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AND BUCHBERGER’S ALGORITHM

SHIV DATT KUMAR

Mathematics Department
Motilal Nehru National Institute Of Technology

(Deemed University)
Allahabad (U.P.), India
Email: sdt@mnnit.ac.in

June 4, 2006

Abstract. Buchberger’s Algorithm for Gröbner basis furnishes
the engine for computations in different areas of mathematics.
Theory of Gröbner basis is the basis of many mathematical com-
puter softwares like Singular, CoCoA, and many functions of Math-
ematica, Mapple, Macauley etc. In this article we describe some of
the important and elementary crucial ideas of Gröbner basis the-
ory through examples and we also discuss some basic algorithms
viewing it from different angles and give some interesting examples
of applications of Gröbner basis.
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Introduction

The theory of Gröbner bases was invented by Bruno Buchberger
([3], [4]) in 1965 when he constructed an algorithm to answer ques-
tions on the structure of ideals of polynomial rings. Gröbner bases and
the Buchbergers algorithm are fundamental notions in Algebra. The
algorithm for computing Gröbner bases is known as Buchbergers Algo-
rithm. Gröbner bases is attractive because it easy to understand and
explain. Many problems of different areas can be reduced to the prob-
lem of computing Gröbner bases. Gröbner bases provide a uniform
approach to solve problems expressed in terms of multivariate poly-
nomials. The determination of a Gröbner basis is roughly analogous
to
(i) computing an orthonormal basis from a set of basis vectors
(ii) generalization of Gaussian elimination (for solving a system of linear
equations)
(iii) the Euclidean Algorithm (for computing GCD of univariate poly-
nomials over a field)
(iv) Simplex Algorithm for linear programming.

1AMS Classification: 13P10, 13F20
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The application of Gröbner bases include Algebraic Geometry, Com-
mutative and non-commutative algebra, coding theory, integer pro-
gramming, partial differential equations, hyper geometric functions,
system theory etc. Software Singular, CoCoA, Macauley2, Mathemat-
icas functions Solve, Algebraic Rules, Eliminate and related functions
and symbolic algorithms for manipulating polynomials in several vari-
ables are based on Gröbner basis theory. These functions take sets of
equations as arguments. Gröbner bases are pervasive in the construc-
tion of symbolic algebra algorithms, and with respect to lexicographic
order, this is very useful for solving equations and for elimination of
variables. In this article we try to give an elementary introduction of
the Gröbner bases theory via two applications: solving systems of poly-
nomial equations, eliminating parameters from polynomial equations.
Some good references of text books developing the theory of Gröbner
bases and their applications to problems in algebra and geometry in-
clude (See [1], [2], [5]).
Solutions of Systems of Polynomial Equations

Gröbner basis is very useful for solving system of polynomial equa-
tions. A Gröbner basis G for a system of finite set of polynomials F is
an equivalence system that generates the same ideal in K[x1, . . . , xn]
and possesses useful properties. Furthermore, the set of polynomials in
a Gröbner basis have the same collection of roots as the original poly-
nomials. The advantage of G is that it reveals geometric properties
that are not visible for F . For linear functions in any number of vari-
ables, a Gröbner basis is equivalent to Gaussian elimination. Solving
systems of polynomial equations provides a good introduction to the
subject. The solution technique underlying to the solve functions may
be viewed as an extension of the standard method of solving systems
of linear equations, reduction to triangular form. For example the pair
of equations

4x + 7y = 1
2x + 5y = 5 (1)
is reduced to the equivalent pair of equations
4x + 7y = 1
−3y = −9
by multiplying the second equation by 2 and subtracting the result

from the first equation. The new second equation gives y = 3 and
substituting this value for y into the first equation gives the value for
x = −5. The matrix formulation of this process is known as reduction
to triangular form. Again a pair of polynomial equations:

x− y2 + 1 = 0
x2 − y2 + 2 = 0 (2)
may be reduced to the equivalent pair
x− y2 + 2 = 0
y4 − 5y2 + 3 = 0.
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This is a triangular form in the sense that the second equation in-
volves only one variable. The four values of y obtained from the second
equations may be substituted into the first to obtain the corresponding
values of x. In this example, the reduction may be accomplished by
successively multiplying the first equation by x, y2 and −1 and sub-
tracting the results from the second equation. This process may be
viewed as a form of long division. We know the long division algorithm
for numbers and for polynomials of a single variable. The process of
division of 2x2 − 3x + 4 by x − 2 consists of multiplying the divisor
by the appropriate monomial to eliminate the leading term of the div-
idend, subtracting, and repeating the process. We observe that this is
happening above in both the examples, the important point is that we
need to identify the leading terms.
Notion of Term Orders

