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Abstract. We introduce a general constructive method to find a p-basis (and
the Ulm invariants) of a finite Abelian p-group M . This algorithm is based

on Gröbner bases theory. We apply this method to determine the additive

structure of indecomposable modules over the following Dedeking-like rings:
ZCp, where Cp is the cyclic group of order a prime p, and the p−pullback

{Z→ Zp ← Z} of Z⊕ Z.

1. Introduction

Let R be an algebra. Finding the additive structure of an R-module as an Abelian
group associated to a representation is a classical problem solved in a similar way to
obtaining the Jordan canonical form of a matrix over a field, see [5, Chapter III] and
[2, Chapter 12, §2]. This information is used, for example, to determine the matrices
associated to the group representation. This is accomplished by finding a p-basis
for the torsion part of the group that permits a unique matrix representation for
this Abelian finite p-group. In 1949, Szekeres started the classification and matrix
description of modules over ZpnCp. Since then it has been studied in detail, see
[1, 3, 9, 10, 11, 12, 14]. In [9, 10], Levy studied these modules in the more general
context of modules over a pullback of two Dedekind rings with a common field,
which he called Dedekind-like rings.

Until now, the simplest way to find the additive structure of an R-module con-
sists in writing the relations as a matrix with entries in Z, performing elementary
transformations over a Euclidean domain (like Z), and using the division algorithm
to write the matrix in a canonical form, see [5, Theorem 16.8]. This approach be-
comes rather difficult when the generating set is not minimal and there are several
relations among the generators. In here, we present a different method that has
the advantage of producing different group presentations by writing the relations
as polynomials and changing the term orders used to reduce them. Furthermore,
we show how to use this procedure to find a good p-basis which gives the Ulm
invariants [7] of M and also the type of M .
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The main contribution of this paper is a constructive method to find a p-basis
(and the Ulm invariants) of a finite Abelian p-group M from a given presentation
of M encoding the action of p. The algorithm is obtained by noting that there are
some invariant properties between the order of elements in an Abelian group and
the basis elements of certain toric ideals [13]. To accomplish this, we use several
tools from Gröbner bases [4] and chain-modules [3]. Furthermore, this method can
be used in general for modules over algebras on Zpn and Z.

Let M be a finitely generated Abelian group. We assume that M is also finitely
presented, that is, M = 〈C,R〉, where C is a non-minimal finite generating set, and
R is a finite set of relations among the elements of C, see [6, 8]. For example

M = 〈c1, . . . , cn |
q∑

j=1

aijcj = 0 with aij ∈ Z, for all i = 1, . . . , n and j = 1, . . . , q〉.

We want to find the torsion-free rank of M and the Ulm invariants of the pj-
Sylow subgroups of M . This is an old problem, the new aspects in this work are:
(1) we use Gröbner bases to solve the problem, and (2) using the notation and
classification introduced by Levy, we apply this method to determine the additive
structure of indecomposable modules over certain Dedekind-like rings. In this case,
the algorithm computes a p-basis for the torsion part of the group.

This paper is organized as follows: in Section 2, we introduce toric ideals as-
sociated to finitely generated Abelian groups. In Section 3, we give a description
of the reduced Gröbner basis [4] of a toric ideal associated to a finitely generated
Abelian p-group. As a consequence, in Section 4, we obtain an algorithm to com-
pute the p-basis and the type of any finite Abelian p-group. As an application of
this algorithm, in Section 5, we show how to obtain the additive structure of any
indecomposable module over ZCp, where Cp is the cyclic group of order a prime p
and over the p−pullback {Z→ Zp ← Z} of Z⊕ Z.

2. Gröbner bases associated to finitely generated Abelian groups

We start by reviewing some concepts in finitely generated Abelian group theory.

Definition 2.1 (type). If p1 < · · · < pr and M is a finitely generated Abelian
group, such that

M ∼= Zs0 ⊕ (Zp1
s11 ⊕ · · · ⊕ Zp

n1
1

s1n1 )⊕ · · · ⊕ (Zpr

sr1 ⊕ · · · ⊕ Zpnr
r

srnr )

as an Abelian group, then the type of M is

t(M) = (s0, s11, . . . , s1n1 , . . . , sr1, . . . , srnr ) ∈ Zn1+···+nr+1.

The number s0 is the torsion-free rank of M , the numbers si1, . . . , sini are the
Ulm invariants of the pi-Sylow subgroup Mi = Zpi

si1 ⊕ · · · ⊕ Zp
ni
i

sini of M , and
the number ni is the torsion rank of Mi.

