbers. Let I be a
faithful interpretation for natural number. This means that the interpretation of 0
is always distinct from the interpretation of S(x) and that the interpretation of S
is injective.

Let us assume that t ∈ |Ni[x]|I . Then, we choose two λ-variables a and b not free
in t and we define Φ a function from D to P(Λ)β by Φ(|Sn(0)|I) = {t | t 'β bna}
(where bn = b(b(b . . . (b a) . . .))) and Φ(u) = ∅ otherwise.

From this and the faithfulness of I, it is clear that a ∈ |X(0)|I[X/Φ] and b ∈
|∀y(X(y) → X(Sy))|I[X/Φ]. From t ∈ |Ni[x]|I , using Φ to interpret X, we deduce
t a b ∈ Φ(|x|I). Therefore, we have |x|I = |Sn(0)|I for some n ∈ N. Let n be the
Church numeral for n. We have ` n : Ni[n]. And moreover, from t a b 'β bna we
deduce easily t 'β n. �

Proposition 4.5 We can now type some operators we will need later:

Z = λx.λf.x
S = λn.λx.λf.(f (nx f))
TN = λn.(n λk.(k Z) λg.λk.(g (λp.(k (S p)))))
N = λx.λf.x
C = λa.λl.λx.λf.(f a (l x f))
TLN = λl.(l λk.(kN) λn.λg.λk.(TN nλn′.(g λl.(k (C n′ l)))))

Then we can prove in mixed logic for O = N or O = LN that

`m TO : ∀y(Oc[y]→ ∀Xc((Oi[y]→ Xc)→ Xc))
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Proof :Z, S,N and C are the constructors for church numerals and lists. The proof
starts by instantiating the classical variable in the hypothesis Oc[y] by the predicate
λz.(Oi[z]→ Xc)→ Xc) which is indeed a classical formula. Then, the proof is easy
and leads to the given terms. �

Remark: the terms TN and TLN are storage operators[10] respectively for Church
numerals and lists. Moreover, the type given here is the most general type known
for storage operators [14] but we do not use here the fact that they are storage
operators, just the fact that they transform classical integers [11] into intuitionistic
integers which is immediate from the correctness of the semantics.

5 The main theorem.

Theorem 5.1 Let I[x], O[y], S[x, y] be three predicates such that:

• `c P : ∀x(I[x]→ ∃y(O[y] ∧ S[x, y]))

• `i D : ∀x(I[x]→ ∀y(O[y]→ S[x, y] ∨ ¬S[x, y]))

• `m T : ∀y(Oc[y]→ ∀Xc((Oi[y]→ Xc)→ Xc))

• O[y] is a data type.

Then, we define the following terms (the terms B[i] and C[i] depend on a pa-
rameter i, and these definitions are adjusted to avoid administrative redexes):

A = λo.λp.o
B[i] = λo.λs.(D i o (A o) ((λs′λq.(q s′)) s))
C[i] = P i (λe.(e (λo′.λs.(T o′ λo.(B[i] o s)))))

If `i i : I[u] then C[i] will reduce to a term o such that there exists a λ-term o′

and a first-order term v satisfying o 'β o′, `i o′ : O[v] and `i S[u, v] (because O is
a data type, it is in general easy to compute v from o).

Remark: the term A,B[i] and C[i] are not typable in mixed logic with a type
that would allow us to deduce our theorem directly from the adequation lemma.

How to read the term C[i] ? Here is an informal answer (this is not a proof of
the theorem, but it explains how the term C[i] works).

The part (P i (λe.(e (λo′.λs . . . calls the classical program P and go under the
proof of the existential and the conjunction to fetch o′ a classical proof of O[y] and s
a classical proof of S[x, y]. The term o′ being a classical proof, the part (T o′ (λo . . .
transforms it into an intuitionistic proof o of O[y]. But o may not be what we are
looking for and we check by writing (D i o (A o) ((λs′λq.(q s′)) s)) that it satisfies
the specification S[x, y]. If this is true, Aop will arrive in head position where p is
a proof of S[x, y] and the final result will be o. If it is false, ((λs′λq.(q s′)) s q � q s
will arrive in head position where q is a proof of ¬S[x, y]. Then, (q s) is a proof
of ⊥ and the interaction of q and s will make the classical program P backtrack
to propose another o′ until the program terminates on a success (the program will
always terminates).

Remark: We will not only prove the theorem, we will also prove that the term
C[i] behaves as described above. This can be expressed by the following theorem:

Theorem 5.2 Using the hypotheses and notation of theorem 5.1, If `i i : I[u] then
there exists n ∈ N and two sequences of terms o0, . . . , on and so, . . . , sn such that:

1. C[i] � B[i] on sn

2. B[i] on sn � B[i] on−1 sn−1
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3. . . .

4. B[i] o2 s2 � B[i] o1 s1

5. B[i] o1 s1 � A o0 s0

6. A o0 s0 � o0

7. o0, s0 are β equivalent to two terms o, s such that `i o : O[v] and s0 ∈
|Si[u, v]|I for any interpretation I and some first order term v.

Before proving the two theorems, we need the following lemma:

Lemma 5.3 (A property of disjunction) If `i t : P ∨Q then t 'β λxλy(x sP )
or t 'β λxλy(y sQ) such that sP [x/u, x/v] ∈ |Pi|I and sP [x/u, x/v] ∈ |Pc|I (resp.
sQ[x/u, x/v] ∈ |Qi|I and sQ[x/u, x/v] ∈ |Qc|I) for any interpretation I and all
terms u and v.

Moreover, we have `i sP [x/u, y/u] : P (resp. `i sQ[x/u, y/u] : Q) with u =
λxλy y.

Proof (of the lemma): We consider t′ the normal form of t (it exists and is ty-
pable because second order intuitionistic logic is strongly normalizable and sat-
isfies subject reduction). Then, by considering the applicable rules for a nor-
mal proof of `i t′ : P ∨ Q, we get t′ = λxλy(x sP ) or t′ = λxλy(y sQ) with
in the first case x : P → X, y : Q → X `i sP : P and in the second case
x : P → X, y : Q → X `i sQ : Q. Moreover, the variable X is not free in P
and Q.

Therefore, for any interpretation I and all terms u and v we have u ∈ |Pi →
X|I[Λ/X], v ∈ |Qi → X|I[Λ/X]. By the adequation lemma, we have sP [x/u, y/v] ∈
|Pi|I[Λ/X] = |Pi|I .

Similarly, we have sP [x/u, y/v] ∈ |Pc|I , because x : P → X, y : Q→ X `i sP : P
implies x : P → X, y : Q → X `c sP : P and Λ = ∅ is a possible classical
interpretation for the variable X .

For the typability of sP , we have x : P → X, y : Q → X `i sP : P implies x :
P → I, y : Q→ I `i sP : P with I = ∀X(X → X) which implies `i sP [x/u, y/u] : P
because we can prove `i u : P → I and `i u : Q→ I with u = λxλy y.

The proof for sQ is identical. �
Remark: from this proof, we see that it is essential that t be typable of type

I[u] to ensure in some sense that t belongs to both the classical and intuitionistic
interpretation of I[u]. For the same kind of reasons, it is important that O is a data
type.

Proof (of the two main theorems): We assume the hypotheses of the theorems:

• `c P : ∀x(I[x]→ ∃y(O[y] ∧ S[x, y]))

• `i D : ∀x(I[x]→ ∀y(O[y]→ S[x, y] ∨ ¬S[x, y]))

• `m T : ∀y(Oc[y]→ ∀Xc((Oi[y]→ Xc)→ Xc))

• `i i : I[u]

First, we choose five distinct λ-variables α, α′, δ, γ and γ′ not free in P , D, T
and i (easy, these are closed terms). Then, we introduce the following terms:

C ′[i] = P i (λe.(e (λo′.λs.(T o′ (λo.(δ o s))))))
B′[i] = λo.λs.(D i o (α o) (γ s))
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We clearly have

B′[i][α/A, γ/λs′λq.(q s′)] = B[i]
C ′[i][δ/B′[i]][α/A, γ/λs′λq.(q s′)] = C ′[i][δ/B[i]] = C[i].