For a polynomial p(x) in a single variable, the leading term is the
term containing the highest power of x. When more than one variable
is involved we need a rule to decide which of two given terms is larger.
We use the words term and monomial interchangeably. In a term such
as −3x2yz2, the coefficient is −3 and the power product is x2yz2. Now,
what is the leading term of x2 − y2 − 1 ? Use the rule that says, given
two power products of the form xayb , the larger is the one with the
larger exponent a. If the exponent a is same in both the terms, use the
exponent b to break the tie. To make the rule apply in all cases, we use
zero exponents y3 = x0y3 . We define the leading term of a polynomial
to be the term that contains the largest power product under this rule.
(The zero polynomial has no term and hence no leading term.) Now,
the elimination process in examples (1) and (2) above may be described
as multiply the first equation by a monomial and subtract it from the
second equation in order to eliminate the leading term, just as in long
division. The rule for choosing leading terms is an example of a term
order. It might be described as first x, then y. Another term order
that can be used is first y, then x. If this ordering is used in the
example (2) above, a triangular system is obtained in one step. The
second and third arguments to the solve and eliminate functions give
the user some control over the ordering used. The lexicographic, or
lex, ordering on a set of variables x1, x2, . . . , xn is first x1, then x2,
then x3, and so on. Lexicographic orders are used in solving systems of
polynomial equations, but other orderings are used for other purposes.
Another common ordering is the degree-lexicographic ordering, or deglex
for short. With deglex, terms are ordered first by total degree ( e.g.
x2y3z has total degree 6) and ties are broken using lex.
Definition: A term order on K[x1, ..., xn] is a total order ≺ on a
set of all monomials xa = x1

a1 . . . xn
an , which has the following two

properties:
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(i)It is multiplicative; i.e. xa ≺ xb implies xa+c ≺ xb+c, for all a, b, c ∈
Nn.
(ii)The constant monomial is the smallest; i.e. 1 ≺ xa, for all a ∈
Nn − {0}.

An example of term order on K[x1, ..., xn] ( for n = 2), is the degree
lexicographic order 1 ≺ x1 ≺ x2 ≺ x1 ≺≺ x1x2 ≺≺ x2

2 ≺ . . . If we
fix a term order ≺, then every polynomial f has unique initial term
in≺(f) = xa. This is the largest monomial xa which occurs with non-
zero coefficient in the expansion of f with respect to the term order
≺. Given a fix ideal I in K[x1, ..., xn] and a term order ≺, Initial
ideal is the ideal generated by initial terms and is denoted as in≺(I) =
{in≺(f)|f ∈ I}. A monomial xa = x1

a1 . . . xn
an is called Standard if it

not in the initial ideal in≺(I).
Example: For n = 1, let f ∈ K[x] be a polynomial of degree r. Then
standard monomials are 1, x, x2, . . . , xr−1.
Remark: Note that standard monomials are a K-vector space for
the residue ring K[x1, . . . , xn]/I. The image of a polynomial f mod-
ulo I may be expressed uniquely as K-linear combination of standard
monomials. This expression is the normal form of f. The process of
computing the normal form is the division algorithm.

Now suppose K ⊂ C (Complex numbers) and F is a finite set of
polynomials in K[x1, . . . , xn]. Then the variety of F is the set of all
common complex zeros = V (F ) = {(z1, . . . , zn) ∈ Cn|f(z1, . . . , zn) = 0,
for all f ∈ F}. The variety does not change if we replace F by another
set of polynomials G that generates the same ideal in K[x1, . . . , xn].
The answer of the question that whether V (F ) is empty or not is given
by the following fundamental result:
Hilbert Nullstellensatz : The variety V (F ) is empty iff G = {1}.
Remark: Note that the variety V (I) is finite iff set of standard

monomials is finite. In fact number of zeros (counted with multiplicity)
is equal to the number of standard monomials.

Not every ordering of power products will do for a term ordering.
It is crucial that when multiplying polynomials, the leading term of
the product is the product of the leading terms of the factors and that
constant terms are always last.
Polynomial Rings and Ideals

Consider the polynomial ring R[x, y] in the variables x and y with
real coefficients. An ideal in a polynomial ring is a sub-collection of
polynomials that is not enlarged by multiplying any member of the
sub collection by any other polynomial in the ring or by adding two
members of the sub collection. An example is the collection