Definition 2.2 (p-basis). If M is a p-group, for some prime number p, a set
B = {b1, . . . , bd} ⊂M is called a p-basis of M if M ∼=Zpn 〈b1〉⊕ · · · ⊕ 〈bd〉. A set B

is a p-basis of M if and only if, for all m ∈ M the sum m =
∑d

i=1 libi is unique,
where 0 ≤ li ≤ ord(bi) and ord(bi) is the order of bi in the group M , see [7].

Let M = ⊕r
t=1Mt⊕Zs be a finitely generated Abelian group, where Mt is the pt-

Sylow subgroup of M with pt-rank equal to dt. Consider a non minimal generating
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set Ct of each Mt, such that, Ci ∩ Cj = ∅ for all i 6= j, and a generating set C0 of
Zs. If C = ∪r

t=0Ct = {c1, . . . , cq}, where q ≥
∑r

t=1 dt + s, then 〈C〉 = M . Consider
the semigroup homomorphism

γ : Nq −→M, v = (v1, . . . , vq) 7−→
q∑

i=1

vici.

Let k be an infinite field. The previous map lifts to the following short exact
sequence

(2.1) 0 −→ Ker(γ̃) −→ k[x]
eγ−→ k[M ] −→ 0,

where k[x] = k[x1, . . . , xq] ∼= k[Nq] is the polynomial ring in q indeterminates over k.
The monomials in k[x] are denoted by xa = xa1

1 · · ·x
aq
q , where a = (a1, . . . , aq) ∈ Nq.

On the other hand, if d =
∑r

t=1 dt, we have the following isomorphism

k[M ] ∼= k[t] = k[t1, . . . , td, td+1, t
−1
d+1, . . . , td+s, t

−1
d+s]/〈t

k1
1 − 1, . . . , tkd

d − 1〉,
where ki is the order of the corresponding element in the external direct sum of M .
Furthermore, in this external direct sum, the element ci ∈ C can be expressed as a
tuple ci = (ci1, . . . , cid, cid+1, . . . , cid+s). So, we have a homomorphism of semigroup
algebras

γ̃ : k[x] −→ k[t], xi 7−→ tci = tci1
1 · · · t

cid

d t
ci,d+1
d+1 · · · t

ci,d+s

d+s .

We denote the kernel of γ̃ by IC . We will show how to obtain a minimal generating
set that is a p-basis of M , from a certain Gröbner basis of this ideal. In the following,
we assume that we have a term order ≺ defined in k[x]. Then every nonzero
polynomial f ∈ k[x] has a unique initial monomial, denoted in≺(f). Observe
that for any v = (v1, . . . , vq) ∈ Zq, we can write v = v+ − v−, where v+ =
(v+

1 , . . . , v+
q ) and v− = (v−1 , . . . , v−q ) are nonnegative integer tuples. Denote by

Ker(γ) the subgroup of Zq consisting of all elements v such that γ(v+) = γ(v−).
Let

P (Ker(γ)) =
{
xv+
− xv− | v ∈ Ker(γ)

}
.

The following lemma follows immediately from [13, Lemma 4.1].

Lemma 2.3. The ideal IC is generated as a k-vector space by the set P (Ker(γ)).

Recall that C is a non-minimal finite generating set of M . We assume that there
exists a finite set of defining relations R for C in M . We use the notation v+ and v−

to write the relations as
∑q

t=1 v+
t ct =

∑q
t=1 v−t ct. These relations induce a subset

of vectors in Zq and a subset of polynomials in IC

R =
{
v ∈ Zq :

q∑
t=1

v+
t ct =

q∑
t=1

v−t ct is in R
}
⊂ Zq,

P (R) =
{
P (v) = xv+

− xv− | v ∈ R
}
⊂ IC .

Let GR denote the reduced Gröbner basis of the ideal generated by P (R), with
respect to the order ≺. Similarly, this Gröbner basis induces the set RG of tuples

RG =
{
v ∈ Zq | xv+

− xv− ∈ GR
}
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and the set RG of relations

RG =
{ q∑

t=1

v+
t ct =

q∑
t=1

v−t ct such that v ∈ RG
}
.

Proposition 2.4. Let vk ∈ R with in≺(P (vk)) = xv+
k for k ∈ 1, 2. Also let

w1, w2 ∈ Nq such that w1 + v+
1 = w2 + v+

2 . If P (v) = xw1P (v1) − xw2P (v2) then
v = v1 − v2.

Proof. We have P (v) = xw1P (v1)− xw2P (v2) = xw2+v−2 − xw1+v−1 . So

v = (w2+v−2 )−(w1+v−1 ) = (w2+v−2 )−(w1+v−1 )+(w1+v+
1 )−(w2+v+

2 ) = v1−v2.

�

Theorem 2.5. The set RG is a set of relations for C in M .

