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Abstract. The study of graph vertex colorability from an algebraic perspec-

tive has introduced novel techniques and algorithms into the field. For in-
stance, k-colorability of a graph can be characterized in terms of whether its

graph polynomial is contained in a certain ideal. In this paper, we interpret

unique colorability in an analogous manner and prove an algebraic character-
ization for uniquely k-colorable graphs. Our result also gives algorithms for

testing unique colorability. As an application, we verify a counterexample to

a conjecture of Xu concerning uniquely 3-colorable graphs without triangles.

1. Introduction

Let G be a simple, undirected graph with vertices V = {1, . . . , n} and edges E.
The graph polynomial of G is given by

fG =
∏

{i,j}∈E,
i<j

(xi − xj).

Fix a positive integer k < n, and let Ck = {c1, . . . , ck} be a k-element set. Each
element of Ck is called a color. A (vertex) k-coloring of G is a map ν : V → Ck.
We say that a k-coloring ν is proper if adjacent vertices receive different colors;
otherwise ν is called improper. The graph G is said to be k-colorable if there exists
a proper k-coloring of G.

Let k be an algebraically closed field of characteristic not dividing k that contains
the kth roots of unity. Also, set R = k[x1, . . . , xn] to be the polynomial ring over
k in indeterminates x1, . . . , xn. Let H be the set of graphs with vertices {1, . . . , n}
consisting of a clique of size k + 1 and isolated vertices. We will be interested in
the following ideals of R:

Jn,k = 〈fH : H ∈ H〉,

In,k = 〈xk
i − 1 : i ∈ V 〉,

IG,k = In,k + 〈xk−1
i + xk−2

i xj + · · ·+ xix
k−2
j + xk−1

j : {i, j} ∈ E〉.

One should think of In,k and IG,k as representing the set of all k-colorings and
proper k-colorings of the graph G, respectively. These ideals are important because
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they allow for an algebraic formulation of k-colorability. The following theorem
collects the results in the series of papers [2, 3, 10, 11, 12].

Theorem 1.1. The following four statements are equivalent:
(1) The graph G is not k-colorable.
(2) The constant polynomial 1 belongs to the ideal IG,k.
(3) The graph polynomial fG belongs to the ideal In,k.
(4) The graph polynomial fG belongs to the ideal Jn,k.

The next result says that the generators for the ideal JG,k in the above theorem
are very special (see Section 2 for a review of the relevant definitions). A proof can
be found in [10].

Theorem 1.2 (J. de Loera). The set of polynomials, {fH : H ∈ H}, is a universal
Gröbner basis of Jn,k.

Remark 1.3. The set G = {xk
1 − 1, . . . , xk

n − 1} is a universal Gröbner basis of
In,k, but this follows easily since the leading terms of G are relatively prime (find
reference), regardless of term order.

We give a self-contained proof of Theorem 1.1 in Section 2. We say that a graph
is uniquely k-colorable if there is a unique proper k-coloring up to permutation of
the colors in Ck. In this case, partitions of the vertices into subsets having the same
color are the same for each of the k! proper colorings of G. A natural refinement of
Theorem 1.1 would be an algebraic characterization of when a k-colorable graph is
uniquely k-colorable. Our main result provides such a characterization.

Theorem 1.4. Let G be k-colorable with a coloring that uses all k colors. Then
there exist polynomials g1, . . . , gn, and g such that the following three statements
are equivalent:

(1) The graph G is uniquely k-colorable.
(2) The polynomials g1, . . . , gn belong to the ideal IG,k.
(3) The graph polynomial fG belongs to the ideal In,k + 〈g〉.

Remark 1.5. The polynomials g1, . . . , gn, and g can be written down explicitly once
we are given a proper k-coloring of G; we will define them in Section 4. See also
Example 1.7 below.

For a uniquely colorable graph, the polynomials g1, . . . , gn in the theorem are
especially nice, yielding a partial analog to Theorem 1.2.