I ={f(x, y) ∈ R[x, y]|f(a, b) = 0}, whenever the point (a, b) lies on
the unit circle in the xy-plane. Note that if g(x,y) is any polynomial
and f is in I, then g(a, b)f(a, b) = g(a, b).0 = 0 and so g(x, y)f(x, y) is
already in the sub collection. The sub collection I is not enlarged by
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multiplying a member by any other polynomial in the ring. The sum
condition is checked similarly. A particular polynomial in this ideal is
f(x, y) = x2 + y2− 1. In fact, every polynomial in the ideal is divisible
by this polynomial. Let us see how long division can be used to check
this claim. Suppose that q(x, y) is in the ideal. Using lex with x first,
we can divide g by f and get g(x, y) = t(x, y)f(x, y) + xh(y) + r(y) for
some single-variable polynomials h and r and some polynomial t(x, y).
Now, if (a, b) is a point on the unit circle, then (−a, b) is also on the
unit circle. Since there is such a point with a 6= 0, it follows that
h(b) = r(b) = 0. Since there are an infinite number of such points, the
single-variable polynomials f and g have an infinite number of roots.
Thus, h = r = 0. This ideal has infinite collections of polynomials
and we need a finite representation for computational purposes. The
Hilbert Basis theorem states that every ideal in a polynomial ring has a
finite basis, that is, there exist a finite set of polynomials f1, f2, . . . , fr

such that every polynomial g in the ideal can be written as
g = a1f1 + a2f2 + . . . + arfr (3)
for some polynomials a1, a2, . . . , ar. For example, the single polyno-

mial x2 + y2 − 1 is a basis for the ideal of all polynomials that vanish
on the unit circle. Any set of polynomials f1, f2, . . . , fr is a basis for
the ideal of all polynomials g defined by equation (3), as the ai vary
arbitrarily in the polynomial ring. Now consider the system of equa-
tions (2) above. Let f1 = x − y2 + 1and f2 = x2 − y2 + 2. Let I be
the ideal with basis {f1, f2} in the ring R[x, y]. Then every polynomial
q(x, y) of I vanishes on the set points at which both f1 and f2 vanish.
The solutions of the system. The reason the triangular system has ex-
actly the same solutions as the original system is that the polynomials
x− y2 + 2 and y4 − 5y2 + 3 are also a basis of the ideal I. The second
system is triangular because
(i) the corresponding polynomials are a Gröbner basis
(ii) a lexicographic ordering has been used.

A Gröbner basis of an ideal is defined to be a basis with the property
that the leading term of every polynomial in the ideal is divisible by
the leading term of one of the basis polynomials. This condition turns
out to be equivalent to the requirement that in equation (3) above, the
ai may be chosen so that none of the leading terms of the products
aifi is larger than the leading term of g, that is, no larger leading
terms are cancelled off in the sum. Well-known Buchberger’s algorithm,
computes a Gröbner basis with respect to any term order.

Now, return to the question of solving a system of polynomial equa-
tions. Suppose that the system has solutions, but only a finite number.
We include complex number solutions and allow polynomials with com-
plex coefficients. Rewrite the equations so that the right-hand sides are
zero and let I be the ideal in the polynomial ring with basis consisting
of the left-hand sides. To simplify notation, suppose that the ring is
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Q[x, y, z]. Since there are only a finite number of solutions, I must
contain a polynomial p(x) that is free of the variable y and z. Then
the ideal I must also contain single-variable polynomials q(y) and r(z).
To see this, suppose there are, for example, two solutions (l, 2, 3) and
(4, 5, 6). Then p(x, y, z) = p(x) = (x−1)(x−4) vanishes on both these
points. Does p(x) lie in the ideal I ? The answer is no. A fundamental
result Hilbert Nullstellensatz, states that a power of p must lie in I and
p(x)m is a polynomial in one variable. Now we know that I contains
single-variable polynomials in each of the variables. It follows that a
Gröbner basis of I with respect to lex must also contain at least one
single-variable polynomial. Suppose we take lex with z first, then y,
then x, then some element of the Gröbner basis must have a leading
term dividing p(x) and so have a leading term of the form xm. But
under lex, a polynomial with leading term must be free of y and z.
Similarly, one may argue that the basis contains a polynomial p(x, y)
that is free of z, and so on, giving a triangular system. In general, it is
not obvious whether or not a given set of polynomials forms a Gröbner
basis, but there are two special cases :
(i) a single polynomial is always a Gröbner basis of the ideal it gener-
ates.
(ii) if the leading power products of each pair of polynomials are co-
prime to each other, then the set of polynomials is a Gröbner basis.

