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Abstract. Sudoku is a logic-based placement puzzle. We recall how
to translate this puzzle into a 9-colouring problem which is equivalent
to a (big) algebraic system of polynomial equations. We study how far
Gröbner bases techniques can be used to treat these systems produced
by Sudokus. This general purpose tool can not be considered as a good
solver, but we show that it can be useful to provide information on sys-
tems that are —in spite of their origin— hard to solve.

1 Introduction

In last years some games called of ’Number place’ type have become very popular.
The target is to put some numbers or pieces on a board starting from some
information given by other numbers. We have analyzed some of these puzzles
and reduced them to equivalent algebraic systems of polynomial equations. We
think that this modelling is itself a good motivation for students.

We have found that these systems —particularly in the case of Sudoku— are
a good source of non-trivial examples to:

1. Study the limits and applicability of the available solving methods.
2. Compare the methods among them.

This work is a report on what can be expected of Gröbner bases as the natural
first approach to this study. We send the reader to the classical bibliography as
[1], [4], [11] or [3] as excellent introductions to this subject.

2 Describing and modelling Sudoku

Sudoku is a puzzle that became very popular in Japan in 1986 and all around
the world in 2005, although its origin happened in New York, under the name
? All the authors partially supported by FQM-333 and MTM2004-01165
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’Number Place’. You have to fill in a 9 × 9 board divided in 9 regions of size
3× 3 with the digits 1 to 9, starting from some numbers given on the board in
such a way that two numbers cannot be repeated in any row, column or 3 × 3
region. A proper Sudoku has only one solution.

Sudoku can be expressed as a graph colouring problem:

– The graph has 81 vertices, one for each cell.
– You need 9 colours, one for each number.
– The edges are defined by the adjacency relations of Sudoku: where we want

different numbers (taking into account rows, columns and regions) we need
different colours.

9 4 7

7 9

8

4 5 8

3 2

9 7 6

4

3 5

2 6 8

Fig. 1. A typical Sudoku

The resulting graph G is a regular graph with valency 20, so the number of
edges of G is equal to 81·20

2 = 810.
We can solve the colouring problem through a polynomial system ([2]. cf.

[1], [11]) described by an ideal I of Q[x1, . . . , x81] —a variable for each vertex—
with the following generators F (xj), j = 1, . . . , 81 and G(xi, xj), 1 ≤ i < j ≤ 81:

– We will consider the colours numbered from 1 to 9. For each vertex xj we
consider the polynomial F (xj) =

∏9
i=1(xj − i).

– If two vertexes are adjacent then F (xi) − F (xj) = (xi − xj)G(xi, xj) = 0,
so the condition about different colours is given by adding the polynomial
G(xi, xj).

We number the cells in a Sudoku as in Figure 2.
In addition, all the initial information of the Sudoku must be included. For

example, if we want to solve the Sudoku in Figure 1, we have to add the following
polynomials to the ideal I:

x2 − 9, x6 − 4, x9 − 7, x15 − 7, x16 − 9, x19 − 8,

x28 − 4, x30 − 5, x31 − 8, x37 − 3,

x45 − 2, x51 − 9, x52 − 7, x56 − 6, x63 − 4,

x66 − 3, x67 − 5, x73 − 2, x76 − 6, x80 − 8.
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1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

Fig. 2. Cells enumeration

All the information about the solutions of a given Sudoku is contained in the
set of zeros of I noted by V (I):

V (I) = VQ(I) = {(s1, . . . , s81) ∈ Q81 such that H(s1, . . . , s81) = 0, for any H ∈ I}.

Remark 1. Once we have added the polynomials corresponding to initial data, it
is easy to see that the polynomials F (xi) are redundant so we can delete them.
The system of equations has 810 equations, one for each edge of the graph.

The following are elementary results:

Proposition 2. A Sudoku has solution if and only if I 6= Q[x1, . . . , x81] if and
only if any reduced Gröbner basis of I with respect to any term ordering is not
{1}.

Proposition 3. If we start from a proper Sudoku then any reduced Gröbner
basis of I with respect to any term ordering has the form G = {xi − ai | i =
1, . . . , 81} where every ai are numbers from 1 to 9. The numbers ai describe the
solution.