Now, we define the set ⊥⊥ by induction (we choose an arbitrary interpretation
I) :

Definition 5.4 The set ⊥⊥ is the smallest set such that t ∈ ⊥⊥ if and only if we are
in one of the following cases:

• ∃o, s t � α o s and o ∈ |Oi[y]|I[y/w] for some w ∈ D

• ∃s, q t � γ s q, and q[α/α′, γ/γ′] s ∈ ⊥⊥

• ∃o, s t � δ o s,B′[i] o s ∈ ⊥⊥ and o ∈ |Oi[y]|I[y/w] for some w ∈ D
Remark: the definition of ⊥⊥ is not circular and does not depend on I because

Oi uses only intuitionistic variables and one free first order variable. It is also clear
that ⊥⊥ is closed by weak-head expansion and β-equivalence and the ⊥⊥ is not empty
(because of the first case).

Remark: we always have ⊥⊥ = {∅}, so ⊥⊥ is a possible interpretation of a classical
proposition (notice that ⊥⊥ is not the interpretation of ⊥c).

Then, we choose the interpretation I using the previous definition of ⊥⊥I = ⊥⊥
and such that I(Xc) = ⊥⊥.

Now the proof is decomposed in four parts:

1. We first prove α ∈ |∀y(Oi[y]→ Si[u, y]→ Xc)|I . This is immediate from the
definition of ⊥⊥ and because I(Xc) = ⊥⊥.

2. Now, we prove δ ∈ |∀y(Oi[y]→ Sc[u, y]→ Xc)|I . To prove this, we assume

o ∈ |Oi[y]|I[y/w] (ii) and s ∈ |Sc[u, y]|I[y/w] (iii)

and we need to prove B′[i] o s ∈ ⊥⊥. Because ⊥⊥ is closed by weak-head
expansion, it is enough to prove D i o(α o)(γ s) ∈ ⊥⊥.

Using the previous lemma 5.3 and (ii), we have two cases:

• D i o � λxλy(x s′). Therefore, D i o(α o)(γ s) � α o s ∈ ⊥⊥
• D i o � λxλy(x s′) with s′[x/t1, y/t2] ∈ |¬cSc[u, y]|I[y/w] for all terms
t1, t2 (iv). Therefore, D i o(α o)(γ s) � γ s (s′[x/α o, y/γ s]). We know
that s′ 'β s′′, x and y being the only free variables of s′′. This implies
that s′[x/α o, y/γ s][α/α′, γ/γ′] 'β s′[x/α′ o, y/γ′ s]. Then, using the
definition of ⊥⊥ we need to prove s′[x/α o, y/γ s][α/α′, γ/γ′] s ∈ ⊥⊥. This
comes from (iii) and (iv) with t1 = α′ o, t2 = γ′ s.

3. Next, we prove C ′[i] ∈ ⊥⊥. From the first hypothesis of the theorem, we have
P ∈ |∀x(Ic[x] → ∃cy(Oc[y] ∧c Sc[x, y]))|I which implies P i ∈ |∃cy(Oc[y] ∧c
Sc[u, y]))|I . This implies that P i ∈ |∀y(Oc[y] ∧c Sc[u, y] → Xc) → Xc|I .
Therefore, we just need to prove that λe.(e (λo′.λs.(T o′ (λo.(δ o s))))) ∈
|∀y(Oc[y] ∧c Sc[u, y]→ Xc)|I .To prove this, assume

e ∈ |Oc[y] ∧c Sc[u, y]|I[y/w]

and we prove e (λo′.λs.(T o′ (λo.(δ o s)))) ∈ ⊥⊥. Because of the definition
of ∧c, it is enough to prove λo′.λs.(T o′ (λo.(δ o s))) ∈ |Oc[y] → Sc[x, y] →
Xc|I[y/w]. For this, we assume

o′ ∈ |Oc[y]|I[y/w] (v) and s ∈ |Sc[u, y]|I[y/w] (vi)
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and we must prove T o′ (λo.(δ o s)) ∈ ⊥⊥. But we know that T ∈ |∀y(Oc[y]→
∀Xc((Oi[y]→ Xc)→ Xc))|I . So, using (v), it is enough to prove λo.(δ o s) ∈
|Oi[y]→ Xc|I[y/w] which is immediate from (2) and (vi).

4. Finally, we conclude by describing the behavior of C: From (3) we have
C ′[i] ∈ ⊥⊥. Therefore, from the inductive definition of ⊥⊥ and the justification
below, we deduce:

(a) C ′[i] � δ on sn with on ∈ |Oi[y]|I[y/w] for some w ∈ D
(b) B′[i] on sn � γ sn qn
(c) qn[α/α′, γ/γ′]sn � δ on−1 sn−1 with on−1 ∈ |Oi[y]|I[y/w] for some w ∈ D
(d) B′[i] on−1 sn−1 � γ sn−1 qn−1

(e) . . .

(f) B′[i] o2 s2 � γ s2 q2

(g) q2[α/α′, γ/γ′]s2 � δ o1 s1 with o1 ∈ |Oi[y]|I[y/w] for some w ∈ D
(h) B′[i] o1 s1 � α o0 s0 with o0 ∈ |Oi[y]|I[y/w] for some w ∈ D

The first step is correct because α and γ are not free in C ′[i]. Moreover,
this implies that α and γ are not free in on nor sn. Then, B′[i] on sn can
either reduce to a term starting with γ (if D i on � λxλy(y q)) or α (if
D i on � λxλy(x q)). This comes from the lemma 5.3 and the fact that
on ∈ |Oi[y]|I[y/w] for some w ∈ D. The second case would mean we reached
the last step αo0 s0 and n = 1. In the first case, we have B ′[i] on sn � γ sn qn.
Then, qn[α/α′, γ/γ′]sn does not contain the variable α and γ and therefore
reduces to a term δ on−1 sn−1 (because it belongs to ⊥⊥). We can continue
this reasoning until we reach the final step α o0 s0, keeping the property that
α and γ never occur in oj nor sj for any j.

Remark: the variables α′ and γ′ never arrive in head position.

Let us define the substitution

σ = [α′/α, γ′/γ][δ/B′[i]][α/A, γ/λs′λq(q s′)].

Because of the above considerations and because C[i] = C ′[i]σ, we have:

(a) C[i] � B[i] onσ snσ

(b) B[i] onσ snσ � B[i] on−1σ sn−1σ

(c) . . .

(d) B[i] o2σ s2σ � B[i] o1σ s1σ

(e) B[i] o1σ s1σ � A o0σ s0σ

(f) A o0σ s0σ � o0σ

(g) o0σ 'β o0 because o0 is element of the data type O and therefore it is
β-equivalent to a closed term.

This gives the intended behavior of C. We now have to prove that o0 satisfies
the specification.

We know that B′[i] o1 s1 �β α o0 s0. This means that D i o1 reduces to
λx.λy.(x s′0) (vii) and o0 = o1. This is the only possibility, because α is not free in
s1 nor o1.

But we know that `i i : I[u] and o0 ∈ |O[y]|I[y/w]. From the latest we get
(because O is a data type) `i o′0 : O[v] for some closed first order term v and with
o′0 the normal form of o0.
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This implies (by (vii) and lemma 5.3) that `i s′0[x/t, y/t] : Si[u, v] for any
interpretation I with t = λxλy y.

This means that C[i] � o0σ with the normal form o′0 of o0σ 'β o0 being the rep-
resentation in λ-calculus of a first order term v satisfying the specification S[u, v]. �

Important remark: Giving the behavior of C[i], we can add to the storage
operator T some “side effects” to print the term o it stores. This allows to know
the sequence of values tried by the classical program before it reaches the correct
answer.

6 A non trivial example: Dickson’s lemma.

As suggested in [2], Dickson’s lemma stated below is a good non trivial example to
test program extraction from classical proofs: This lemma has a non trivial, but
natural, classical proof.