Polynomials in a single variable are a very special case. Given a set
of polynomials in Q[x], a Gröbner basis of the ideal they generate is
any greatest common divisor of the set. In particular, any ideal of Q[x]
consists of all multiples of a single polynomial. Generally a basis is not
a Gröbner basis. Consider the example : let f = x and g = 1 + y2 and
let I be generated by f and g. It is easy to see that the set {f, g} is a
Gröbner basis of I. Now let f ′ = xy. Then the set {f ′, g} is again a
basis of I ( indeed f ′ = yf and f = −yf ′ + xg ) but {f ′, g} is not a
Gröbner basis of I for x in I can not be reduced modulo {f ′, g}.

Gröbner bases for an ideal depend upon the term order used and
are not even unique for a given term order. But if the condition that
no polynomial in the basis has any term divisible by a leading term
of one of the other basis polynomials, then the basis is unique (up to
constant multiples). Such bases are called interreduced. For systems
of linear equations, Gröbner bases correspond to equivalent triangular
systems and the interreduced Gröbner bases - assuming that the leading
coefficients are normalized to 1 -correspond to what is generally called
the Gauss-Jordan form of the systems. This form is unique if the order
of the variables is fixed.
Division and Normal Forms

A number a is a root of a polynomial f(x) ∈ Q[x] if and only if f(x) is
divisible by x−a. A similar statement holds for polynomials in several
variables. The single-variable statement follows by long division. If
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we divide p(x) by x − a by long division we get a quotient q(x) and
a remainder r, a constant. By substituting a for x in the equation
f(x) = q(x)(x − a) + r. we see that r = f(a) and so f(a) = 0 if
and only if f(x) is divisible by x − a. Now suppose that f(x, y) is a
polynomial in Q[x, y] and consider the question of when f(a, b) = 0 ?.
Imitating the single-variable case, divide f(x, y) by x−a, considering y
to be a constant. The result has the form f(x, y) = q(x, y)(x−a)+r(y).
Next, divide r(y) by y − b, obtaining a quotient t(y) and a constant
remainder s. Substituting for r(y) in the expression above for f(x, y)
gives f(x, y) = q(x, y)(x− a) + t(y)(y− b) + s and substituting a for x
and b for y shows that f(a, b) = 0 if and only if f(x, y) lies in the ideal
with basis {x − a, y − b}. There are several things to note about the
division process as it applies to polynomials in several variables. If we
first divide by y − b and then by x − a the final equation would be of
the form f(x, y) = h(x)(x− a) + g(x, y)(y − b) + s

The remainder is the same f(a, b) but the ’quotients’, the coefficients
of x−a and y−b are different. The reason that the remainder is always
the same is a peculiar property of the set {x − a, y − b}. These poly-
nomials are a Gröbner basis of the ideal no matter what term order
is used (the leading terms, x and y have no common factors). For the
general situation, start with a polynomial p, an ideal I, a term order,
and a Gröbner basis f1, f2, ..., fn of I with respect to the term order.
Then there is a division algorithm that produces quotients q1, q2, ..., qn

and a remainder r such that p = q1f1 + ... + qnfn + r and the leading
term of r is smaller than any leading term in the ideal I. The remain-
der r may vary with the term order and the quotients are not unique
even for a fixed term order. In Mathematica, by division algorithm re-
mainder may be computed using the AlgebraicRules function, but not
the quotients. The AlgebraicRules function takes a set of equations,
computes a Gröbner basis of the corresponding polynomial ideal, and
returns an algebraic rules object, basis may be read directly from the
displayed rules (Change a → b to a − b). The result is the remainder
r above. (The term order is lex with the order of the variables deter-
mined by the user). As an example, begin with the polynomials y − 2
and x2 + y2 − 1. These polynomials form a Gröbner basis if we take
x before y because the leading terms are relatively prime. Note that
AlgebraicRules requires equations rather than polynomials. Consider
an example:
In[1] = AlgebraicRules [{y − 2 = 0, x2 + y2 − 1 = 0}, {x, y}]
Out[1] = {y − 2, x2 − 3}

The output shows that the interreduced Gröbner basis is {y−2, x2 +
3}. The remainder produced by the division algorithm is:
In[2] = x3 + y3/.AR{y − 2, x2 − 3}
Out[2] = 8 + 3x
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Note that this is not the result produced by the ordinary replacement
rules:
In[3] = x3 + y3/.{y − 2, x2 − 3}