Theorem 1.6. Let G be uniquely k-colorable. Then the polynomials g1, . . . , gn

form the reduced Gröbner basis for IG,k with respect to the lexicographic order with
xn ≺ · · · ≺ x1.

Example 1.7. We present an example of a uniquely 3-colorable graph on n = 12
vertices and give the polynomials g1, . . . , gn from Theorem 1.4.

Let G be the graph given in Figure 1. The following set of 12 polynomials
is a reduced Gröbner basis for the ideal IG,k. The leading terms of each gi are
underlined.

{x3
12 − 1, x7 − x12, x4 − x12, x3 − x12,

x2
11 + x11x12 + x2

12, x9 − x11, x6 − x11, x2 − x11,

x10 + x11 + x12, x8 + x11 + x12, x5 + x11 + x12, x1 + x11 + x12}.
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Figure 1. A uniquely 3-colorable graph without triangles

Notice that the leading terms of the polynomials in each line above correspond to
the different color classes of the coloring of G. �

The organization of this paper is as follows. In Section 2, we discuss some of the
algebraic tools that will go into the proofs of our main results. Section 3 is devoted
to a proof of Theorem 1.1, and in Section 4, we present arguments for Theorems 1.4
and 1.6. Theorems 1.1 and 1.4 give algorithms for testing k-colorability and unique
k-colorability of graphs, and we discuss the implementation of them in Section 5,
along with a verification of a counterexample [1] to a conjecture [4, 7, 13] by Xu.

2. Algebraic Preliminaries

We briefly review the basic concepts of commutative algebra that will be useful
for us here. Let I be an ideal of R = k[x1, . . . , xn]. The variety V (I) of I is the set
of points in kn that are zeroes of all the polynomials in I. Conversely, the vanishing
ideal I(V ) of a set V ⊆ kn is the ideal of those polynomials vanishing on all of V .
These two definitions are related by way of V (I(V )) = V and I(V (I)) =

√
I, in

which √
I = {f : fn ∈ I for some n}

is the radical of I. The ideal I is called zero-dimensional if V (I) is finite. A term
order ≺ for the monomials of R is a well-ordering which is multiplicative and for
which the constant monomial is smallest. The initial term (or leading monomial)
in≺(f) of a polynomial f ∈ R is the largest monomial in f with respect to ≺. The
standard monomials B≺(I) of I are those monomials which are not the initial terms
of any polynomial in I.

Many arguments in commutative algebra and algebraic geometry are simplified
when restricted to radical, zero-dimensional ideals (resp. multiplicity-free, finite
varieties), and those found in this paper are not exceptions. The following fact is
useful in this regard.

Lemma 2.1. Let I be a zero-dimensional ideal and fix a term order ≺. Then
dimk R/I = |B≺(I)| ≥ |V (I)|. Furthermore, the following are equivalent:

(1) I is a radical ideal.
(2) I contains a univariate square-free polynomial in each indeterminate.
(3) |B≺(I)| = |V (I)|.
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Proof. See [5]. �

A finite subset G of an ideal I is a Gröbner basis (with respect to ≺) if the initial
ideal,

in≺(I) = 〈in≺(f) : f ∈ I〉,
is generated by the initial terms of elements of G. Furthermore, a universal Gröbner
basis is a set polynomials which is a Gröbner basis with respect to all term orders.
Many of the properties of I and V (I) can be calculated by finding a Gröbner basis
for I, and such generating sets are fundamental for computation (including the
algorithms presented in the last section).

Finally, a useful operation on two ideals I and J is the construction of the colon
ideal I : J = {h ∈ R : hJ ⊆ I}. If V and W are two varieties, then the colon ideal

(2.1) I(V ) : I(W ) = I(V \W )

corresponds to a set difference.