Proof. First observe that, if v ∈ Ker(γ), then
∑q

t=1 vtct = 0. So v ∈ 〈R〉 and since
〈R〉 ⊂ Ker(γ), then the set R generates the subgroup Ker(γ). This implies that the
ideal IC is generated by P (R). Next, we use the Buchberger algorithm [4, Chapter
2, §7] to obtain the reduced Gröbner basis of IC from P (R).

By Proposition 2.4, we have that the S-polynomial S(P (u1), P (u2)) = P (v)
satisfies v = u1 − u2 ∈ Ker(γ). Let S be the set of all nonzero S-polynomials
obtained in the Buchberger algorithm and let S = {v ∈ Zq | P (v) ∈ S}. Clearly
〈R〉 = 〈R ∪ S〉. We denote by R′ = R∪ S. Now, we reduce the set of polynomials
in P (R′). Suppose in≺(P (v)) = xv+

divides in≺(P (v1)) = xv+
1 , with v, v1 ∈ R′.

There exists w ∈ Nq such that w + v+ = v+
1 and P (v2) = P (v1)− xwP (v). Hence

v2 = v1 − v ∈ R′ by Proposition 2.4. Then 〈R〉 = 〈R′〉 = 〈(R′ \ {v1}) ∪ {v2}〉. So
〈RG〉 = 〈R〉. This proves our claim. �

3. The reduced presentation of M

Given a generating set C of a finite Abelian p-group M , one can obtain a set of
relations by studying the action of p over the elements in C. In the last section, we
saw that any Gröbner basis of IC gives a set of relations for M . In this section, we
describe a particular Gröbner basis that gives a p-basis of M . We assume that the
elements of C have orders ord(c1) ≥ · · · ≥ ord(cq). Consider the following chain of
subgroups of M

〈c1〉 ⊆ 〈c1, c2〉 ⊆ · · · ⊆ 〈c1, c2, . . . , cs〉 · · · ⊆ 〈C〉 = M.

For s ≥ 2, let rs = min{k | pkcs ∈ 〈c1, c2, . . . , cs−1〉}. There are two possibilities,
either rs < ord(cs), or rs = ord(cs), in this case, prscs = 0 ∈ 〈c1, c2, . . . , cs−1〉.
Thus, we have the following set of relations

Rp =
{

pr1c1 = 0, prscs = prs

∑
t<s

astct, where ast ∈ Z, for 2 ≤ s ≤ q
}
.

Proposition 3.1. The relations Rp together with the set C is a presentation of the
p-group M .

Proof. Suppose
∑q

t=1 `tct = 0. Dividing `q by prq , we obtain `q = sqp
rq + s′q with

0 ≤ s′q < prq . Therefore, sqp
rqcq + s′qcq +

∑q−1
t=1 `tct = 0. Suppose that s′q 6= 0.

Using the relation prqcq =
∑

t<q prquqtct, we obtain
∑q

t=1 `tct = s′qcq +
∑q−1

t=1 `′tct =
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0. If gcd(s′q, p) = 1, then cq =
∑

t<q−1 ltct and
∑q

t=1 `tct =
∑q−1

t=1 ltct = 0. If
gcd(s′q, p) = p, let pr be the maximum number such that pr divides s′q. Then
prcq = −

∑q−1
t=1 `′tct. But this is impossible, because prq is the minimum with this

condition. Thus gcd(s′q, p) = 1.
Repetition of this argument shows that

∑q
t=1 `tct = l′1c1 = 0 with gcd(l′1, p) = 1.

But this implies that c1 = . . . = cq = 0 which is impossible. Then s′q = 0 and the
relation

∑q
t=1 `tct = 0 is a linear combination of the relations in R. �

Proposition 3.2. Let ≺ be the lexicographic ordering with x1 ≺ x2 ≺ · · · ≺ xq.
Then, the reduced Gröbner basis of IC with respect to ≺ equals

Gp =
{
xpr1

1 − 1, xpr2

2 − xa21pr2

1 , . . . , xprq

q −
q−1∏
t=1

x
aqtp

rq

t

}
.

Proof. Observe that Gp = P (Rp). Thus, by Theorem 2.5, Gp generates IC . Fur-
thermore, Gp is a reduced Gröbner basis since gcd(in≺(p1), in≺(p2)) = 1, for any
p1 and p2 in Gp. This forces all S-polynomials to be zero modulo Gp, see [4]. �

Let pR be the following set of relations for C in M

(3.1) pR =
{
pcq = 0, pcj =

∑
t>j

ajtct, for all 1 ≤ j ≤ q − 1, with 0 ≤ ajt ∈ Z
}
.