out[3] = 8 + x3

Two polynomials p and q in a polynomial ring are congruent modulo
the ideal I if p− q is a polynomial in the ideal I. If we fix a Gröbner
basis G of the ideal with respect to some term order, then p and q
are congruent modulo I if and only if they have the same remainder
under the division algorithm. This remainder is called the normal
form of a polynomial with respect to the basis G. The normal form of
p with respect to an ideal I and the given term order has the smallest
leading term among all the polynomials congruent p modulo I. There
is an important geometric meaning to congruence modulo I in the
case that I is the ideal of polynomials vanishing on a set of points
V . In this case, two polynomials are congruent modulo I if and only
if they define the same function when restricted to V. For example,
the ideal of polynomials in Q[x, y] that vanish on the unit circle in
the xy-plane is the ideal with basis consisting of the single polynomial
x2 + y2 − 1. Since there is only one polynomial in this basis, it will
be a Gröbner basis of the ideal for any choice of term order. Thus,
two polynomials f(x, y) and g(x, y) will have f(a, b) = g(a, b) for every
point (a, b) on the unit circle if and only if they have the same remainder
when divided by x2 + y2 − 1. The normal form computation gives a
criterion for deciding whether a given polynomial p belongs to a given
ideal, provided we have a Gröbner basis of the ideal. The polynomial
belongs to the ideal if and only if its normal form with respect to the
Gröbner basis is zero. Note that this does not depend upon using a
special type of term order. In particular, lex need not be used. This is
important because there are term orders that are computationally more
efficient than lex. The package Groebner.m in Mathematica, contains
three functions related to normal forms. They all need a Gröbner basis
for one of their arguments. The function Normal Form returns the
remainder r above. The function Extended Normal Form returns r
and a set of quotients q1, q2, . . . , qn. The third function Membership,
returns True when f is a member of the ideal; it is faster than Normal
Form. All three accept arbitrary term order as arguments. Using the
package, we can repeat the computation that was done above using the
Algebraic Rules function and find a set of quotients as well.
In[4] = {q, r} = ExtendedNormalForm [{y− 2, x2 + y2− 1}, {x, y}, lex
][x3 + y3]
Out[4] = {{4− 2x + 2y − xy + y2 − 1, x}, 8− 3x}

The first element of the result is the list of quotients and the second
is the remainder:
In[5] = Expand[ q.{y − 2, x2 + y2 − 1}+ r]
Out[5] = x3 + y3
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General strategy of the Gröbner bases approach
Given a set F of a polynomials in K[x1, . . . , xn], by Buchberger’s

algorithm transform F into another set G of polynomials (Gröbner
basis) such that F and G generate the same ideal. By certain nice
properties of a Gröbner basis G, many problems that are difficult for
an arbitrary F become simple for G. To understand Gröbner basis, we
need to understand reduction (division) of multivariate polynomials.
For a given set F of polynomials and a polynomial g, many reductions
are possible. First we fix a term order on K[x1, . . . , xn], The basic
idea behind the algorithm is : when we divide f by f1, f2, . . . , fs, we
want to cancel terms of f using the leading terms of fi

′s ( so the new
terms which are introduced are smaller than the cancelled terms) and
continue this process until it can not be done anymore.
Multivariate Division Algorithm

Input: f, f1, f2, . . . , fs ∈ K[x1, , xn] with fi 6= 0, (1 ≤ i ≤ s)
Output: u1, u2, . . . , us, r such that f = u1f1 + u2f2 + . . . + usfs + r
and r is reduced with respect to {f1, f2, . . . , fs} and
max(lp(u1)lp(f1), . . . , lp(us)lp(fs), lp(r)) = lp(f).
Initialization: u1 := 0, u2 := 0, . . . , us := 0, h := f
While h 6= 0 Do
IF there exists i such that lp(fi) divides lp(h) THEN
Choose i least such that lp(fi) divides lp(h)

ui := ui + lt(h)
lt(fi)

h := h− ( lt(h)
lt(fi)

)fi

ELSE
r := r + lt(h)
h := h− lt(h)

Notion of S-Polynomials: Notion of S-polynomials is very impor-
tant part of Gröbner bases theory but the notion of Gröbner bases
is independent of the notion of S-polynomials. Let f, g be non-zero
polynomials in K[x1, . . . , xn]. Let L = lcm(lp(f), lp(g)). Then the
polynomial

S(f, g) = ( L
lt(f)

)f − ( L
lt(g))

)g

is called the S-polynomial of f and g.
Example: Let f = 2yx− y, g = 3y2 − x2 ∈ Q[x, y], with deglex term
order with y Â x. Then L = y2x and

S(f, g) = ( y2x
2yx)

)f − (y2x
3y2 )g = −(1/2)y2 + (1/3)x2

Question : How can we check whether a given set of polynomial G is
a Gröbner basis or not ?