Lemma 6.1 (Dickson’s lemma) For any finite sequence (f1, . . . , fn) of functions
from N to N, there is an unbounded subset X of N such that for all i ∈ {1, . . . , n},
fi restricted to X is an increasing function.

Corollary 6.2 (Weak Dickson’s lemma) For any finite sequence (f1, . . . , fn) of
functions from N to N, there are arbitrary large finite subsets X of N such that for
all i ∈ {1, . . . , n}, fi restricted to X is an increasing function.

We will use the method described in this paper to compute these arbitrary large
finite subset X of N. First we need to give a more detailed description of the
formalization, in PhoX[17], of the lemmas and some hints about the proof:

Lemma 6.3 We define the predicate Min[Q, f, x] by

Min[Q, f, x] = Q(x) ∧ ∀y (N[y] → Q(y) → f(x) ≤ f(y))

which means that x is a minimum of f on the subset Q of N. Then, we can prove
the minimum principle:

∀Q⊂N ∀f:(N7→N) (∃x (N[x] ∧ Q(x)) → ∃x (N[x] ∧ Min[Q, f, x]))

Proof : The proof uses absurdity reasoning and the well founded induction principle
on N. �

Lemma 6.4 Now, we define the following predicates :

Ub[Q] = ∀x (N[x] → ∃y (N[y] ∧ x ≤ y ∧ Q(y)))
LMin[Q, f, x] = Q(x) ∧ ∀y (N[y] → Q(y) → x < y → f(x) ≤ f(y))

Ub[Q] means that Q is unbounded and LMin[Q, f, x] means that x is a left minimum
of f on Q. Then, we prove

∀Q⊂N ∀f:(N7→N) (Ub[Q] → Ub[LMin(Q,f)])

Proof : Immediate from the previous lemma because LMin[Q, f, x] means Min[λy(x ≤
y ∧ Q(y)), f, x]. �
Proof (of Dickson’s lemma): We can now formalize Dickson’s lemma as

∀l


LN7→N[l] → ∀Q⊂N




Ub[Q] →

∃Q′⊂Q

(
Ub[Q′] ∧ ∀x,y:Q′

(x < y → ∀f∈l f(x) ≤ f(y))

)




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which is proved by induction on the length of the list l using the previous lemma:
we get an unbounded set Q such that any point of Q is a left minimum on Q for all
functions in the list which is what we wanted. �
Proof (of weak Dickson’s lemma): To prove Dickson’s lemma we need to manip-
ulate finite sets of naturals. We formalize finite sets as ordered lists. Then, the
specification uses the following definitions:

Decreasing[R, l] means that l is ordered for R (defined by induction)
Rlf [i, j] = i > j ∧ ∀f∈lf f(i) ≥ f(j) (the relation used to sort list)

S[lf, p, l] = length(l) = p ∧ Decreasing[λi,jRlf [i, j], l].

The weak Dickson’s lemma is stated as

∀lf (LN7→N[lf] → ∀p (N[p] → ∃l (LN[l] ∧ S[lf, p, l])))

and it is an immediate consequence of the previous lemma (by induction on the
integer p) and

Proof (decidability of the specification): It is stated as follows and it is easy (but
long and tedious) to prove in intuitionistic logic.

∀lf (LN7→N[lf] → ∀l (N[l] → ∀li (LN[li] → S[lf, l, li] ∨ ¬(S[lf, l, li]))))

�
It is clear that the hypotheses of our main theorems are verified. We have two

predicates as inputs but this changes nothing. However, we really use the fact that
inputs do not need to be data types because LN7→N[lf ] is not a data type. The
output is LN[l] and we have a storage operator for it (see proposition 4.5). Finally,
the specification is S and it is decidable.

There is still one problem, in the proof we use some axioms: The axioms saying
that zero is distinct from successor and the successor is injective and similar axioms
for lists and length of lists. These axioms are treated as follows, taking in account
the need to use the classical part of the semantics (we only treat the axioms for
natural numbers, the axioms for lists are treated in the same way):

Lemma 6.5 If in the interpretation I we have |0|I 6= |Sx|I[x/v] for any v ∈ D, then
we have λx.(xλy.y) ∈ |∀x(0 =c Sx→ ⊥c)|I where x =c y := ∀Xc(Xcx→ Xcy).

If |S|I is an injective function, then λx.x ∈ |∀x, y(Sx =c Sy → x =c y)|I .

Proof : For the first axiom, we assume t ∈ |0 =c Sx|I[x/v]. We take Φ such that
Φ(|0|I) = |∀Xc(Xc → Xc)|I and Φ(v) = |⊥c|I if v 6= |0|I . Thus, we have t ∈
|∀Xc(Xc → Xc)|I → |⊥c|I which implies t λy.y ∈ |⊥c|I which is what we wanted.

For the second axiom, we assume t ∈ |Sx =c Sy|I[x/v,y/w], we must prove
t ∈ |x =c y|I[x/v,y/w]. To do so we choose Π from D to P(Λ(ω)) and we must prove
that t ∈ Π(v) → Π(w). From the hypothesis that |S|I is an injective function,
we choose a function p from D to D such that p(|S|I(u)) = u for all u ∈ D.
Next, we take Π′ = Π ◦ p and from the hypothesis t ∈ |Sx =c Sy|I[x/v,y/w] we get

t ∈ Π′(|S|I(v))→ Π′(|S|I(w)) = Π(v)→ Π(w). �
Remark: when we use higher-order logic, the axioms saying that constructors

are distinct and injective are the only ones which are really needed. Nevertheless,
we can also use equational axioms to define functions or any axiom that can be
“realized” by a λ-term to preserve the adequation lemma (and the later includes
the axiom of dependent choice [12] !).

Using PhoX[17], we have extracted a λ-term from the above proof and we tested
it on a list of functions f2, . . . , fk where fi(p) = p mod i. We give below the various
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lists tried by the algorithm before it find the correct answer, for various values of k
and various length n of the wanted lists. We give also the number of tries including
the final correct answer.

k = 2, n = 4 {3 tries} {3, 2, 1, 0} {4, 3, 2, 0} {5, 4, 2, 0}

k = 2, n = 5 {4 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {6, 5, 4, 2, 0} {7, 6, 4, 2, 0}

k = 3, n = 4 {12 tries} {3, 2, 1, 0} {4, 3, 2, 0} {4, 3, 1, 0} {5, 4, 3, 0} {6, 5, 4, 0} {7, 6, 4, 0} {7,
6, 3, 0} {8, 7, 6, 0} {9, 8, 6, 0} {9, 7, 6, 0} {10, 9, 6, 0} {11, 10, 6, 0}

k = 3, n = 5 {19 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {5, 4, 3, 1, 0} {6, 5, 4, 3, 0} {7, 6, 5, 4, 0} {8,
7, 6, 4, 0} {8, 7, 6, 3, 0} {9, 8, 7, 6, 0} {10, 9, 8, 6, 0} {10, 9, 7, 6, 0} {11, 10, 9, 6, 0} {12,
11, 10, 6, 0} {13, 12, 10, 6, 0} {13, 12, 9, 6, 0} {14, 13, 12, 6, 0} {15, 14, 12, 6, 0} {15, 13,
12, 6, 0} {16, 15, 12, 6, 0} {17, 16, 12, 6, 0}

k = 4, n = 4 {26 tries} {3, 2, 1, 0} {4, 3, 2, 0} {4, 3, 1, 0} {5, 4, 3, 0} {5, 4, 2, 0} {5, 4, 1, 0} {6,
5, 4, 0} {7, 6, 4, 0} {8, 7, 6, 0} {9, 8, 6, 0} {8, 5, 4, 0} {9, 8, 4, 0} {10, 9, 4, 0} {11, 10, 9,
0} {12, 11, 10, 0} {13, 12, 10, 0} {13, 12, 9, 0} {12, 8, 4, 0} {13, 12, 4, 0} {14, 13, 12, 0}
{15, 14, 12, 0} {15, 13, 12, 0} {16, 15, 12, 0} {16, 14, 12, 0} {16, 13, 12, 0} {17, 16, 12, 0}

k = 4, n = 5 {49 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {5, 4, 3, 1, 0} {6, 5, 4, 3, 0} {6, 5, 4, 2, 0} {6,
5, 4, 1, 0} {7, 6, 5, 4, 0} {8, 7, 6, 4, 0} {9, 8, 7, 6, 0} {10, 9, 8, 6, 0} {9, 8, 5, 4, 0} {10, 9,
8, 4, 0} {11, 10, 9, 4, 0} {12, 11, 10, 9, 0} . . .