3. Vertex Colorability

In what follows, the set of colors Ck will be the set of kth roots of unity, and we
will freely speak of points in kn with all coordinates in Ck as colorings of G. In this
case, a point (v1, . . . , vn) ∈ kn corresponds to a coloring of vertex i with color vi for
i = 1, . . . , n. The varieties corresponding to the ideals In,k, IG,k, and In,k + 〈fG〉
partition the k-colorings of G as follows.

Lemma 3.1. The varieties V (In,k), V (IG,k), and V (In,k + 〈fG〉) are in bijection
with all, the proper, and the improper k-colorings of G, respectively.

Proof. The points in V (In,k) are all n-tuples of kth roots of unity and therefore
naturally correspond to all k-colorings of G. Let v = (v1, . . . , vn) ∈ V (IG,k); we
must show that it corresponds to a proper coloring of G. Let {i, j} ∈ E and set

qij =
xk

i − xk
j

xi − xj
∈ IG,k.

If vi = vj , then qij(v) = kvk−1
i 6= 0. Thus, the coloring v is proper. Conversely,

suppose that v = (v1, . . . , vn) is a proper coloring of G. Then, since

qij(v)(vi − vj) = (vk
i − vk

j ) = 1− 1 = 0,

it follows that for {i, j} ∈ E, we have qij(v) = 0. This shows that v ∈ V (IG,k).
Finally, if v is an improper coloring, then it is easy to see that fG(v) = 0, and that
moreover, any v ∈ V (In,k) for which fG(v) = 0 has two coordinates, corresponding
to an edge in G, that are equal. �

The next result follows directly from Lemma 2.1. It will prove useful in simpli-
fying many of the proofs in this paper.

Lemma 3.2. The ideals In,k, IG,k, and In,k + 〈fG〉 are radical.

We next describe a relationship between In,k, IG,k, and In,k + 〈fG〉.

Lemma 3.3. In,k : IG,k = In,k + 〈fG〉.

Proof. Let V and W be the set of all colorings and proper colorings, respectively,
of the graph G. Now apply Lemma 3.1 and Lemma 3.2 to equation (2.1). �
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The dimensions of the residue rings corresponding to these ideals are readily
computed from the above discussion. Recall that the chromatic polynomial χG is
the univariate polynomial for which χG(k) is the number of proper k-colorings of
G.

Lemma 3.4. Let χG be the chromatic polynomial of G. Then

χG(k) = dimk R/IG,k,

kn − χG(k) = dimk R/(In,k + 〈fG〉).

Proof. Both equalities follow from Lemmas 2.1 and 3.1. �

Let Kn,k be the ideal of all polynomials f ∈ R such that f(v1, . . . , vn) = 0,
(v1, . . . , vn) ∈ kn, if at most k of the vi are distinct. Clearly, Jn,k ⊆ Kn,k. We will
need the following result of Kleitman and Lovasz [11].

Theorem 3.5. The ideals Kn,k and Jn,k are the same.

Proof. We sketch the proof (see [11] for more details). Let f ∈ Kn,k and for each
subset S ⊆ {1, . . . , n− 1}, let fS be the polynomial gotten from substituting xn for
each xi with i ∈ S. Since fS ∈ Kn,k, induction on the number of indeterminates n
implies that fS ∈ Jn,k for nonempty S. If p = xa1

1 · · ·xan
n is a monomial, then

q(p) :=
∑
S

(−1)|S|pS , p ∈ R,

equals (xa1
1 − xa1

n ) · · · (xan−1
n−1 − x

an−1
n )xan

n . By linearity, therefore, it follows that
q = q(f) = (x1 − xn) · · · (xn−1 − xn)h for some h ∈ R. Since q ∈ Kn,k, the polyno-
mial h is zero whenever at most k− 1 of the x1, . . . , xn−1 are distinct. Thus, upon
expanding h in terms of powers of xn, the coefficients will belong to Kn−1,k−1, and
by induction, we may assume they all belong to Jn−1,k−1. Hence, q ∈ Jn,k. Finally,
we have f = q −

∑
S 6=∅(−1)|S|fS ∈ Jn,k, completing the proof. �

We now present a proof of Theorem 1.1.