Example 4. Let us consider the problem from Figure 3. We have written the set

9 8

5 2 8 6

3 7 1 9

7 3 5

2 4

5 1 6

8 2 7 3

4 3 9 1

7 2

Fig. 3. Sudoku with 28 numbers
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of 810 equations and a program in a file available on the Internet4 called sudoku
that runs under Singular [7]. The syntax is

<"sudoku";
intmat A[9][9] =

9,0,0,0,0,0,0,0,8, 5,0,0,2,0,8,0,6,0,
0,0,3,7,1,0,0,0,9,
0,0,0,0,7,3,0,5,0, 2,0,0,0,0,0,0,0,4,
0,5,0,1,6,0,0,0,0,
8,0,0,0,2,7,3,0,0, 0,4,0,3,0,9,0,0,1,
7,0,0,0,0,0,0,0,2;

def G = sudoku(A); vdim(G);
//used time: 1.65 sec
//-> 1

This Sudoku has a unique solution and is encoded in the reduced Gröbner basis
G.

9 2 6 5 3 4 7 1 8

5 7 1 2 9 8 4 6 3

4 8 3 7 1 6 5 2 9

1 9 8 4 7 3 2 5 6

2 6 7 9 8 5 1 3 4

3 5 4 1 6 2 9 8 7

8 1 9 6 2 7 3 4 5

6 4 2 3 5 9 8 7 1

7 3 5 8 4 1 6 9 2

Fig. 4. Solution for Figure 3

Unfortunately, in general the systems produced by Sudokus are not so friendly.
Backtracking solvers (more or less guided by logic) are all over the web and are
usually very fast. An interesting alternative method (which admits an algebraic
approach too that has to be considered in the future) is that of the dancing links
([10]).

We think that producing the equations and applying Gröbner bases is not a
good solver method in general5. Nevertheless this approach has some advantages:
if the Sudoku has many solutions the Gröner bases let us obtain the number of
solutions, as we will see in the next section.
4 http://www.us.es/gmcedm/
5 This is something that perhaps could be expected: when you solve Sudokus by hand,

you consider proper subsets of the initial data of the Sudoku that produce new values
in the cells. The polynomial approach in principle take into account all the system
at the same time and does not take advantage of the subsystems, unless you choose
ad hoc term orderings for each Sudoku.
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3 Counting solutions

It is well known that, as the ideal I produced by Sudokus are radical (cf. [4, Ch.
2, Prop. 2.7.]) the number of elements in V (I) is equal to the dimension of the
Q-vector space Q[x1, . . . , x81]/I, and that this number can be computed with
any Gröbner basis G with respect to any term ordering <:

Proposition 5. (cf. [1, Prop. 2.1.6.]) A basis of the Q-vector space Q[x1, . . . , x81]/I
consists of the cosets of all the power products that are not divisible by the lp<(gi)
for every gi ∈ G.

In Singular ([7]) the command to obtain this invariant of a given ideal of a
ring is vdim.

Example 6. Suppose now that we start from the Sudoku of Figure 3 but cells
number 64 and 82 are empty.

A[6,4]=0; A[8,2]=0;
G=sudoku(A);
vdim(G);
//used time: 127.71 sec
//-> 53

Then there are 53 different solutions. To compute all of them

LIB "solve.lib";
def S = solve(G,5,0,"nodisplay");
setring S; size(SOL);
//-> 53
SOL[1]; //First solution in the list

In an analogous way we can see that if the cell 26 is empty too there are 98
solutions.

Example 7. We have easily obtained that the number of different Sudokus 4× 4
that has the same rules that the 9×9 but only four colours and four 2×2 regions
is 288. The ideal to be considered is the one corresponding with no initial data.

The number of possible configurations for the case 9 × 9 is known ([6]) and
it is a work in progress to apply a mixed approach between brute force and
Gröbner bases computation to obtain the number of configurations.

Example 8. If the initial configuration of Figure 3 has the number 1 in cell
number 4 then the problem has no solution: any reduced Gröbner basis is equal
to {1}. Its remarkable the fact that obtaining that a given Sudoku has no solution
is often in practice reasonably fast, so although solving a given Sudoku can be
very hard it is not so hard in general to guess the value of a given cell trying the
set of possible values.
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4 Modelling more fashionable games

There exist many variants of the previous game. We briefly overview some of
them and give their mathematical modelling with an algebraic system, above all
because of their pedagogical interest. In general they are not colouring problems
and in all cases Gröbner bases let us count the number of possible solutions.