{21, 20, 16, 12, 0} {22, 21, 16, 12, 0} {23, 22, 21, 12, 0} {24, 23, 22, 12, 0} {25, 24, 22, 12,
0} {25, 24, 21, 12, 0} {24, 20, 16, 12, 0} {25, 24, 16, 12, 0} {26, 25, 24, 12, 0} {27, 26, 24,
12, 0} {27, 25, 24, 12, 0} {28, 27, 24, 12, 0} {28, 26, 24, 12, 0} {28, 25, 24, 12, 0} {29, 28,
24, 12, 0}

k = 5, n = 4 {114 tries} {3, 2, 1, 0} {4, 3, 2, 0} {4, 3, 1, 0} {5, 4, 3, 0} {5, 4, 2, 0} {5, 4, 1, 0}
{6, 5, 4, 0} {6, 5, 3, 0} {6, 5, 2, 0} {6, 5, 1, 0} {7, 6, 5, 0} {8, 7, 6, 0} {9, 8, 6, 0} {9, 8, 5,
0} {10, 9, 8, 0} {11, 10, 9, 0}. . .

{50, 49, 48, 0} {51, 50, 48, 0} {50, 47, 46, 0} {51, 50, 46, 0} {51, 50, 45, 0} {52, 51, 50, 0}
{52, 51, 45, 0} {53, 52, 50, 0} {53, 52, 45, 0} {53, 52, 40, 0}

k = 5, n = 5 {249 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {5, 4, 3, 1, 0} {6, 5, 4, 3, 0} {6, 5, 4, 2, 0}
{6, 5, 4, 1, 0} {7, 6, 5, 4, 0} {7, 6, 5, 3, 0} {7, 6, 5, 2, 0} {7, 6, 5, 1, 0} {8, 7, 6, 5, 0} {9, 8,
7, 6, 0} {10, 9, 8, 6, 0} {10, 9, 8, 5, 0} . . .

{110, 107, 106, 60, 0} {111, 110, 106, 60, 0} {111, 110, 105, 60, 0} {112, 111, 110, 60, 0}
{112, 111, 105, 60, 0} {113, 112, 110, 60, 0} {113, 112, 105, 60, 0} {113, 112, 100, 60, 0}

It is clear that the number of tries is far below the number of subsets enumerated
by a stupid algorithm. Moreover, it seems that this proof of Dickson’s lemma gives
the first answer for the lexicographic order (this is not at all true for all proofs).

7 Simplification of the algorithm

It is possible, by analyzing the proof (the formalization in PhoX is not very long:
343 lines including the proof of decidability), to extract (by hand) a simplified
algorithm omitting parts of the proof which are not useful for the computation.

The program is written in ObjectiveCaml. The C operator has been removed
using a CPS translation (callcc is not available in ObjectiveCaml) and the program
needs recursive types to be accepted (use ocaml -rectypes). We now describe
briefly the program.

The first function lem1 corresponds to the lemma 6.3:

let lem1 f e k =

let rec k’ x q = k (x : int) ((f,k’)::q) in

e k’
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The algorithmic content of the fact that N is well founded has been simplified
using a recursive definition. The C operator has been replaced by the continuation
k. To make the program more readable, we have stored in a list the proof that the
wanted integer belongs to the desired set. The list ((f,k’)::q) is the algorithmic
content of the fact that x is a minimum of f (represented by the pair (f,k’)) and
of the fact that x belongs to Q represented by q. The continuation k’ in the pair
(f,k’) allows this function to backtrack if x is not a minimum of f. In this case, k’
will receive in argument an integer y such that f(y) < f(x) and such that y belongs
to Q. Then, the function will call again the continuation k with y instead of x.

The lemma 6.4 (function lem2) is very easy and the Dickson’s lemma itself
(function dickson) does a simple induction on the list of functions:

let lem2 f u x = lem1 f (u (x : int))

let rec dickson lf =

match lf with

[] -> (fun x k -> k x [])

| f::lf -> lem2 f (dickson lf)

For the weak Dickson’s lemma, we have a first function extract receiving a
proof u that a set Q is unbounded and building a list of elements of Q of length
n. It is a list of pairs (z,lz) where z is the integer and lz is “the proof” that z

belongs to Q. This list is passed to the continuation k. The weak Dickson’s lemma
(function weak_dickson) is easy using dickson and extract:

let rec extract n u k =

match n with

0 -> k []

| x ->

let k’ l =

match l with

[] -> u 0 (fun z lz -> k [z,lz])

| (y, ly)::_ -> u (y+1) (fun z lz -> k ((z,lz)::l))

in

extract (x - 1) u k’

let weak_dickson lf n = extract n (dickson lf)

Finally, the proof of decidability (function decidable) checks that the list satis-
fies the specification calling the continuation stored in the list to make the program
backtrack if it is not the case. The program had to be adjusted to do the check in
the same order as the term extracted from the proof.

let rec decidable’ acc = function

(y, ly)::l ->

match l with

[] -> y::acc

| (x,lx)::_ ->

let rec test lx’ ly’ =

match lx’, ly’ with

[], [] -> decidable’ (y::acc) l

| ((fx, kx)::lx’), ((fy, ky)::ly’) ->

if not (fx == fy) then

failwith "bug: the function should be the same !";

if fx x < fx y then
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ky x lx’ else test lx’ ly’

in test lx ly

let decidable l =

(* side effect to print l *)

decidable’ [] (List.rev l);

To run the program, you can enter the following:

weak_dickson [(fun x -> x mod 2); (fun x -> x mod 3)] 4 decidable

Remark: the storage operator is not useful for this proof because the proof only
constructs intuitionistic lists of naturals. This is often the case but not always
(you can build examples where the storage operator will be really used to translate
classical data into intuitionistic ones).

If you replace the comment “(* side effect to print l *)” by some code
to print the integers in the list l, you will get exactly the same behavior (except
that it is much faster) as the program extracted from the proof. This gives a
strong argument to check that we did nothing wrong when simplifying the program
extracted from the proof.

This program is surprisingly short and efficient and it seems that it would have
been very hard to find such an algorithm directly. This means that even for a quite
simple specification and a short proof, our theorem and a classical proof can lead
to an interesting algorithm which is hard to construct directly.

8 Comparison with other work

comparison with the work of Berger, Buchholz and Schwicht-
enberg [2]

In [2] the authors have chosen a completely different approach by finding some means
to transform the classical proof in an intuitionistic one. They do not use a Gödel
translation. They use a logical framework with only one decidable predicate symbol
and only the connectives ⊥,→, ∀ which implies that classical and intuitionistic logic
are equivalent in this setting.

However, to code the formula you want to prove, you need to add negations (at
least two negations for the existential quantifier because the formula you want to
prove is ∀x∃yG[x, y]).

Then, the authors prove that if G is a so called “goal formula” and if you prove
` ∀x(∀y(G[x, y] → ⊥) → ⊥) then you can prove ` ∀xG[x,Mx] where M is a
functional program computing y from x.

We could consider that goal formulas play a similar role as decidable predicates,
but what is the relation between these two notions ? Goal formulas do not neces-
sarily define decidable predicates (they may contain universal quantifications), but
in this case the method in [2] will probably not lead to an algorithm ?).