Consider any two polynomials f1 and f2 ∈ G, form their S-polynomial
u2f1 − u1f2. Here u1 and u2 are monomials of smallest possible de-
gree such that u2f1 = u1f2. The S-polynomial u2f1 − u1f2 lies in the
ideal G. We apply division algorithm with respect to the tentative
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Gröbner basis G to u2f1 − u1f2. The resulting normal form is a K-
linear combination of monomials, none of which is divisible by initial
monomials from G. A necessary condition for G to be Gröbner basis
is normalformG(u2f1 − u1f2) = 0, for all f1, f2 ∈ G. Buchbergers
Criterion states that this necessary condition for G to be a Gröbner
basis is sufficient: A set G of polynomials is a Gröbner basis iff all its
S-polynomials have normal form zero. From this criteria, one derives
Buchbergers Algorithm for computing the reduced Gröbner basis G
from any given input set F . For a subset S of K[x1, . . . , xn], define the
leading term ideal of S to be the ideal

Lt(S) = {lt(s)|s ∈ S}.
Definition: Gröbner basis is a set of polynomials whose corresponding
reduction is unique.
Facts :

(i) For any g and F , there are no infinite chains of reduction steps
modulo F starting from g.
(ii) There is an algorithm RF that produces Reduced Form w.r.t. F ,
for any given polynomial g i.e. ∀, g and F , g →F RF (F, g)F .
(iii) Given g and F , there may exist h and k, such that hF ←F g →F kF

but h 6= k.
Characterization of the Gröbner basis :
Theorem: Let I be a non-zero ideal of K[x1, . . . , xn]. Then the fol-
lowing statements are equivalent for a set of non-zero polynomials

G =: {g1, g, . . . , gs} ⊂ I.
(i) G is a Gröbner basis for I.
(ii) f ∈ I iff f −→+ 0.
(iii) f ∈ I iff f = h1g1 + h2g2 + . . . + hsgs with

lp(f) = max(lp(h1)lp(g1), . . . , lp(hs)lp(gs))
(iv) Lt(G) = Lt(I).
Construction of a Gröbner basis: Given any initial finite basis
F = {f1, f2, ...., fk} of the ideal I, one can construct a Gröbner basis G
starting from it and using the Buchberger’s algorithm, which consists
of the following steps :

Start with G := F .
For any pair of polynomials f1, f2 ∈ G :
Compute the S-polynomial of f1, f2

Reduce it to a reduced form h w.r.t. G.
If h = 0, consider the next pair.
If h 6= 0, add h to G and iterate
Now we state main result of Gröbner bases theory on which correct-

ness of algorithm is based. Power of the Gröbner bases method lies
on this theorem. Proof of this theorem is non-trivial. In the following
theorem RF denotes the reduced form.
Theorem (Buchberger): G is a Gröbner bases iff for every f1, f2 ∈
G, RF [G,S − polynomial[f1, f2]] = 0.
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Mathematica’s Gröbner basis function takes a list of polynomials and
returns an interreduced Gröbner basis. The term order is always lex
and the second argument to the function specifies which variable comes
first, which is second, and so on. For example, Gröbner basis which
is a triangular system. Switching the order of the variables gives a
different triangular system: The corresponding function in the package
Gröbner.m is called Grobner and allows a third argument specifying
the term order. Suppose a set of polynomials f1, f2, . . . , fn is processed
by a Gröbner basis algorithm producing g1, g2, . . . , gn. Since the g′js
are in the ideal generated by the fj, there must be polynomials tij such
that gi =

∑
tijfj, for each index i.

The tij are useful in some computations. The package Gröbner.m
contains a function Extended Gröbner that returns the tij as well as
the gi.
Parameter Elimination and Projection For the second example,
consider the parametric equations

x = f(t) = t(t− 1)(t− 2)
y = g(t) = (t− 1)(t− 2)(t− 3).
These are parametric equations for a curve in the plane. To obtain

an equation for this curve in the form p(x, y) = 0, we need to eliminate
the parameter t. Now the plane curve (f(t), g(t)) is the projection of
the space curve (f(t), g(t), t) on the xy-plane. The ideal of Q[x, y, t]
with basis {b1 = x−f(t), b2 = y−g(t)} consists of the polynomials that
vanish on the space curve. (The verification is similar to the argument
above involving the unit circle). Take lex with x first, then y, then t.
Now, given an arbitrary polynomial p(x, y, z), divide first by x − f(t)
and divide the remainder by y − g(t). Then we get an equation

h(x, y, z) = h1(x, y, t)(x− f(t)) + h2(y, t)(y − g(t)) + h3(t).
Now, if this ideal contains a polynomial of the form p(x, y), then,

because the variable t is missing, p(x, y) must vanish on the entire
surface consisting of all the vertical lines in xyt-space that intersect the
projection of the space curve on the xy-plane. Thus, p(x, y), considered
as polynomial in Q[x, y] must vanish on the plane curve. To find a
polynomial of the form p(x, y) in the ideal with basis {b1, b2}, choose
a lex ordering with t first and compute a Gröbner basis of the ideal.
If the ideal contains polynomials of the form p(x, y), then so does the
Gröbner basis. This is because with t first, any polynomial containing
t must have t in its leading term and so this leading term can divide
leading terms only of other polynomials containing t. But the leading
term of some Gröbner basis element must divide the leading term of
every polynomial in the ideal. The computation is