These relations can be used to find the order of any element in M , since pM is the
Frattini subgroup of M . On the other hand, from the action of p, we can find the
minimal number of generators of M , that is, the p-rank of M by the Burnside Basis
Theorem for finite groups (M/pM). Let d be the p-rank of M . For each t ≥ 2, let
Dt be the set

Dt =
{
ct −

t−1∑
j=1

atscj | 0 ≤ atj ≤ ord(cj)
}
.

If bt is the element of maximal order in Dt, then prt = ord(bt). Therefore, we have
the following set of relations, denoted by Rpbasis

{
pr1c1 = 0, prtct = prt

∑
j<t

atjcs for 2 ≤ t ≤ d, and ct =
∑
j<d

atjcj for d < t ≤ q
}
.

It is clear that M = 〈b1, b2, . . . , bd〉, so Rpbasis is a set of relations for C in M . As
a corollary of Proposition 3.2, we have

Corollary 3.3. Let ≺ be the lexicographic ordering with x1 ≺ x2 ≺ · · · ≺ xq. Then,
the reduced Gröbner basis of IC , denoted by Gpbasis, with respect to ≺ equals

(3.2)
{
xpr1

1 − 1, . . . , xprd

d −
d−1∏
t=1

xadtp
rd

t , xd+1 −
d∏

t=1

x
at,d+1
t , . . . , xq −

d∏
t=1

x
atq

t

}
.

Note that Gpbasis is just a refinement of Gp obtained by setting some of the
prj equal to 1. The next theorem is the key to our algorithm. It says that the
generating set obtained from Gpbasis is actually a p-basis of M .

Theorem 3.4. The set C = {c1, . . . , cd −
∑d−1

t=1 adtct} is a p-basis of M .
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Proof. We have seen that M = 〈b1, b2, . . . , bd〉 = 〈C〉. Now, we will prove that the
sum 〈b1〉 + · · · + 〈bd〉 is actually a direct sum. If y ∈ 〈bt〉 ∩ 〈b1, . . . , bt−1〉. Then
y = αtbt =

∑t−1
j=1 αsbs. Thus, αtct =

∑t−1
j=1 α′jcj . The argument preceding this

theorem shows that αt ≥ prt , so αt = α′tp
rt + βt, with 0 ≤ βt < prt . Thus βtct =∑t−1

j=1 α”jcj which implies βt = 0 and y = α′tp
rtbt = 0. So M = ⊕d

t=1〈bt〉. �

We can summarize the above results as follows.

Remark 3.5.

(1) Given a presentation of a finite Abelian p-group M = 〈C,R〉, there exists
a term ordering such that the reduced Gröbner basis of the toric ideal IC

gives a p-basis for M .
(2) Given a homomorphism γ̃ as in (2.1). The presentations for the corre-

sponding finite Abelian group M can be obtained from Gröbner bases of the
toric ideal Ker(γ̃).

4. The p-basis algorithm and the additive structure of M

Corollary 3.3 gives an explicit description of a reduced Gröbner basis for IC .
Moreover, Theorem 3.4 shows that the corresponding set of generators is a p-basis
of M . Nevertheless, we obtained this Gröbner basis from a very special set of
relations whose definition was non constructive, namely Rpbasis. In particular,
this set of relations specified the ordering on the indeterminates for the specific
lexicographic order needed in Corollary 3.3. In this section, we put all these results
together to compute the invariants of a finite Abelian p-group M from a particular
presentation.

Let pR be the finite presentation of M introduced in (3.1), that is, assume that
the action of p in a generating set C is known. Following Remark 3.5, we need to
find an ordering of the indeterminates, such that, the Gröbner basis with respect
to the corresponding lexicographic order has the form (3.2). Note that there might
be several such orderings. In the last section, we saw that if ord(ci) < ord(cj) then
xj ≺ xi. We also need to break ties among the elements in C with the same order
in the group.

In practice, one first break ties arbitrarily. If the Gröbner basis has the required
form, we are done. Otherwise, there is an element in the Gröbner basis of the form
xprj

j − xi

∏j−1
t=1,t6=i x

ajtp
rj

t , with ord(cj) = ord(ci). In this case, we need to invert
the order of xi and xj to xj < xi. This process eventually terminates, moreover;
it effectively gives the desired Gröbner basis since the p-basis itself always exists.
The output of the algorithm consists on the p-basis and the Ulm invariants of M ,
that is, the type t(M).

Algorithm 4.1. Input: C, pR.

(A1) Write the relations in pR as polynomials in k[x] as follows: xp
q − 1, and

xp
j −

∏
t>j x

ajt

t , for 1 ≤ j ≤ q.
(A2) Find the order of all cj by computing all the univariate polynomials in the

ideal I generated by the polynomials obtained in (A1).
(A3) Find an ordering of the indeterminates, such that, the reduced lexicographic

Gröbner basis Gp of I has the form (3.2).
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(A4) Let d be the number of polynomials in Gp such that the initial term has
exponent > 1. If prj > 1 and xprj

j −
∏j−1

t=1 x
ajtp

rj

t ∈ Gp, then add bj to the
p-basis, where bj is the following element of order prj :

bj = cj −
j−1∑
t=1

ajtct.