A first clue is that, in our method, if we change the decidability proof, it changes
the order in which we check that the solution is correct and the program behaves
differently. In [2] it seems that lemma 3.1 plays a similar role. This lemma says that
for any goal formula G, we can prove that ` GX [x, y]→ (G[x, y]→ X)→ X where
GX [x, y] is the formula G[x, y] where all occurrences of ⊥ have been replaced by a
variable X. It is clear that there may be many proofs of ` GX [x, y] → (G[x, y] →
X) → X and this probably introduces the same kind of variation in the behavior
of the extracted algorithm.

However, we do not see a clear relation between the proof of ` GX [x, y] →
(G[x, y] → X) → X and a proof of decidability of the predicate G[x, y]. Yet, in
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[3], using the method in [2], a program is extracted from a restricted version of
Dickson’s lemma (only two functions and two natural numbers) and is very similar
to ours. . .

comparison with [12]

In this paper, Krivine shows how the λC-term extracted from a classical proof can
be directly used as a winning strategy for Coquand’s game semantics [4]. Krivine
studies formulas written ∀x1∈N∃y1∈N . . .∀xn∈N∃yn∈N Φ(x1, y1, . . . , xn, yn) = 0
where Φ is a recursive function.

Therefore, the case n = 1 (∀x∈N∃y∈NΦ(x, y) = 0) is a particular case of our
work because the equality is decidable and it is very easy to make the λC-term
extracted from a classical proof computes y from x (intuitively, because the decid-
ability proof is trivial).

What do we gain by using formulas of the shape ∀x∈N∃y∈NS(x, y) instead of
∀x∈N∃y∈NΦ(x, y) = 0 ? First it is easy to go from one to another (the second
case is a particular case of the first one and from a decidable predicate we can
easily get a recursive function). However, it would be very difficult to analyze the
behavior of the classical proof of Dickson’s lemma (or any large proof), because the
decidability proof (which has an obvious algorithmic contents) is replaced by a proof
that ∀x∈N∀y∈N (S(x, y)↔ (Φ(x, y) = 0)). Moreover, in our paper the program is
a well analyzed interaction between two components: the intuitionistic decidability
proof and the classical existence proof, which helps a lot in understanding the whole
program (this is the main point of our theorem). In Krivine’s work, there is only
one monolithic proof to analyze.

One should note that Krivine’s work is more general because proofs can use the
axiom of dependent choice and the alternation of quantifiers is not limited (but in
this case we can not anymore compute the value of y1 from x1).

It is clear that our work can be extended to use the axiom of dependent choice
because the justification uses the same semantics and there is only to prove that
the term chosen for the axiom of choice preserves the adequation lemma which is
the case.

We also think that Krivine’s work can be extended to formula of the shape
∀x1∈N∃y1∈N . . .∀xn∈N∃yn∈N S(x1, y1, . . . , xn, yn) where S is a decidable predicate
using our technics, but this needs to be checked.

9 Further works

There is at least two open questions:

1. What is the relation between goal formulas and decidable formulas and more
generally, can we prove a syntactical result similar to our theorem:

Conjecture 9.1 If S is decidable and if O is a data type (for a well chosen
definition), then from a classical proof of ∀x(I[x]→ ∃y(O[y]∧S[x, y])) we can
build an intuitionistic one (it would be better not just to find a proof, but really
give a constructive transformation of the classical proof into an intuitionistic
one).

This conjecture would be a consequence of the existence of typed storage
operators for all decidable predicates. Which is equivalent to the following
question: “Can we prove ∀x(I(x) → ∀y(O[y] → S∗[x, y] → ¬¬S[x, y]) where
S∗ is a Gödel translation of S ?”. This would allow a proof similar to the proof
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that all functions provably total in classical second order logic are provably
total in intuitionistic logic.

2. There is a huge difference between the extracted term and the simplified pro-
gram. Can we reduce these differences automatically using methods similar
to those in [1, 5, 13] developed for intuitionistic logic. However, with clas-
sical logic, there is one added problem compared to intuitionistic logic: the
equational reasoning can have an algorithmic content: the equality proofs can
trigger the backtracking of the program.

References

[1] Stefano Berardi. Pruning simply typed λ-terms. Journal of Logic and Compu-
tation, 6:663–681, 1996.

[2] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined pro-
gram extraction from classical proofs. Annals of Pure and Applied Logic, 114:3–
25, 2002.

[3] Ulrich Berger, Helmut Schwichtenberg, and Seisenberger Monika. The War-
shall Algorithm and Dickson’s Lemma: Two Examples of Realistic Program
Extraction. Journal of Automated Reasoning, 26, 2001.

[4] Thierry Coquand. A semantics of evidence for classical arithmetic. Journal of
Symbolic Logic, 60:325–337, 1995.

[5] Philippe Curmin. Marquage des preuves et extraction de programmes. PhD
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versité de Savoie, Décembre 1998. Directeur: R. David et K. Nour.

[7] M. Felleisen and D. Friedman. Control operators, the SECD machine and the
λ-calculus. Formal description of Programming Concepts III, pages 131–141,
1986.

[8] Timothy G. Griffin. A formulae as-as-types notion of control. In 17th annual
ACM symposiuom on Principle of Programming Language, pages 47–58. Oxford
University Press, 1990.

[9] Jean-Louis Krivine. Lambda-Calculus : Types and Models. Computers and
their applications. Ellis Horwood (or Masson in French), 1993.

[10] Jean-Louis Krivine. A general storage theorem for integers in call-by-name
lambda-calculus. Theoretical Computer Science, 129:79–94, 1994.

[11] Jean-Louis Krivine. Classical logic, storage operators and second-order lambda-
calculus. Annals of Pure and Applied Logic, 68:225–260, 1994.

[12] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Th. Comp. Sc.,
308:259–276, 2003.

[13] Boerio L. Optimizing Programs Extracted From Proofs. PhD thesis, Computer
Science Department of Torino University, 1995.

[14] Karim Nour. Mixed logic and storage operators. Archive for Mathematical
Logic, 39:261–280, 2000.

17



[15] Michel Parigot. λµ-calculus an algorithmic interpretation of classical natural
deduction. Proceedings of Logic and Automatic Reasoning, 1991. Lecture Notes
in Computer Science Vol. 624.

[16] Michel Parigot. Strong Normalization for Second Order Classical Natural De-
duction. In Logic in Computer Sciences, pages 39–46, 1993.

[17] Christophe Raffalli. “the phox proof assistant version 0.8”. software available
on the Internet: http://www.lama.univ-savoie.fr/~RAFFALLI/phox.html,
2002.

A The λ-terms

Here are the real λ-terms extracted from the proof except

• the first height which are axioms,

• the final term interact which corresponds to λiC[i] (in our example we have
two arguments in input: the list of functions and the number of integers we
want, this is why the term starts with λlλn . . .)

• and the terms PL and PN that are used to print the various lists tested by the
decidability proof while behaving like the identity on the intended data type).