Proof of Theorem 1.1. (1) ⇒ (2): Suppose that G is not k-colorable. Then it
follows from Lemma 3.4 that dimk R/IG,k = 0 and so 1 ∈ IG. (2) ⇒ (3): Suppose
that IG,k = 〈1〉 so that In,k : IG,k = In,k. Then Lemma 3.3 implies that In,k +
〈fG〉 = In,k and hence fG ∈ In,k. (3) ⇒ (1): Assume that fG belongs to the ideal
In,k. Then In,k +〈fG〉 = In,k, and it follows from Lemma 3.4 that kn−χG(k) = kn.
Therefore, χG(k) = 0 as desired. (4) ⇒ (1): Suppose that fG ∈ Jn,k. Then from
Theorem 3.5, there can be no proper coloring v (there are at most k distinct
coordinates). (1) ⇒ (4): If G is not k-colorable, then for every substitution v ∈ kn

with at most k distinct coordinates, we must have fG(v) = 0. It follows that
fG ∈ Jn,k from Theorem 3.5. �

4. Unique Vertex Colorability

Let G be a colorable graph with proper coloring ν, and let k be the number of
distinct colors in ν(V ). Then G is a k-colorable graph, which has a coloring using
all k colors. Before giving the definition of the polynomials g1, . . . , gn in Theorem
1.4, we develop some notation. Although this set of polynomials will depend on
ν, for notational simplicity, we will assume that this dependency is understood.
The color class cl(i) of a vertex i ∈ V is the set of vertices with the same color as
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i. The representative of a color class is the largest vertex contained in it. We set
m1 < m2 < · · · < mk = n to be the representatives of the k color classes.

For a subset U ⊆ V of the vertices, let hd
U be the sum of all monomials of degree

d in the indeterminates {xi : i ∈ U}. We also set h0
U = 1. For each vertex i ∈ V ,

we define a polynomial gi as follows:

(4.1) gi =


xk

i − 1 if i = mk,

hj
{mj ,...,mk} if i = mj for some j,

h1
{i,m2,...,mk} if i ∈ cl(m1),

xi − xmax cl(i) otherwise.

One should think (loosely) of the first case of (4.1) as corresponding to a choice
of a color for the last vertex; the second and third, to subsets of vertices in different
color classes; and the fourth, to the fact that elements in the same color class should
have the same color. These polynomials encode the coloring ν algebraically in a
computationally useful way (see Lemmas 4.2 and 4.4 below).

Example 4.1. In Example 1.7, the displayed coloring gives us (m1,m2,m3) =
(10, 11, 12) and the polynomials from the second and third cases of (4.1) are

g1 = h1
{1,11,12} = x1 + x11 + x12,

g5 = h1
{5,11,12} = x5 + x11 + x12,

g8 = h1
{8,11,12} = x8 + x11 + x12,

g10 = h1
{10,11,12} = x10 + x11 + x12,

g11 = h2
{11,12} = x2

11 + x11x12 + x2
12.

One can also easily check that the other polynomials from Example 1.7 arise from
the other cases of (4.1). �

Recall that a reduced Gröbner basis G is a Gröbner basis such that (1) the
coefficient of in≺(g) for each g ∈ G is 1 and (2) the leading monomial of any g ∈ G
does not divide any monomial occurring in another polynomial in G. Given a term
order, reduced Gröbner bases exist and are unique.

Lemma 4.2. Let ≺ be the lexicographic ordering induced by xn ≺ xn−1 ≺ · · · ≺ x1.
Then the set of polynomials {g1, . . . , gn} is the reduced Gröbner basis with respect
to ≺ for the ideal it generates.