(A5) To compute the type of M , let sr be the number of elements with the same
order pr. Then t(M) = (s1, . . . , sn).

Output: B = {b1, . . . , bd} and M ∼= (Zp)s1 ⊕ · · · ⊕ (Zpn)sn .

Example 4.2. Let M = 〈c1, c2, c3, c4, c5, c6, c7, c8〉 be a 5-group, with the following
relations:

5c1 − c8 − 4c5 − 2c6 − 3c7 = 0, 5c2 − 4c6 − 2c7 = 0, 5c3 − 4c7 = 0,

5c4 = 0, 5c5 = 0, 5c6 = 0, 5c7 = 0, 5c8 = 0.

The corresponding polynomials are

{
x5

1 − x8x
4
5x

2
6x

3
7, x

5
2 − x4

6x
2
7, x

5
3 − x4

7, x
5
4 − 1, x5

5 − 1, x5
6 − 1, x5

7 − 1, x5
8 − 1

}
.

The reduced lexicographic Gröbner basis equals

{
x25

1 − 1, x25
2 − 1, x25

3 − 1, x5
4 − 1, x5

5 − 1

x6 − x15
3 x20

2 , x7 − x20
3 , x8 − x5x

10
3 x10

2 x5
1

}
.

In this case, d = 5. So, the Gröbner basis gives the following information

25c1 = 0, 25c2 = 0, 25c3 = 0, 5c4 = 0, 5c5 = 0,

c6 = 15c3 + 20c2, c7 = 20c3, c8 = c5 + 10c3 + 10c2 + 5c1.

Hence, the p-basis is equal to B = {c1, c2, c3, c4, c5}, M ∼= Z5
2 ⊕ Z25

3, and t(M) =
(2, 3).

The classical way to solve this problem, using matrix transformations over a
Euclidean domain, appears in [2]. We remark that it is possible to perform the
second step in the algorithm because by definition, IC is a zero-dimensional ideal.
Moreover, each univariate polynomial in IC has the form x

ord(cj)
j − 1.

5. Indecomposable modules over Dedekind-like rings

Let R1 and R2 be two rings. Let R be the pullback ring of the rings Ri over a
common ring R, that is, R = {R1 → R← R2}. In [9], L. Levy studied the separated
representation of an R-module M . In [10], he described the indecomposable R-
modules when R1 and R2 are Dedekind domains and R is a field k (R is called a
Dedekind-like ring). In particular, he studied modules over two rings: ZCp, where
Cp is the cyclic group of order a prime number p, and the p−pullback {Z→ Zp ← Z}
of Z⊕ Z.

An R-module S is separated if it is an R-submodule of a direct sum S1 ⊕ S2,
where each Si is an Ri-module. A separated representation of an R-module M is
an R-module epimorphism φ : S −→M , such that, S is a separated R-module and



8 MARIA A. AVIÑO-DIAZ AND LUIS D. GARCIA-PUENTE

if φ admits a factorization φ : S
f−→S′ −→ M with S′ also a separated R-module,

then f must be one to one. Let Pi = ker(Ri −→ k), then P = {P1 → 0 ← P2}
is an ideal of R . We call an R-module M P -mixed, if each torsion element m

is annihilated by some power of P . The separated modules S = {S1
f1−→k

f2←−S2}
satisfying one of the following two conditions: (1) Si

∼= nonzero ideal of Ri, or
(2) Si

∼= Ri/P e
i form the basic building blocks for all finitely generated, P -mixed

R-modules. If S is a building block, then S has exactly one submodule which has
the form {X → 0 ← 0} and is R-isomorphic to k (left k of S). Similarly, S has a
right k of S.

Definition 5.1. (Deleted Cycle and Block Cycle Indecomposables)

(a) Let S(1), . . . , S(m) be a sequence of basic building blocks, such that,

S(1) −−−−→ S21y σ21

y
S11

σ11−−−−→ k

· · ·

S(i) −−−−→ S2iy σ2i

y
S1i

σ1i−−−−→ k

· · ·

S(m) −−−−→ S2my σ2m

y
S1m

σ1m−−−−→ k

and suppose that for 1 ≤ i ≤ m, S(i) has a right k and S(i+1) has a left k.
A deleted cycle indecomposable M is the direct sum S = ⊕m

i=1S
(i) modulo a

relation which identifies the right k of S(i) with the left k of S(i+1), that is,
first choose pj ∈ Pj−P 2

j for j = 1, 2, then make the following identification

p
d(2,i)−1
2 s2i = −p

d(1,i+1)−1
1 s1,i+1, where sji ∈ Sji, with σji(sji) = 1

for j = 1, 2, 1 ≤ i ≤ m− 1, and d(j, i) the length of Sji. In other words, it
is the direct sum S modulo{
p

d(2,1)−1
2 s21 + p

d(1,2)−1
1 s12, . . . , p

d(2,m−1)−1
2 s2,m−1 + p

d(1,m)−1
1 s1m

}
.