From our web page www.lama.univ-savoie.fr/~raffalli, you can download
the three files dickson.phx, storage.phx and run_dickson.phx to run yourself
the real extracted program using PhoX. To do so you need to compile the first
two files using the command phox -c filename.phx then, you can run the last file
using the command phox -f < filename.phx.

peirce_law = \x0 a1 [a1]x0 (\x2 [a1]x2)

S_inj.N = \x0 \x1 \x2 x2

N0_not_S.N = \x0 \x1 x1

equal.reflexive = \x0 x0

cons.injective.List = \x0 \x1 x1 x0 x0

nil_not_cons.List = \x0 x0

length.nil.List = \x0 x0

length.cons.List = \x0 \x1 x1

lesseq.refl.N = \x0 \x1 \x2 x1

conjunction.intro = \x0 \x1 \x2 x2 x0 x1

exists.intro = \x0 \x1 x1 x0

exists.elim = \x0 \x1 x1 x0

conjunction.left = \x0 \x1 x1 x0

S.total.N = \x0 \x1 \x2 x2 (x0 x1 x2)

disjunction.right.intro = \x0 \x1 \x2 x2 x0

N0.total.N = \x0 \x1 x0

disjunction.elim = \x0 \x1 \x2 x2 x0 x1

disjunction.left.intro = \x0 \x1 \x2 x1 x0

case.N = \x0 x0 (disjunction.left.intro equal.reflexive)

(\x1 disjunction.elim

(\x2 disjunction.right.intro

(exists.intro

(conjunction.intro (x2 (\x3 x3) N0.total.N)

equal.reflexive)))

(\x2 exists.elim

(\x3 conjunction.left

(\x4 \x5 disjunction.right.intro

(exists.intro

(conjunction.intro (x5 (\x6 x6) (S.total.N x4))

equal.reflexive))) x3) x2) x1)

case_left.N = \x0 \x1 \x2 disjunction.elim

(\x3 x3 (\x4 x4) (x0 x3))

(\x3 exists.elim

(\x4 conjunction.left (\x5 \x6 x6 (\x7 x7) (x1 x5 x6)) x4) x3)

(case.N x2)

lesseq.lS.N = \x0 \x1 \x2 \x3 x1 x2 (\x4 x3 x4)

conjunction.right.elim = \x0 x0 (\x1 \x2 x2)

rec.N = \x0 \x1 \x2 conjunction.right.elim

(x2 (conjunction.intro N0.total.N x0)

(\x3 conjunction.left

(\x4 \x5 conjunction.intro (S.total.N x4) (x1 x4 x5)) x3))

lesseq.lN0.N = \x0 \x1 \x2 rec.N x1 (\x3 \x4 x2 x4) x0

false.elim = \x0 x0

not.lesseq.imply.less.N = \x0 rec.N

(\x1 \x2 false.elim (x2 (lesseq.lN0.N x1)))

(\x1 \x2 \x3 \x4 disjunction.elim

(\x5 lesseq.lS.N x3 (x5 (\x6 x6) (lesseq.lN0.N x1)))

(\x5 exists.elim

(\x6 conjunction.left

(\x7 \x8 lesseq.lS.N x3

(x8 (\x9 x9)

(x2 x7 (\x9 x4 (x8 (\x10 x10) (lesseq.lS.N x1 x9))))))

x6) x5) (case.N x3)) x0

absurd = \x0 peirce_law x0

lesseq.rS.N = \x0 \x1 \x2 \x3 x3 (x1 x2 x3)

lesseq.rec.N = \x0 \x1 \x2 \x3 \x4 conjunction.left

(\x5 \x6 conjunction.left (\x7 \x8 x8) x6)

(x4

(conjunction.intro (lesseq.refl.N x0)

(conjunction.intro x0 x2))

(\x5 conjunction.left

(\x6 \x7 conjunction.left

(\x8 \x9 conjunction.intro (lesseq.rS.N x0 x6)

(conjunction.intro (S.total.N x8)

(case_left.N (\x10 x3 (x10 x8) (x10 x6) (x10 x9))

(\x10 \x11 x3 (x11 x8) (x11 x6) (x11 x9)) x8))) x7)

x5))

S_inj_left.N = \x0 \x1 \x2 \x3 x2 (S_inj.N x0 x1 x3)

lesseq.S_inj.N = \x0 \x1 \x2 exists.elim

(\x3 conjunction.left

(\x4 \x5 conjunction.left

(\x6 \x7 S_inj_left.N x1 x4 (\x8 x8 (\x9 x9) x7) x6) x5) x3)

(lesseq.rec.N (S.total.N x0) (S.total.N x1)

(exists.intro

(conjunction.intro x0

(conjunction.intro equal.reflexive (lesseq.refl.N x0))))

(\x3 \x4 \x5 exists.elim

(\x6 conjunction.left

(\x7 \x8 conjunction.left

(\x9 \x10 exists.intro

(conjunction.intro (x9 x3)

(conjunction.intro (x9 equal.reflexive)

(lesseq.rS.N x0 x10)))) x8) x6) x5) x2)

lesseq.S_inj_left.N = \x0 \x1 \x2 \x3 x2 (lesseq.S_inj.N x0 x1 x3)

lesseq.or_eq_S.N = \x0 \x1 case_left.N

(\x2 \x3 disjunction.left.intro (lesseq.lN0.N x1))

(\x2 \x3 \x4 lesseq.S_inj_left.N x2 x1

(\x5 lesseq.rec.N x2 x1

(disjunction.right.intro equal.reflexive)

(\x6 \x7 \x8 disjunction.left.intro (lesseq.lS.N x2 x7)) x5)

x4) x0

lesseq.or_eq_S_left.N = \x0 \x1 \x2 \x3 \x4 disjunction.elim

(\x5 x2 x5) (\x5 x3 x5) (lesseq.or_eq_S.N x0 x1 x4)

S_not_N0.N = \x0 \x1 N0_not_S.N x0 (x1 (\x2 x2) equal.reflexive)

lesseq.rN0.N = \x0 \x1 case_left.N (\x2 x2 x2)

(\x2 \x3 false.elim

(lesseq.rec.N x0 N0.total.N (\x4 N0_not_S.N x2 (x3 x4))

(\x4 \x5 \x6 \x7 N0_not_S.N x4 x7) x1 equal.reflexive)) x0
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lesseq.rN0_left.N = \x0 \x1 \x2 x1 (lesseq.rN0.N x0 x2)

lesseq.rN1.N = \x0 \x1 lesseq.rN0_left.N (S.total.N x0)

(\x2 S_not_N0.N x0 x2) x1

well_founded.N = \x0 \x1 rec.N

(\x2 \x3 lesseq.rN0_left.N x2

(\x4 x0 x2 (\x5 \x6 lesseq.rN1.N x5 (x4 x6))) x3)

(\x2 \x3 \x4 \x5 lesseq.or_eq_S_left.N x4 x2

(\x6 case_left.N (\x7 x3 (x7 x4) (x7 x6))

(\x7 \x8 x3 (x8 x4) (x8 x6)) x4)

(\x6 x0 x4

(\x7 \x8 lesseq.S_inj_left.N x7 x2 (\x9 x3 x7 x9) (x6 x8)))

x5) x1 x1 (lesseq.refl.N x1)

lem1 = \x0 \x1 \x2 exists.elim

(\x3 conjunction.left

(\x4 \x5 absurd

(\x6 false.elim

((\x7 well_founded.N

(\x8 \x9 \x10 \x11 \x12 exists.elim

(\x13 conjunction.left

(\x14 \x15 conjunction.left

(\x16 \x17 x9

(case_left.N (\x18 x1 (x18 x14))

(\x18 \x19 x1 (x19 x14)) x14)

(x11 (\x18 x18) x17) x14 equal.reflexive x16)

x15) x13)

((\x13 \x14 absurd

(\x15 false.elim

(x6

(exists.intro

(conjunction.intro x13

(conjunction.intro x14

(\x16 \x17 absurd

(\x18 false.elim

(x15

(exists.intro

(conjunction.intro x16

(conjunction.intro x17

(not.lesseq.imply.less.N

(case_left.N

(\x19 x1 (x19 x13))

(\x19 \x20 x1 (x20 x13))

x13)

(case_left.N

(\x19 x1 (x19 x16))

(\x19 \x20 x1 (x20 x16))

x16) x18)))))))))))))

x10 x12)) x7) (x1 x4) x4 equal.reflexive x5))) x3)

x2

lesseq.ltrans.N = \x0 \x1 \x2 x2 x1 (\x3 lesseq.rS.N x0 x3)

lesseq.S_is_S.N = \x0 \x1 \x2 lesseq.rec.N (S.total.N x0) x1

(exists.intro

(conjunction.intro x0

(conjunction.intro equal.reflexive (lesseq.refl.N x0))))

(\x3 \x4 \x5 exists.elim

(\x6 conjunction.left

(\x7 \x8 conjunction.left

(\x9 \x10 exists.intro

(conjunction.intro (x9 (\x11 x11) (S.total.N x7))