In [6]= GröbnerBasis [{x− t(t− 1)(t− 2), y− (t− 1)(t− 2)(t− 3)},
{t, x, y}];

Out [6]= {−6x2 + x315xy− 3x2y− 6y2 + 3xy2y3, 6x− x2 − 6y + 9ty
+2xyy2,−21x + 9tx− x2 − 6y + 2xy − y2, 69t + 3t2 − x + y}.
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The first polynomial of this output provides an equation for the
curve. This is the Gröbner basis approach to elimination theory. The
computation of geometric projections can be somewhat subtle (see [7]).
Although the lex ordering works for elimination problems, it is not the
most efficient. All that is needed in the example above is an ordering
that puts t first. Ties could be broken by, for example, using deglex in
x and y. Such orderings are generally more efficient than lex. Mathe-
matica function Eliminate uses more efficient orderings internally([1],
[2]).

Applications
Buchberger Algorithm for Gröbner basis furnishes the engine for

computations in commutative and non-commutative algebra, algebraic
geometry for example computing cohomology, resolving singularities
etc. Gröbner basis is being used by researchers in coding theory, ro-
botics, statistics, and control theory. Softwares based on the Gröbner
bases technique are Singular, CoCoA, Macaulay2. Software Maple and
Mathematica are also very useful for computations of Gröbner basis.
An Example From Robotics

The study of the inverse kinematics of the ROMIN manipulator ([10])
shall be used to give an idea how helpful Gröbner bases are for this kind
of work. The system of equations is as follows:
−sinθ1(l1cosθ2 + l2cosθ3)− x = 0
cosθ1(l1cosθ2 + l2cosθ3)− y = 0
l1sin(θ2) + l2sinθ3 − z = 0
where l1 and l2 denote the length of the first and second arm of the

robot and θ1, θ2, θ3 represent rotation angles around the base and the
robot arms. With these equations, the angles should be computed given
a position (x, y, z) of the tip of the robot. Actually we are satisfied if
we can find the cosines or sines of these angles. There are two ways of
converting the equations into polynomial form.

A rational parameterization of trigonometric functions is used:
cosθi = 1−ti

2

1+ti2
, sinθi = 2ti

1+ti2
, for i = 1, 2, 3.

When we use these rational expressions make sure that we multiply
the equations with products of (1 + t1

2), (1 + t2
2), and (1 + t3

2) so
that polynomial equations arise. In our case, we get three polynomials
in l1, l2, x, y, z, t1, t2, t3 from which we could solve t1, t2 and t3, and by
computing the decomposed Gröbner basis with respect to lexicographic
ordering x Â y Â z Â t3 Â t2 Â t1. Drawback of this method is that
joint angles of 180 degrees are not possible in this parameterization
and joint angles close to 180 degrees give awkwardly large numerical
values.

The cosines and sines are considered as variables and trigonometric
relations are added in the format of polynomial equations. For the
ROMIN manipulator we get:
−s1(l1c2 + l2c3)− x = 0
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c1(l1c2 + l2c3)− y = 0
(l1c2 + l2c3)− z = 0
c1

2 + s1
2 − 1 = 0

c2
2 + s2

2 − 1 = 0
c3

2 + s3
2 − 1 = 0

where si = sinθi, ci = cosθi, for i = 1, 2, 3. The set of defining
polynomials can now be converted into a Gröbner basis with respect
to the pure lexicographic ordering s1 Â c1 Â s2 Â c2 Â s3 Â c3. We
consider l1, l2, x, y, z as parameters .
polys := [−s[1] ∗ (l[1] ∗ c[2] + l[2] ∗ c[3])− x,
c[1] ∗ (l[1] ∗ c[2] + l[2] ∗ c[3])− y,
l[1] ∗ s[2] + l[2] ∗ s[3]− z,
c[1]2 + s[1]2 − 1, c[2]2 + s[2]2 − 1
c[3]2 + s[3]2 − 1];
polys :[−s1(l1c2+l2c3)−x, c1(l1c2+l2c3)−y, (l1c2+l2c3)−z, c1

2+s1
2−1,

c2
2 + s2

2 − 1, c3
2 + s3

2 − 1]
gbasis( polys, [c[3], s[3], c[2], s[2], c[1], s[1]], plex);
[2l2xc3 +2zl1s2s1 +(x2 +y2 + l2