Proof. It is clear by construction that the initial terms of {g1, . . . , gn} are relatively
prime. It follows that these polynomials form a Gröbner basis for the ideal they
generate (again by some reference). That they are reduced also follows by inspection
of (4.1). �

The following innocuous-looking fact is a very important ingredient in the proof
of Theorem 1.4.

Lemma 4.3. Let U be a subset of the vertices of G, and suppose that {i, j} ⊆ U .
Then, for all nonnegative integers d,

(4.2) (xi − xj)hd
U = hd+1

U\{j} − hd+1
U\{i}.
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Proof. We induct on the number of elements in U . When U = {i, j}, the relation
is clear from

hd
{i,j} =

xd+1
i − xd+1

j

xi − xj
.

Suppose now that U has at least three elements and let l ∈ U be different from
i and j. Then,

(xi − xj)hd
U = (xi − xj)

d∑
r=0

xr
l h

d−r
U\{l}

=
d∑

r=0

xr
l (xi − xj)hd−r

U\{l}

=
d∑

r=0

xr
l

(
hd+1−r

U\{j,l} − hd+1−r
U\{i,l}

)
=

d∑
r=0

xr
l h

d+1−r
U\{j,l} −

d∑
r=0

xr
l h

d+1−r
U\{i,l}

=
(
hd+1

U\{j} − xd+1
l

)
−

(
hd+1

U\{i} − xd+1
l

)
= hd+1

U\{j} − hd+1
U\{i}.

This completes the induction and the proof. �

That the polynomials g1, . . . , gn represent an algebraic encoding of the coloring
ν is explained by the following lemma.

Lemma 4.4. Let g1, . . . , gn be given as in (4.1). Then the following three properties
hold for the ideal A = 〈g1, . . . , gn〉:

(1) IG,k ⊆ A,
(2) A is radical,
(3) |V (A)| = k!.

Proof. First assume that IG,k ⊆ A. Then A is radical from Lemma 2.1. Moreover,
since the polynomials {g1, . . . , gn} form a Gröbner basis for the ideal A, the number
of standard monomials of A is equal to |V (A)|. By inspection of (4.1) using the
ordering in Lemma 4.2, we have |B≺(A)| = k!, and therefore (3) is proved.

We now prove statement (1). First, we give explicit representations of polynomi-
als xk

i −1 ∈ In,k in terms of the generators of A. We first claim that for i = 1, . . . , k,
we have

(4.3) xk
mi

− 1 = xk
n − 1 +

k−i∑
l=i

 k∏
j=l+1

(
xmi

− xmj

)hl
{ml,...,mk}.

To verify (4.3), we will use Lemma 4.3 and induction to prove that for each s ≤ k−i,
the sum on the right hand side above is equal to

(4.4)
k∏

j=s+i

(
xmi

− xmj

)
hs+i−1
{mi,ms+i,...,mk} +

k−i∑
l=s+i

 k∏
j=l+1

(
xmi

− xmj

)hl
{ml,...,mk}.
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For s = 1, this is clear. In general, using Lemma 4.3, the first term on the left hand
side of (4.4) is

k∏
j=s+i+1

(
xmi

− xmj

) (
hs+i
{mi,ms+1+i,...,mk} − hs+i

{ms+i,...,mk}

)
,

which is easily seen to cancel the first summand in the sum found in (4.4). Now,
equation (4.4) with s = k − i gives us that the right hand side of (4.3) is

xk
n − 1 + (xmi

− xmk
)hk−1

{mi,mk} = xk
n − 1 + xk

mi
− xk

n = xk
mi

− 1,

proving the claim.
It remains to show that xk

i − 1 ∈ A for all i ∈ V . We first claim that for those
i ∈ V not in {m1, . . . ,mk}, we have xi−xmi ∈ A. For those i not in the color class
of vertex m1, this is clear from (4.1). Otherwise,

gi − gm1 = h1
{i,m2,...,mk} − h1

{m1,...,mk} = xi − xm1 ∈ A,

as desired. For i /∈ {m1, . . . ,mk}, let fi = xi − xmi
and notice that

xk
mi

− 1 = (xi − fi)k − 1 = xk
i − 1 + fih ∈ A

for some polynomial h. It follows that xk
i − 1 ∈ A.