(conjunction.intro equal.reflexive

(x9 (\x11 x11) (lesseq.rS.N x0 x10))))) x8) x6) x5)

x2

lesseq.S_is_S_left.N = \x0 \x1 \x2 \x3 exists.elim

(\x4 conjunction.left

(\x5 \x6 conjunction.left (\x7 \x8 x2 x5 x7 x8) x6) x4)

(lesseq.S_is_S.N x0 x1 x3)

lem2 = \x0 \x1 \x2 \x3

(\x4 exists.elim

(\x5 conjunction.left

(\x6 \x7 conjunction.left

(\x8 \x9 conjunction.left

(\x10 \x11 exists.intro

(conjunction.intro x6

(conjunction.intro x10

(conjunction.intro x11

(\x12 \x13 \x14 x9 x12

(lesseq.S_is_S_left.N x6 x12

(\x15 \x16 \x17 conjunction.intro

(x16 (\x18 x18)

(lesseq.rS.N x3

(lesseq.ltrans.N x3 x10 x17))) x13)

x14)))))) x8) x7) x5)

(lem1

(exists.elim

(\x5 conjunction.left

(\x6 \x7 \x8 conjunction.left

(\x9 \x10 exists.elim (\x11 x0 x10) (x2 x6)) x8) x5)

x4) x1 x4)) (x2 x3)

cons.total.List = \x0 \x1 \x2 \x3 x3 x0 (x1 x2 x3)

nil.total.List = \x0 \x1 x0

rec.List = \x0 \x1 \x2 conjunction.left (\x3 \x4 x4)

(x2 (conjunction.intro nil.total.List x0)

(\x3 \x4 conjunction.left

(\x5 \x6 conjunction.intro (cons.total.List x3 x5)

(x1 x3 x5 x6)) x4))

lem3 = \x0 rec.List

(\x1 \x2 exists.intro

(conjunction.intro (\x3 x3)

(conjunction.intro x2 (\x3 \x4 \x5 nil.total.List))))

(\x1 \x2 \x3 \x4 \x5 exists.elim

(\x6 conjunction.left

(\x7 \x8 conjunction.left

(\x9 \x10

(\x11 exists.intro

(conjunction.intro

(\x12 conjunction.left

(\x13 \x14 exists.elim (\x15 x7 x13)

(x11 N0.total.N)) x12)

(conjunction.intro x11

(\x12 \x13 \x14 cons.total.List

(conjunction.right.elim x12

(conjunction.left (\x15 \x16 x4 (x7 x15)) x13)

(conjunction.left (\x15 \x16 x15) x13) x14)

(x10 (conjunction.left (\x15 \x16 x15) x12)

(conjunction.left (\x15 \x16 x15) x13) x14)))))

(lem2 (\x11 x4 (x7 x11)) x1 x9)) x8) x6) (

x3 x4 x5)) x0

List_increasing = \x0 \x1 rec.List nil.total.List

(\x2 \x3 \x4 cons.total.List (x0 x2) x4) x1

succ.Good = \x0 \x1 \x2 \x3 \x4 \x5 \x6 \x7 x7 x0 x1 x2

(x3 x5 x6 x7) x4

true.intro = \x0 x0

True.List = \x0 rec.List nil.total.List

(\x1 \x2 \x3 cons.total.List true.intro x3) x0

un.Good = \x0 \x1 \x2 \x3 x2 x0

case.List = \x0 x0 (disjunction.left.intro equal.reflexive)

(\x1 \x2 disjunction.right.intro

(disjunction.elim

(\x3 exists.intro

(conjunction.intro x1

(exists.intro

(conjunction.intro (x3 (\x4 x4) nil.total.List)

equal.reflexive))))

(\x3 exists.elim

(\x4 conjunction.left

(\x5 \x6 exists.elim

(\x7 conjunction.left

(\x8 \x9 exists.intro

(conjunction.intro x1

(exists.intro

(conjunction.intro

(x9 (\x10 x10) (cons.total.List x5 x8))

equal.reflexive)))) x7) x6) x4) x3) x2))

case_left.List = \x0 \x1 \x2 disjunction.elim

(\x3 x3 (\x4 x4) (x0 x3))

(\x3 exists.elim

(\x4 conjunction.left

(\x5 \x6 exists.elim

(\x7 conjunction.left

(\x8 \x9 x9 (\x10 x10) (x1 x5 x8 x9)) x7) x6) x4) x3)

(case.List x2)

zero.Good = \x0 \x1 \x2 x0

rec.Good = \x0 \x1 \x2 \x3 conjunction.left (\x4 \x5 x5)

(x3 (conjunction.intro zero.Good x0)

(\x4 conjunction.intro (un.Good x4) (x1 x4))

(\x4 \x5 \x6 \x7 \x8 conjunction.intro

(succ.Good x4 x5 x6 (conjunction.left (\x9 \x10 x9) x7) x8)

(x2 x4 x5 x6 (conjunction.left (\x9 \x10 x9) x7)

(conjunction.left (\x9 \x10 x10) x7) x8)))

dickson = \x0 \x1 exists.elim

(\x2 exists.elim

(\x3 conjunction.left

(\x4 \x5 conjunction.left

(\x6 \x7 exists.intro

(conjunction.intro

(rec.Good nil.total.List

(\x8 cons.total.List x8 nil.total.List)

(\x8 \x9 \x10 \x11 \x12 \x13 cons.total.List x8 x12)

x7) x5)) x5) x3)

(rec.N

(exists.intro

(conjunction.intro nil.total.List

(conjunction.intro (length.nil.List equal.reflexive)

zero.Good)))

(\x3 \x4 exists.elim

(\x5 conjunction.left

(\x6 \x7 conjunction.left

(\x8 \x9 conjunction.left

(\x10 \x11 case_left.List

(\x12 exists.elim

(\x13 conjunction.left

(\x14 \x15 conjunction.left

(\x16 \x17 exists.intro

(conjunction.left

(\x18 \x19 conjunction.intro

(cons.total.List x17 nil.total.List)

(conjunction.intro

(x18

(x12 (\x20 x20)

(length.cons.List nil.total.List

equal.reflexive)))

(un.Good x14))) x7)) x15) x13)

(x10 N0.total.N))

(\x12 \x13 \x14 exists.elim

(\x15 conjunction.left

(\x16 \x17 conjunction.left

(\x18 \x19 exists.intro

(lesseq.S_is_S_left.N (x8 x12) x16

(\x20 \x21 \x22 conjunction.left

(\x23 \x24 conjunction.intro

(cons.total.List x19 x6)

(conjunction.intro

(x23

(length.cons.List

(x14 (\x25 x25)

(cons.total.List true.intro

(True.List x13)))

equal.reflexive))

(x14 (\x25 x25)

(succ.Good x16

(exists.elim (\x25 x8 x12)

(x10 x20))

(List_increasing x8 x13)

(x14 x24)

(conjunction.intro
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(x21 (\x25 x25)

(lesseq.lS.N

(exists.elim

(\x25 x8 x12)

(x10 x20)) x22))

(x11 x12 x19

(x21 (\x25 x25)

(lesseq.lS.N (

x8 x12) x22)))))))) x7)

x18)) x17) x15)

(x10 (S.total.N (x8 x12)))) x6) x9) x2) x5) x4)

x1))

(lem3 x0 (\x2 x2)

(\x2 exists.intro

(conjunction.intro x2

(conjunction.intro (lesseq.refl.N x2) x2))))

NStor = \x0 x0 (\x1 x1 N0.total.N)

(\x1 \x2 x1 (\x3 x2 (S.total.N x3)))

LNStor = \x0 x0 (\x1 x1 nil.total.List)

(\x1 \x2 \x3 NStor x1 (\x4 x2 (\x5 x3 (cons.total.List x4 x5))))

conjunction.left.elim = \x0 x0 (\x1 \x2 x1)

cons.injective_left.List = \x0 \x1 x0

(conjunction.left.elim (cons.injective.List x1))

(conjunction.right.elim (cons.injective.List x1))

cons_not_nil.List = \x0 nil_not_cons.List

(x0 (\x1 x1) equal.reflexive)

case.Good = \x0 \x1 \x2 \x3 rec.Good

(\x4 \x5 \x6 x4 equal.reflexive)