(b) Let S(1), . . . , S(m) be a sequence of basic building blocks

S(1) −−−−→ S21y σ21

y
S11

σ11−−−−→ k

· · ·

S(i) −−−−→ S2iy σ2i

y
S1i

σ1i−−−−→ k

· · ·

S(m) −−−−→ S2my σ2m

y
S1m

σ1m−−−−→ k

each with a left and a right k. Write m = lm, where m is the unique
smallest positive integer, such that, for all i, S(i) ∼= S(i+m). Let f(z) =
λo + λ1z + · · · + λl−1z

l−1 + zl be a power of an irreducible polynomial in
k[z]. A block cycle indecomposable M is a deleted cycle indecomposable
modulo the following relation −p

d(2,m)−1
2 s2m =

∑l−1
j=0 λjp

d(1,j)−1
1 s1,jm+1,

which identifies the right k of S(m) with a one-dimensional subspace of
S11⊕S1,m+1⊕S1,2m+1⊕· · · . In other words, it is the direct sum S modulo{

p
d(2,1)−1
2 s21 + p

d(1,2)−1
1 s12, . . . ,p

d(2,m−1)−1
2 s2,m−1 + p

d(1,m)−1
1 s1m,

p
d(2,m)−1
2 s2m +

l−1∑
j=0

λjp
d(1,j)−1
1 s1,jm+1

}
.
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As a consequence, if M is a deleted cycle then 1 ≤ d(2, i) 6=∞, for 1 ≤ i ≤ m−1
and 1 ≤ d(1, i) 6=∞, for 2 ≤ i ≤ m. But the length of either one of S11 or S2n may
be infinite. If M is a block cycle, then 1 ≤ d(j, i) 6=∞ for 1 ≤ i ≤ m and j = 1, 2.

Remark 5.2. The indecomposable, finitely generated, P -mixed modules are deleted
cycle indecomposables and block cycle indecomposables. Every separated R-module
is a direct sum of basic building blocks. Moreover, basic building blocks are always
indecomposable R-modules, see [10].

5.1. Additive descriptions. Using Algorithm 4.1, we describe the additive struc-
ture of the indecomposable R-modules when R is one of the following rings: ZCp or
the p-pullback of Z⊕Z, {Z→ Zp ← Z}. In these two cases the concept of P -mixed
coincides with p-mixed.

The ring ZCp:

ZCp −−−−→ Z[ζ]y ν2

y
Z ν1−−−−→ Zp

Let ζ be a primitive pth root of unity, and let x be a generator of Cp. Then
ZCp

∼= {Z ν1−→Zp
ν2←−Z[ζ]}, where the isomorphism is given by x −→ (1 → 1 ← ζ).

The action of p1 and p2 in Λ = ZCp is given by the following formulas

p1 = xp−1 + xp−2 + · · ·+ x + 1 =
{
p→ 0← ζp−1 + ζp−2 + · · ·+ ζ + 1

}
and

p2 = x− 1 = {0→ 0← ζ − 1}, p = (p, p) = p1 + pp−1
2 σ(p2), p1p2 = 0,

where σ(p2) is a polynomial in p2, with degree less or equal than p−1, which exists
because the sum equals p. Thus every element m of a ZCp-module M = 〈a1, . . . , an〉
is a linear combination of these generators and the elements resulting from the
action of p1 and p2 over them.

Example 5.3. Let Λ = ZC3 and M = 〈a〉ZC3 be a deleted cycle indecomposable
with d(1) = d(2) = 3, and 3 = p1 + 2p2

2. We need to compute the action of p in Λ
over the generator a to obtain a generating set for M over Z. This is the classical
way to begin this problem in Abelian group theory. Thus,

3a = p1a + 2p2
2a, 3p1a = p2

1a, 3p2
1a = 0, 3p2a = p2

2a, 3p2
2a = 0.

The generating set is C = {a, p2a, p1a, p2
2a, p2

1a}, the corresponding ideal is gener-
ated by the binomials{

x3
1 − x3x

2
4, x3

3 − x5, x3
5 − 1, x3

2 − x4, x3
4 − 1

}
.