2−z2− l1
2)s1, l1s2 + l2s3−z,−2zl1s2s1 +

2l1xc2 +(−l2
2 +z2 +x2 +y2 + l1

2)s1, (4l1
2 +4l1

2y2 +4l1
2z2)s2

2−2l1
2x2−

2l1
2y2 + l1

4 + l2
4 +z4−2l2

2y2 +2z2y2 +x4 +y4−2x2l2
2 +x2z2 +2x2y2 +

2l1
2z2−2l2

2z2−2l2
2l1

2+(4l1zl2
2−4l1z

3−4zl1x
2−4zl1y

2−4zl1
3)s2, ys1+

xc1,−x2 + (x2 + y2)s1
2]

The Gröbner basis is in triangular form. So, in principle the inverse
kinematics problem is solved. However, the key problem is whether
for numerical values of the parameters the above basis stays a Gröbner
basis. If so, everything is OK. In the example we are considering, if we
choose l1 6= 0, l2 6= 0, x2 + y2 6= 0, then the above set is still a Gröbner
basis. This specialization problem can be avoided by using so-called
comprehensive Gröbner bases ([11]).
Counting of Finite Solutions

Suppose that the system of polynomial equations has a finite number
of solutions. The number of solutions (counted with multiplicities and
solutions at infinity) is equal to the cardinality of the set of monomials
that are no multiples of the leading monomials of the polynomials in
the Gröbner basis (any term ordering may be chosen). We apply this
criterion on the previous example, with considered as a parameter.
First we compute the leading monomials in the Gröbner basis with
respect to the total degree inverse lexicographic ordering for which

polys := [c ∗ x + x ∗ y2 + x ∗ z2 − 1, c ∗ y + y ∗ x2 + y ∗ z2 − 1,
c ∗ z + z ∗ x2 + z ∗ y2 − 1]:
gbasis (polys, [x, y, z], tdeg):
map(f 7→ op(2, leadmon(f, [x, y, z], plex)), ”);
[x, y2, yz7, z14]
So, the set of monomials that are no multiples of these leading mono-

mials equals {1, z, . . . , z13, y, yz, . . . , yz6} and has cardinality 21. So,
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according to the above criterion there are 21 finite solutions. If we
would use the solve command in Maple to find all solutions of this sys-
tem of polynomial equations we could easily verify that this is indeed
the correct number of solutions.
Invertibility of Polynomial Mappings

The Jacobian conjecture states that a polynomial mapping has an
inverse which is itself a polynomial mapping if and only if the deter-
minant of the Jacobian of the mapping is nonzero. In an attempt
of proving the conjecture the following criterion of invertibility has
been found ([13]): Let f1, f2, . . . , fn be the coordinate functions of a
polynomial mapping in the variables x1, x2, . . . , xn. Let y1, y2, . . . , yn

be new indeterminates and let Â be an admissible ordering such that
y1 Â y2 . . . Â yn Â x1 Â x2 . . . Â xn. Then the mapping is invertible if
and only if the Gröbnerbasis of y1−f1, y2−f2, . . . , yn−fn has the form
x1 − g1, x2 − g2, . . . , xn − gn , where g1, g2, . . . , gn are the coordinate
functions of the inverse mapping. Consider the example ( See [13]):

(x, y, z) 7−→ (x4 + 2(y + z)x3 + (y + z)2x2 + (y + 1)x + y2 + yz, x3 +
(y + z)x2 + y, x + y + z)

F := [x4 +2 ∗ (y + z) ∗x3 +(y + z)2 ∗x2 +(y +1) ∗x+ y2 + y ∗ z, x3 +
(y + z) ∗ x2 + y, x + y + z]

F := [x4 +2 ∗ (y + z) ∗x3 +(y + z)2 ∗x2 +(y +1) ∗x+ y2 + y ∗ z, x3 +
(y + z) ∗ x2 + y, x + y + z];

gbasis([X − F [1], Y − F [2], Z − F [3]], [x, y, z, X, Y, Z], plex);
[x − X + ZY, y + ZX2 − Y + Z3Y 2 − 2Z2Y X, Y − ZY − Z3Y 2 +

2Z2Y X + X − ZX2 − Z + z]
So, the mapping has inverse (X,Y, Z) 7−→ (X − ZY,−ZX2 + Y −

Z3Y 2 + 2Z2Y X,−Y + ZY + Z3Y 2 − 2Z2Y X −X + ZX2 + Z)
It turns out that verification of the result by composition of mappings

takes more time then the Gröbner basis computation of the inverse
mapping.
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