Finally, we must verify that the other generators of IG,k are in A. To accomplish
this, we will prove the following stronger statement:

(4.5) U ⊆ {m1, . . . ,mk} with |U | ≥ 2 =⇒ h
k+1−|U |
U ∈ A.

We downward induct on s = |U |. In the case s = k, we have U = {m1, . . . ,mk}.
But then as is easily checked gm1 = h

k+1−|U |
U ∈ A. For the general case, we will

show that if one polynomial h
k+1−|U |
U is in A, with |U | = s < k, then h

k+1−|U |
U ∈ A

for any subset U ⊆ {m1, . . . ,mk} of cardinality s. In this regard, suppose that
h

k+1−|U |
U ∈ A for a subset U with |U | = s < k. Let u ∈ U and v ∈ {m1, . . . ,mk}\U ,

and examine the following equality (using Lemma 4.3):

(xu − xv)hk−s
U∪{v} = hk−s+1

U − hk−s+1
U∪{v}\{u}.

By induction, the left hand side of this equation is in A and therefore the assumption
on U implies that

hk−s+1
U∪{v}\{u} ∈ A.

This shows that we may replace any element of U with any element of {m1, . . . ,mk}.
Since there is a subset U of size s with h

k+1−|U |
U ∈ A (see (4.1)), it follows from

this that we have h
k+1−|U |
U ∈ A for any subset U of size s. This completes the

induction.
A similar trick as before using polynomials xi − xmi

∈ A proves that we may
replace in (4.5) the requirement that U ⊆ {m1, . . . ,mk} with one that says that
U consists of vertices in different color classes. If {i, j} ∈ E, then i and j are
in different color classes, and therefore the generator hk−1

{i,j} ∈ IG,k is in A. This
finishes the proof of the lemma. �

Remark 4.5. Property (1) in the lemma says that V (A) contains proper colorings
of G while properties (2) and (3) say that, up to permutation of the colors, the
zeroes of the polynomials g1, . . . , gn correspond to the single proper coloring given
by ν.
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Lemma 4.6. Suppose that G is uniquely k-colorable. Then the following two state-
ments hold:

(1) If {i, j} ⊆ V have the same color, then xi − xj ∈ IG,k.
(2) If U ⊆ V is a set with |U | ≥ 2 consisting of vertices with all different colors,

then h
k+1−|U |
U ∈ IG,k.

Proof. Let v = (v1, . . . , vn) ∈ V (IG,k), which by Lemma 3.1 corresponds to a proper
coloring. Since G is uniquely k-colorable, it follows that vi−vj = 0 for each i and j
in the same color class. Thus xi − xj ∈ I(V (IG,k)) = IG,k since IG,k is radical. To
prove the second statement, we induct on the size of U . Suppose that U = {i, j}
consists of two vertices with different colors, and let v = (v1, . . . , vn) ∈ V (IG,k).
Then by Lemma 4.3,

(vi − vj)h
k+1−|U |
U (v) = hk

U\{j}(v)− hk
U\{i}(v) = vk

i − vk
j = 0.

Since vi 6= vj , it follows that h
k+1−|U |
U ∈ IG,k in this case (using as before that IG,k

is radical). For |U | > 2, we have,

(vi − vj)h
k+1−|U |
U (v) = h

k+1−|U\{j}|
U\{j} (v)− h

k+1−|U\{i}|
U\{i} (v) = 0− 0 = 0,

by Lemma 4.3 and the induction hypothesis. Again, it follows that h
k+1−|U |
U (v) = 0,

completing the induction and the proof. �

Before proving our main theorem, we define the g in Theorem 1.4 using a “dual”
set of auxiliary polynomials g1, . . . , gn. Given a subset U ⊆ V of the vertices of G,
we let KU denote the graph on vertices V with a clique on vertices U and isolated
other vertices. For i = 1, . . . , n, set

(4.6) gi =


1 if i = mk,

fK{mj,...,mk}
if i = mj for some j,

fK{i,m2,...,mk}
if i ∈ cl(m1),

hk−1
{i,max cl(i)} otherwise.