4.1 Variants of sudoku

The following games are variants of the classical sudoku:

1. Killer Sudoku. Instead of being given the values of a few individual cells, the
sum of groups of cells are given. No duplicates are used within the groups.
The algebraic system is built by adding to the 810 equations those that define
the linear relations coming from the sums of groups of cells. For example, in
Figure 5 the cells x1 and x2 give us the polynomial x1 + x2 − 3.

Fig. 5. Killer Sudoku

2. Even-Odd Sudoku. Fill in the grid so that every row, column, 3 × 3 box,
contains the digits 1 through 9, with gray cells even, white cells odd. The
grey cells bring out a polynomial of the form

∏
i even(xj − i),

3. 1-way Disallowed number place. All the places where orthogonally adjacent
cells are consecutive numbers have been specially marked. If two cells xi y
xj are adjacent we have to add the following equations. If they are specially
marked we have to write an equation of the form (xi − xj − 1)(xi − xj + 1).
If they don’t then it is the negative proposition, so we can write it as z(xi−
xj − 1)(xi − xj + 1)− 1, where z is a new variable.
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4. Greater than Sudoku. It only appears greater than signs or less than signs
in adjacent cells. The board is empty: we haven’t any data. Any relation of
the form xi > xj can be written as xi − xj = bij , where bij ∈ {1, 2, . . . , 8}.

5. Geometry Sudoku. The board is not rectangular, even it can be a torus. We
only have to change the adjacency relations.

6. Factor Rooms. It is similar to Killer Sudoku, but now with products and
without 3× 3 blocks.

4.2 Kakuro

The rules are

1. Place a number from 1 to 9 in each empty cell.
2. The sum of each vertical or horizontal block equals the number at the top

or on the left of that block.
3. Numbers may only be used once in each block.

Fig. 6. Kakuro

The equations are of the form

1. F (xj) =
∏9

i=1(xj − i) for each cell,
2. G(xj , xk) = F (xj)−F (xk)

xj−xk
for cells (j, k) in the same block,

3. linear relations defined by the sums in each block.

For example, in Figure 6 we have the following linear relations for the first cell:

x1 + x2 − 4, x1 + x6 − 3.
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4.3 Bridges or Hashiwokakero

This is another popular game in Japan. The rules are

1. The number of bridges is the same as the number inside the island.
2. There can be up to two bridges between two islands.
3. Bridges cannot cross islands or other bridges.
4. There is a continuous path connecting all the islands.

3 1 3 4

2 4 1

1 4

5 8 3

2 5 3

2 2 1

Fig. 7. Bridges

The unknowns are the bridges that cross from one island to other. For example,
from the top left island, with value 3, we get variable x1 (connection to right
island) and x2 (connection to down) (see Figure 8). Every xi can have the value
0, 1, 2, so we include the polynomials xi(xi − 1)(xi − 2). The condition that the
bridge xi cannot cross the bridge xj is equivalent to the equation xixj = 0.
Last, we have the linear relations given by the sum of bridges that start from an
island. In the previous example, we get

xi(xi − 1)(xi − 2), i = 1, . . . , 23,

x4x8, x4x15, x4x20, x6x10, x12x13, x9x15, x19x21,

x1 + x2 − 3, x1 + x3 + x4 − 1, x3 + x5 + x6 − 3,
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3 1 3 4

2 4 1

1 4

5 8 3

2 5 3

2 2 1

x1

x2

x3

x4

x5

x6

x9 x11
x12

x15

x16

x17

x18 x19

x20 x21

x22 x23

x7

x8 x10

x13

x14

Fig. 8. Bridges model
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x5 + x7 − 4, x8 + x9 − 2, x8 + x10 + x11 − 4,

x10 + x12 − 1, x6 + x13 − 1, x7 + x13 + x14 − 4,

x2 + x15 + x16 − 5, x11 + x15 + x17 + x18 − 8,

x12 + x17 + x19 − 3, x9 + x20 − 2, x18 + x20 + x21 − 5,

x14 + x21 − 3, x16 + x22 − 2, x4 + x22 + x23 − 2, x19 + x23 − 1

It is easy to compute the solutions of this system. To extract those that define
a connected graph is a different kettle of fish that we do not treat in this little
section. The computation in Singular is as follows.

ring r0=0,x(1..23),dp; option(redSB);

proc F (int i) { return(x(i)*(x(i)-1)*(x(i)-2)); };

ideal I;

for (i = 1; i<=23; i++) {I[i]=F(i); };

