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Abstract

The method of Grébner bases has been fruitfully applied to many problems in the theory
of polynomial ideals. Recently Grébner bases have been used in various ways for dealing with
the problem of geometry theorem proving as posed by Wu. One approach is centered around the
computation of a basis for the module of syzygies of the hypotheses and conclusion of a geometric
statement. We elaborate this approach and extend it to a complete decision procedure.

In geometry theorem proving the problem of constructing subsidiary (or degeneracy) con-
ditions arises. Such subsidiary conditions usually are not uniquely determined and obviously
one wants to keep them as simple as possible. The question of constructing simplest subsidiary
conditions has not been addressed yet. We show that our algorithm is able to construct the
simplest subsidiary conditions with respect to certain predefined criteria, such as lowest degree
or fewest variables.

key words: geometry theorem proving, polynomial ideals, syzygies, Grobner bases

1980 Mathematics Subject Classification: 13A15, 13F20, 51-04, 68C20, 68G15

0. Introduction

The work of Wu Wen-tsiin [Wu 1978], [Wu 1984] has renewed the interest in au-
tomated geometry theorem proving. He has developed a decision algorithm for a certain
class of geometry problems. The class of problems Wu considers (Wu'’s geometry, for short)
consists, intuitively speaking, of those problems that can be translated into algebraic equa-
tions over some ground field K, the number system associated with the geometry. For the
relationship between axiomatic geometries and number systems we refer to [Hilbert 1977).
Basically, Wu’s geometry allows to talk about incidence, parallelism, perpendicularity, co-
circularity, congruence, etc., but not about “betweenness”, because no order predicate is
available.

Often a geometric statement is true only in a “generic” sense, i.e. after certain de-
generate situations have been ruled out. Such degenerate situations typically occur when
triangles collapse to a line segment, circles to a point, etc. and they are usually not
explicitely mentioned. An automatic procedure for proving geometry statements has to
be able to deal with the problem of such “degeneracy” or “subsidiary” conditions, that
means it has to be able to automatically find suitable subsidiary conditions which make
the statement a theorem, if such conditions exist at all.

*) Work reported herein has been supported by the Osterreichische Forschungsgemeinschaft and by the
Austrian Fonds zur Férderung der wissenschaftlichen Forschung under Pro ject Nr. P6763.
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Whu has given a decision procedure for solving the geometry theorem proving problem.
His procedure also finds a subsidiary condition, if such a condition exists. Wu’s decision
algorithm has been partially implemented by himself and by Chou [Chou 1985]. Many
interesting theorems have been proved by these implementations, including Simson’s the-
orem, Pascal’s theorem, the Butterfly theorem and Feuerbach's theorems, Wu'’s algorithm

is based on the computation of characteristic sets of polynomial ideals, as introduced by
Ritt {Ritt 1950].

Different approaches to geometry theorem proving, based on the computation of
Grobner bases [Buchberger 65], [Buchberger 85] for polynomial ideals, have been reported.
In [Chou,Schelter 1986) Grébner bases over the field generated by the independent variables
of a geometric construction are employed. Kapur {Kapur 1986a,b| describes a refutational
theorem prover, based on Rabinowitsch’s trick for proving Hilbert’s Nullstellensatz. Kutz-
ler and Stifter {Kutzler,Stifter 1986a,b] describe various ways of applying Grobner hases
to this problem, one of which is centered on the computation of a basis for the module
of syzygies of the geometrical hypotheses and conclusion. This method is not complete,
However, we are able to extend it to a complete decision procedure.

As we have mentioned above, an automatic procedure for geometry theorem proving
must be able to find subsidiary conditions. Of course it would be of interest to keep the
subsidiary condition as simple as possible. Referring to his approach Kapur [Kapur 1986b)
claims that “conditions found using this approach are often simpler and weaker than the
ones reported using Wu’s method or reported by an earlier version of Kutzler & Stifter’s
paper as well as Chou & Schelter based on the Grobner basis method.” However, no
algorithm for computing the “simplest” subsidiary condition has been reported up to now.
Our algorithm is able to compute the “simplest” subsidiary condition by giving a complete
overview of the possible subsidiary conditions. Reasonable criteria for “simplest” might
be “of as low a degree as possible” or “involving only certain variables”.