We can now define

(4.7) g = g1 · · · gn.

The following is a duality relationship between g1, . . . , gn and g.

Lemma 4.7. In,k : 〈g1, . . . , gn〉 = In,k + 〈g〉.

Proof. Since all the ideals in consideration are radical by Lemmas 2.1 and 4.4,
equation (2.1) says that we need to show:

V (In,k + 〈g〉) = V (In,k)\V (〈g1, . . . , gn〉).

First, suppose that v = (v1, . . . , vn) is contained in the left-hand side of the above
equation; we will verify it is in the right-hand side. In this case, gi(v) = 0 for some
i. Suppose that i arises from the fourth case of (4.6), and let j be such that mj =
max cl(i). If vi = vmj , then hk−1

{i,mj}(v) = kvk−1
i 6= 0, a contradiction. It follows

that vi 6= vmj
, and therefore v /∈ V (〈g1, . . . , gn〉). If i comes from cases two or three

in (4.6), then gi(v) = 0 says that two coordinates of v that represent vertices in
different color classes are equal. But then this point cannot be in V (〈g1, . . . , gn〉)
by Lemma 4.4 (specifically, Remark 4.5).
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Conversely, suppose that v is a coloring not contained in V (〈g1, . . . , gn〉). Then
gi(v) 6= 0 for some i. This i cannot come from the first case of (4.1). If it
arises from the fourth case, then vi − vmj 6= 0 for some j. Thus, the equality
(vi − vmj

)hk−1
{i,mj}(v) = vk

i − vk
mj

= 0 implies that gi(v) = 0, as desired. Finally,
suppose that gi(v) 6= 0 for i from cases two or three, and let S = {i,m2, . . . ,mk}
or S = {mj , . . . ,mk}, correspondingly. Consider all subsets U ⊆ S with at least 2
elements such that h

k+1−|U |
U (v) 6= 0 and choose one of minimum cardinality; this

set exists by assumption. If U = {i, j}, then (vi − vj)h
k+1−|U |
U (v) = vk

i − vk
j = 0 so

that vi = vj and gi(v) = 0. Otherwise, if {i, j} ⊆ U , then

(vi − vj)h
k+1−|U |
U (v) = h

k+1−|U\{i}|
U\{j} (v)− h

k+1−|U\{i}|
U\{i} (v) = 0,

by Lemma 4.3 and the minimality of U . Again, it follows that vi = vj and gi(v) = 0.
Therefore, in all cases, v ∈ V (In,k + 〈g〉). This finishes the proof. �

We are now in a position to prove our main theorem.

Proof of Theorem 1.4. (1) ⇒ (2): Suppose the graph G is uniquely k-colorable
and construct the set of gi from (4.1); we will prove that gi ∈ IG,k for each i ∈ V .
By Lemma 4.6, polynomials of the form xi − xmi

are in IG,k, and by definition
of IG,k, we have xk

n − 1 ∈ IG,k. Finally, since the sets U = {mj , . . . ,mk} and
V = {i,m2, . . . ,mk} consist of vertices with different colors, those gi of the form
hj

U and h1
V are in IG,k again by Lemma 4.3.

(2) ⇒ (3): Suppose that A = 〈g1, . . . , gn〉 ⊆ IG,k. From Lemmas 3.3 and 4.7, we
have

In,k + 〈fG〉 = In,k : IG,k

⊆ In,k : A

= In,k + 〈g〉.