The order of each element in C is {27, 9, 9, 3, 3}. The reduced Gröbner basis is
equal to {

x27
1 − 1, x9

2 − 1, x3 − x3
2x

3
1, x4 − x3

2, x5 − x9
1

}
.

So, Algorithm 4.1 outputs

B =
{
a, p2a

}
, M ∼= Z9 ⊕ Z27, t(M) = (0, 0, 1, 1).

The extra zero in the type means that the torsion-free rank equals 0. Therefore, the
action of Λ does not change if we consider M as a module over Z27C3.
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Example 5.4. Let Λ = ZC3 and M = 〈a〉ZC3 be a block cycle indecomposable with
d(1) = 4, d(2) = 4, and f(z) = z−2. The action of p = 3 is given by 3 = p1 +2p2

2.
We also have the relation p3

1a = 2p3
2a. The action of p = 3 over a is given by

3a = p1a + 2p2
2a, 3p1a = p2

1a, 3p2
1a = p3

1a, 3p3
1a = 0, 3p2a = 2p3

2a, 3p2
2a = 0.

The generating set is C = {a, p1a, p2a, p2
1a, p2

2a, p3
1a, p3

2a}. In this case, the corre-
sponding toric ideal is generated by{

x3
1 − x2x

2
5, x3

2 − x4, x3
4 − x6, x3

6 − 1, x3
3 − x2

7, x3
5 − 1, x3

7 − 1, x6 − x2
7

}
.

The order of each element in C is {81, 27, 9, 9, 3, 3, 3}. The reduced Gröbner basis
is equal to{

x81
1 − 1, x3

2 − x9
1, x3

3 − x27
1 , x4 − x9

1, x5 − x2x
78
1 , x6 − x27

1 , x7 − x54
1

}
.

Hence, Algorithm 4.1 outputs

B =
{
a, p1a− 3a, p2a− 9a

}
, M ∼= Z3

2 ⊕ Z81, t(M) = (0, 2, 0, 0, 1).

The p-pullback ring of Z ⊕ Z: The p-pullback of Z ⊕ Z is the subring Λ =
{Z → Zp ← Z} of Z ⊕ Z. In this case, let p1 = (p, 0) and p2 = (0, p). Then
p = (p, p) = p1 + p2.

Example 5.5. Consider the pullback ring Λ = {Z→ Z3 ← Z} and a deleted cycle
indecomposable module M = 〈a1, a2〉Λ, with d(1, 1) = 3, d(1, 2) = 3, d(2, 1) = 3,
d(2, 2) = 3, and −4p2

2a1 = p2
1a2. Note that the order of these elements is 3, since

they are in the socle M [p] of M ; thus, the last relation is 2p2
2a1 = p2

1a2. Also
p = p1 + p2. Therefore, the generators are

C =
{
a1, a2, p1a1, p2a1, p1a2, p2a2, p2

1a1, p2
2a1, p2

1a2, p2
2a2

}
.

Besides the previous relation p2
1a2 = 2p2

2a1, the relations obtained from the action
of p are

3a1 = p1a1 + p2a1, 3p1a1 = p2
1a1, 3p2a1 = p2

2a1, 3p2
1a1 = 0, 3p2

2a1 = 0,

3a2 = p1a2 + p2a2, 3p1a2 = p2
1a2, 3p2a2 = p2

2a2, 3p2
1a2 = 0, 3p2

2a2 = 0.

The toric ideal is generated by{
x3

1 − x3x4, x3
3 − x7, x3

4 − x8, x3
7 − 1, x3

8 − 1,

x3
2 − x5x6, x3

5 − x9, x3
6 − x10, x3

9 − 1, x3
10 − 1, x9 − x2

8}.

The order of each element in C is {27, 27, 9, 9, 9, 9, 3, 3, 3, 3}. The Gröbner basis is
equal to{

x27
1 − 1, x27

2 − 1, x9
3 − 1, x4 − x8

3x
3
1, x3

5 − x3
3x

18
1 , x6 − x2

5x
6
3x

3
2x

9
1,

x7 − x3
3, x8 − x6

3x
9
1, x9 − x3

3x
18
1 , x10 − x6

3x
9
2x

9
1

}
.

Using the algorithm, we obtain the p-basis

B =
{
a1, a2, p1a1, p1a2 − p1a1 − 6a1

}
, M ∼= Z3 ⊕ Z9 ⊕ Z27

2, t(M) = (0, 1, 1, 2).

Let M be an indecomposable R-module and let S = ⊕m
i=1S

(i) be the separated
representation of M . If m = 1, then S = {S1 → k ← S2} = 〈a〉 is a basic building
block, and length(Sj) = d(j) 6= ∞, for j = 1, 2, because M is Zpn -free. Thus,
the subset A = {a, p1a, . . . , p

d(1)−1
1 a, p2a, . . . , p

d(2)−1
2 a} generates S as an Abelian



ON THE ADDITIVE STRUCTURE OF INDECOMPOSABLE MODULES 11

group over Z. The next theorem shows how to use Algorithm 4.1 to obtain the
type and a p-basis of any basic building block with torsion part.