(\x4 \x5 \x6 \x7 x6 x4 equal.reflexive)

(\x4 \x5 \x6 \x7 \x8 \x9 \x10 \x11 \x12 x12 x4 x5 x6 x7 x9

equal.reflexive) x3 x0 x1 x2

length.total.List = \x0 rec.List

(length.nil.List (\x1 x1) N0.total.N)

(\x1 \x2 \x3 length.cons.List x2 (\x4 x4) (S.total.N x3)) x0

lesseq.anti_sym.N = \x0 rec.N

(\x1 \x2 \x3 lesseq.rN0_left.N x1 (\x4 x4 (\x5 x5) (x4 x4)) x3)

(\x1 \x2 \x3 rec.N

(\x4 lesseq.rN0_left.N (S.total.N x1) (\x5 S_not_N0.N x1 x5)

x4)

(\x4 \x5 \x6 \x7 x2 x4 (lesseq.S_inj_left.N x1 x4 (\x8 x8) x6)

(lesseq.S_inj_left.N x4 x1 (\x8 x8) x7) equal.reflexive) x3)

x0

x_not_Sx.N = \x0 rec.N (\x1 N0_not_S.N N0.total.N x1)

(\x1 \x2 \x3 S_inj_left.N x1 (S.total.N x1) (\x4 x2 x4) x3) x0

lesseq.Sx_x.N = \x0 \x1 x_not_Sx.N x0

(lesseq.anti_sym.N x0 (S.total.N x0)

(lesseq.rS.N x0 (lesseq.refl.N x0)) x1)

less_dec = \x0 rec.N

(\x1 case_left.N

(\x2 disjunction.right.intro (\x3 lesseq.Sx_x.N (x2 x1) x3))

(\x2 \x3 disjunction.left.intro

(lesseq.lS.N N0.total.N (lesseq.lN0.N x2))) x1)

(\x1 \x2 \x3 rec.N

(disjunction.right.intro (\x4 lesseq.rN1.N (S.total.N x1) x4))

(\x4 \x5 disjunction.elim

(\x6 disjunction.left.intro

(lesseq.S_is_S_left.N x1 x4

(\x7 \x8 \x9 lesseq.lS.N (S.total.N x1)

(x8 (\x10 x10) (lesseq.lS.N x1 x9))) x6))

(\x6 disjunction.right.intro

(\x7 lesseq.S_inj_left.N (S.total.N x1) x4

(\x8 lesseq.S_is_S_left.N x1 x4

(\x9 \x10 \x11 x6

(x10 (\x12 x12) (lesseq.lS.N x1 x11))) x8) x7))

(x2 x4)) x3) x0

lesseq_dec = \x0 rec.N

(\x1 disjunction.left.intro (lesseq.lN0.N x1))

(\x1 \x2 \x3 rec.N

(disjunction.right.intro (\x4 lesseq.rN1.N x1 x4))

(\x4 \x5 disjunction.elim

(\x6 disjunction.left.intro (lesseq.lS.N x1 x6))

(\x6 disjunction.right.intro

(\x7 lesseq.S_inj_left.N x1 x4 (\x8 x6 x8) x7)) (

x2 x4)) x3) x0

cons.left.List = \x0 \x1 case_left.List (\x2 cons_not_nil.List x2)

(\x2 \x3 \x4 cons.injective_left.List

(\x5 \x6 x0 (x5 (\x7 x7) x2) (x6 (\x7 x7) x3)) x4) x1

forall_dec = \x0 \x1 rec.List

(disjunction.left.intro nil.total.List)

(\x2 \x3 \x4 disjunction.elim

(\x5 disjunction.elim

(\x6 disjunction.left.intro (cons.total.List x6 x5))

(\x6 disjunction.right.intro

(\x7 cons.left.List (\x8 \x9 x6 x8) x7)) (x0 x2))

(\x5 disjunction.right.intro

(\x6 cons.left.List (\x7 \x8 x5 x8) x6)) x4) x1

Spec_dec = \x0 \x1 \x2 rec.List

(\x3 case_left.N

(\x4 disjunction.left.intro

(conjunction.intro (length.nil.List equal.reflexive)

zero.Good))

(\x4 \x5 disjunction.right.intro

(\x6 conjunction.left

(\x7 \x8 N0_not_S.N x4 (length.nil.List x7)) x6)) x3)

(\x3 \x4 \x5 \x6 case_left.N

(\x7 disjunction.right.intro

(\x8 conjunction.left

(\x9 \x10 S_not_N0.N (length.total.List (True.List x4))

(length.cons.List (True.List x4) x9)) x8))

(\x7 \x8 disjunction.elim

(\x9 case_left.List

(\x10 disjunction.left.intro

(conjunction.left

(\x11 \x12 conjunction.intro

(x11

(x10 (\x13 x13)

(length.cons.List nil.total.List equal.reflexive)))

(un.Good x3)) x9))

(\x10 \x11 \x12 disjunction.elim

(\x13 disjunction.elim

(\x14 disjunction.left.intro

(lesseq.S_is_S_left.N x10 x3

(\x15 \x16 \x17 conjunction.left

(\x18 \x19 conjunction.intro

(x18

(x12 (\x20 x20)

(length.cons.List

(cons.total.List true.intro

(True.List x11)) equal.reflexive)))

(succ.Good x3 x10 x11 (x12 x19)

(conjunction.intro

(x16 (\x20 x20) (lesseq.lS.N x10 x17)) x14)))

x9) x13))

(\x14 disjunction.right.intro

(\x15 conjunction.left

(\x16 \x17 case.Good (\x18 cons_not_nil.List x18)

(\x18 \x19 cons.injective_left.List

(\x20 \x21 cons_not_nil.List x21) x19)

(\x18 \x19 \x20 \x21 \x22 \x23

cons.injective_left.List

(\x24 \x25 cons.injective_left.List

(\x26 \x27 conjunction.left

(\x28 \x29 x14

(x24 (\x30 x30) (x26 (\x30 x30) x29)))

x22) x25) x23) x17) x15))

(forall_dec (\x14 lesseq_dec (x14 x10) (x14 x3)) x0))

(\x13 disjunction.right.intro

(\x14 conjunction.left

(\x15 \x16 case.Good (\x17 cons_not_nil.List x17)

(\x17 \x18 cons.injective_left.List

(\x19 \x20 cons_not_nil.List x20) x18)

(\x17 \x18 \x19 \x20 \x21 \x22

cons.injective_left.List

(\x23 \x24 cons.injective_left.List

(\x25 \x26 conjunction.left

(\x27 \x28 lesseq.S_is_S_left.N x18 x17

(\x29 \x30 \x31 x13

(x23 (\x32 x32)

(x30 (\x32 x32)

(lesseq.lS.N x10

(x25 (\x32 x32) x31))))) x27) x21)

x24) x22) x16) x14)) (less_dec x10 x3)) x4)

(\x9 disjunction.right.intro

(\x10 x9

(conjunction.left

(\x11 \x12 conjunction.intro

(S_inj_left.N (length.total.List (True.List x4)) x7

(\x13 x13) (length.cons.List (True.List x4) x11))

(case.Good (\x13 cons_not_nil.List x13)

(\x13 \x14 cons.injective_left.List

(\x15 \x16 x16 (\x17 x17) zero.Good) x14)

(\x13 \x14 \x15 \x16 \x17 \x18

cons.injective_left.List

(\x19 \x20 x20 (\x21 x21) x16) x18) x12)) x10)))

(x5 x7)) x6) x2 x1

PN = \x0 x0 "0" "S"

PL = \x0 x0 "\n" (\x1 \x2 PN x1 "," x2)

interact = \x0 \x1 dickson x0 x1

(\x2 x2

(\x3 \x4 LNStor x3

(\x5 PL x5 (Spec_dec x0 x1 x5 (\x6 x5) (\x6 x6 x4)))))
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