I = I, x(4)*x(8), x(4)*x(15), x(4)*x(20), x(6)*x(10), x(12)*x(13), x(9)*x(15), x(19)*x(21),

x(1)+x(2) -3, x(1)+x(3)+x(4)-1, x(3)+x(5)+x(6)-3, x(5)+x(7)-4, x(8)+x(9)-2, x(8)+x(10)+x(11)-4,

x(10) +x(12)-1, x(6)+x(13)-1, x(7)+x(13)+x(14)-4, x(2)+x(15)+x(16)-5, x(11)+x(15)+x(17)+x(18)-8,

x(12)+x(17)+x(19)-3, x(9)+x(20)-2, x(18)+x(20)+x(21)-5, x(14)+x(21)-3, x(16)+x(22)-2,

x(4)+x(22)+x(23)-2, x(19)+x(23)-1;

ideal Isol = std(I);

Isol;

Isol[1]=x(23)-1 Isol[2]=x(22)-1 Isol[3]=x(21)-1 Isol[4]=x(20)-2 Isol[5]=x(19) Isol[6]=x(18)-2

Isol[7]=x(17)-2 Isol[8]=x(16)-1 Isol[9]=x(15)-2 Isol[10]=x(14)-2 Isol[11]=x(13) Isol[12]=x(12)-1

Isol[13]=x(11)-2 Isol[14]=x(10) Isol[15]=x(9) Isol[16]=x(8)-2 Isol[17]=x(7)-2 Isol[18]=x(6)-1

Isol[19]=x(5)-2 Isol[20]=x(4) Isol[21]=x(3) Isol[22]=x(2)-2 Isol[23]=x(1)-1

4.4 Minesweeper

The target of this well-known Windows game is to uncover all the tiles that do
not have a mine under them. When we click on a tile, if there is a mine under it,
the game is over. If there is no mine under it, you will be given a number. The
number will tell you how many mines are touching that tile (left, right, above
and below). We assign variables to each unknown tile, with values 0 or 1. The
relations between them are of the form

∑
i xi − k.

Remark 9. There is a classical and interesting problem: given a board of posi-
tions with numbers, is it valid? In other words, is there any way in which the
mines could be arranged in the hidden squares that would be consistent with
those numbers? This problem is known to be NP-complete [8]. With the previous
model, we have an algorithm to decide the consistency, through the computa-
tion of a Gröbner basis. A theoretical consequence of the polynomial modelling
is that we obtain that the consistency of a system of polynomial equations of
degree two (almost linear!) is NP-complete.

5 Fake shortcuts and experimental facts

Of course we have tried the following (a priori) tricks to speed up our implemen-
tation to manage Sudokus based in Gröbner bases:
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– Work in a field of 9 elements instead of characteristic 0. No important im-
provements.

– Work with the 9-th roots of the unit as colours. No important improvements.
– Change the numbers of the colours to −4,−3,−2,−1, 0, 1, 2, 3, 4 to obtain

nicer coefficients. No important improvements.
– Use symmetric polynomials instead of the Gi of section 2. No important

improvement.
– In the available options to compute Gröebner bases with Singular, the op-

tion intStrategy has been used: it avoids division of coefficients during
standard basis computations. Without this option computations are often
much slower.

On the other hand, we have tried to solve our Sudoku systems with some
different available methods. Here are the initial experimental results:

– Numerical methods: In most examples, usual Newton-Rapshon (cf. [9])
methods —the way in which an engineer would possibly try to solve our
systems— have not succeed. It is a work in progress to show that for systems
produced by Sudokus the usual numerical methods diverge for a family big
enough of examples. It would mean that Sudoku systems could be regarded
as ill-conditioned systems richer by far than the classical Wilkinson’s monster
(cf. [5]).

– Numerical homotopy methods: The numerical homotopy methods im-
plemented in Jan Verschelde’s software package PHCpack ([14]) are another
way of solving algebraic systems of polynomial equations of great interest.
They are known to be well suited to treat the multilinear case. They have
been used, for example, to obtain totally mixed Nash equilibria (cf. [13]).
Neither have they obtained correct solutions in most examples.

Sudoku systems seems to be somewhat resistant to a non-purely-symbolic
approach, and we think that this pathological behavior demands itself a deeper
understanding.
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