Theorem 5.6. Let S = {S1 → k ← S2} = 〈a〉 be a basic building block. Then

(i) If d(1) · d(2) < ∞, then Algorithm 4.1 gives a p-basis for S using the
presentation S = 〈A, pA〉.

(ii) If d(j) =∞ for exactly one j, one can obtain a basis for S, by adding to the
input of Algorithm 4.1 the number exp(t(S)) + 2, where exp(t(S)) denotes
the exponent of the torsion subgroup of (S, +).

(iii) If both lengths are infinite then the Abelian group (S, +) is torsion free. In
this case, the rank is p, and {a, p2a, . . . , pp−1

2 a} is a p-basis for R = ZCp.
If R = {Z → Zp ← Z} is the p-pullback of Z ⊕ Z, then either {a, p1a} or
{a, p2a} is a p-basis for S.

Proof. In part (iii), the case R = ZCp is a direct consequence of [10, Application
1.10] and the case R = {Z→ Zp ← Z} is trivial. If d(1) <∞ and d(2) <∞, then
S is an Rp-module. So, 〈A, pA〉 is a presentation of S. Hence, applying Algorithm
4.1, we obtain a p-basis. If d(1) = ∞ or d(2) = ∞, we change the infinite length
for exp(t(S)) + 2. After this, we can apply Algorithm 4.1 to get a p-basis. Using
the proof of Theorem 11.6 in [10], we can recover the basis for S. If R = ZCp

and d(2) =∞, there are p− 1 elements of order exp(t(S)) + 2 in the basis, by [10,
Application 1.10]. These elements have infinite order and the remaining elements
in the basis form the p-basis for the torsion part. If d(1) = ∞, then there is one
element with infinite order in the basis. If R is the p-pullback of Z ⊕ Z, we have
one element of infinite order in the basis. �

Theorem 5.7 describes how to find the additive structure, in general, for any
indecomposable R-module after computing the p-height of the elements that con-
nect the building blocks in M . Let dji denote d(j, i). Also let di = pd2i−1

2 s2i =
−p

d1,i+1−1
1 s1,i+1 for 1 ≤ i ≤ m−1. If d11 6=∞, let d0 = pd11−1

1 s11, and if d2m 6=∞,
let dm = pd2m−1

2 s2m. The p-height of the element di = pk−1d′ is hp(di) = k−1 in the
Abelian group t(M). Let `α be the number of elements di such that hp(di) = α−1,
see [7].

Let S = ⊕iS
(i) be a separated representation of an indecomposable R-module

M . If M is a block cycle, then we consider the separated module S′ = ⊕iS
′(i)

such that d′ji = dji − 1 for all (j, i). If M is a deleted cycle, then we consider
the separated module S′ = ⊕iS

′(i) such that d′ji = dji − 1 for (j, i) 6= (1, 1) and
(j, i) 6= (2,m).

Theorem 5.7. Let M be an indecomposable R-module, and let S = ⊕m
i=1S

(i) be
the separated representation of M . Then

t(M) =
m∑

i=1

t(S′(i)) + (0, `1 − `2, . . . , `n−1 − `n, `n),

where n = exp(t(M)).

Proof. First, suppose that M = 〈a1, . . . , am〉 is a deleted cycle indecomposable R-
module. If m = 1, the theorem is obviously true. Suppose the result is proved for
m − 1. Then consider M/〈d1〉 = S′(1) ⊕M ′, where M ′ = 〈a2, . . . , an〉/〈d1〉. Since
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M ′ is generated by m− 1 elements, we can apply induction. By [3, Corollary 3.3],
if hp(d1) = β then

t(M) = t(M/〈d1〉) + v(β)
= t(S′(1)) +

∑n
k=2 t(S′(k)) + (0, `′1 − `′2, . . . , `

′
n−1 − `′n, `′n) + v(β),

where `′α is the number of elements d′k such that hp(d′k) = α− 1 in M ′. The vector
v(β) = (v0, v1, . . . , vn) ∈ Zn+1 satisfies vβ−1 = −1, vβ = 1 and vi = 0 otherwise. It
is clear that hp(d′k) = hp(dk) for k ≥ 2. So our claim holds.

Now suppose M is a block cyclic indecomposable module. Observe that the
result holds for the module M ′ = M/〈d0〉, since M ′ is a deleted cyclic module.
Hence our claim holds by [3, Corollary 3.3]. �
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