This proves that fG ∈ In,k + 〈g〉.
(3) ⇒ (1): Assume that fG ∈ In,k +〈g〉. Then, In,k : IG,k ⊆ In,k +〈g〉 = In,k : A.

Applying Lemmas 2.1 and 4.4, we have

(4.8) kn − k! = |V (In,k)\V (A)| = |V (In,k : A)| ≤ |V (In,k : IG,k)| ≤ kn − k!,

since the number of improper colorings is at most kn − k!. It follows that equality
holds throughout (4.8) so that the number of proper colorings is k!. Therefore, G
is uniquely k-colorable, completing the proof. �

Collecting the results of this section, we can now also prove Theorem 1.6 from
the introduction.

Proof of Theorem 1.6. By Lemma 4.2, it is enough to show that A = 〈g1, . . . , gn〉 =
IG,k. From Lemma 4.4, we know that IG,k ⊆ A, and the other inclusion is clear
from the equivalence of (1) and (2) in Theorem 1.4. �

5. Algorithms and Xu’s Conjecture

In this section we describe the algorithms implied by Theorems 1.1 and 1.4, and
illustrate their usefulness by disproving a conjecture of Xu.1

1Code that performs this calculation along with an implementation of the algorithms in this
section can be found here.
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First, from Theorem 1.1, we have the following methods for determining k-
colorability.

Algorithm 5.1.
Input: A graph G with vertices V = {1, . . . , n} and edges E, and a positive integer k.
Output: true if G is k-colorable; otherwise false .

Method 1:
(1) Compute a Gröbner basis G of IG,k.
(2) Compute the normal form of the constant polynomial 1 wrt. G.
(3) Return false if the normal form is zero; otherwise return true .

Method 2:
(1) Set G := {xk

i − 1 : i ∈ V }.
(2) Set f := 1.
(3) For {i, j} ∈ E:

Compute the normal form g of (xi − xj)f wrt. G, and set f := g.
(4) Return false if f is zero; otherwise return true .

Method 3:
(1) Set G := {fH : H ∈ H}, where H is the set of graphs with vertices

{1, . . . , n} consisting of a clique of size k + 1 and isolated vertices.
(2) Set f := 1.
(3) For {i, j} ∈ E:

Compute the normal form g of (xi − xj)f wrt. G, and set f := g.
(4) Return false if f is zero; otherwise return true .

The analogue of this algorithm for unique colorability is given by Theorem 1.4.

Algorithm 5.2.
Input: A graph G with vertices V = {1, . . . , n} and edges E, and a k-coloring of G.
Output: true if G is uniquely k-colorable; otherwise false .

Method 1:
(1) Compute a Gröbner basis G of IG,k.
(2) For i ∈ V :

Compute the normal form of gi wrt. G.
Return false if the normal form is nonzero.

(3) Return true .
Method 2:

(1) Compute a Gröbner basis G of In,k + 〈g〉.
(2) Set f := 1.
(3) For {i, j} ∈ E:

Compute the normal form g of (xi − xj)f wrt. G, and set f := g.
(4) Return true if f is zero; otherwise return false .

In [13], Xu showed that if G is a uniquely k-colorable graph with |V | = n and
|E| = m, then m ≥ (k − 1)n−

(
k
2

)
, and this bound is best possible. He went on to

conjecture that if G is uniquely k-colorable with |V | = n and |E| = (k− 1)n−
(
k
2

)
,

then G contains a k-clique. In [1], this conjecture was shown to be false for k = 3
and |V | = 24 using the graph in Figure 2; however, the verification is somewhat
complicated. We prove that this graph is a counterexample to Xu’s conjecture
using Algorithm 5.2, Method 1. The computation requires approximately an hour
of processor time on a laptop PC; the code can be downloaded from the link at the
beginning of this section.



12 CHRISTOPHER J. HILLAR AND TROELS WINDFELDT

Figure 2. A counterexample to Xu’s conjecture
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