The stucture of this paper is as follows. In chapter 1 we give a short introduction to
the theory of Grobner bases, reviewing definitions and basic facts as far as they will be
neccessary for the geometry theorem proving problem. In chapter 2 we define the geometry
theorem proving problem. We derive a complete decision procedure GEQ, which is also
able to compute the simplest subsidiary condition for a given instance of the geometry
theorem proving problem. Finally, in chapter 3 we demonstrate how GEQ can be applied
to concrete geometry problems.

1. The method of Grobner bases

We define the notion of a Grébner basis for a polynomial ideal as introduced by
Buchberger [Buchberger 1965, 1985).

Let K be a field and K{ey,...,,] (or K[{X] for short) the polynomial ring over
K in the indeterminates z,...,z,. Let [2;,...,2,] = [X] denote the monoid of power
products in ©1,...,2,. We start by choosing a term ordering <, i.e. a linear ordering on
{X] which makes [X] an ordered monoid and with z]---2% as the least element. With
respect to < every nonzero polynomial f € K[X] contains a highest power product, which

is called the leading power product of f, Ipp(f). The coefficient of lpp(f) in f is called the
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leading coefficient of f, le(f). The polynomial which results from f by subtracting the
leading power product multiplied by the leading coefficient is called the reductum of f, i.e.

red(f) = f - le(f) - lpp( ).

Every nonzero polynomial f gives rise to a reduction relation —s ¢ on K{X] in the
following way: g; — ¢ go if and only if there is a power product u with a nonzero coefficient
a in g1, i.e. gy = au + h for some polynomial A which does not contain u, such that {pp( f)
divides u, i.e. v = Ipp{flu' for some ', and g, = —prred(f) + k. If F is a set of
polynomials, the reduction relation modulo F is defined such that g1 —F g2 if and only
if g1 —y g2 for some f € F. In this case g; is reducible to g2 module F. If there is no
such g2, g1 is irreducible modulo F. For every set of polynomials F the reduction relation
—F is Noetherian, i.e. every chain f; —p fy —p - terminates. We say that g is a
normal form of f modulo F,if f can be reduced to g by a finite number of applications of
— g, and g is irreducible modulo F'. Normal forms are usually not unique.

If Fis the basis of a polynomial ideal I, then obviously f — 5 0 implies f ¢ [.
In general, however, the implication in the reverse direction does not hold. A nonzero
polynomial f might be irreducible modulo F' and still f € I.

Definition 1.1: Let I be an ideal in K{X]. A finite set of polynomials G is a Grébner
basis for 1 iff (G) = I (G generates I)and f € [ &= f —p 0, for all f ¢ K[X]. n

There are many equivalent definitions for Grébner bases. The interested reader may
confer [Buchberger 1985]. More importantly, however, every ideal I in K[X] has a Grobner
basis and a Grébner basis for I can always be computed starting with some basis F of I.

Grobner bases are an extremely powerful tool in commutative algebra. We mention
some applications, as far as we will need them in the subsequent chapters. For further
applications we refer to [Buchberger 1985], [Winkler et al. 1985], [Winkler 1986]. The
“main problem” of polynomial ideal theory, namely the question whether f ¢ I for a
polynomial f and a polynomial ideal I, can easily be solved once a Grébner basis G for T
has been computed: reduce f to its unique normal form modulo G and check whether this
normal form is 0. The identity I = J for two ideals I and J can be checked algorithmically
by computing Grobner bases G; and G for I and J, respectively, and then checking
whether every basis element in Gy is in J and vice versa. The membership problem for
the radical of an ideal I, i.e. f € radical(I)?, can be solved by computing a Grobner basis
G for (I,z- f — 1), where z is a new variable, and checking whether G contains a constant.

The computation of a Grébner basis is an important step in solving a system of
algebraic equations. The following elimination property of a Grobner basis with respect
to a lexicographic ordering of the variables has been observed by Trinks [Trinks 1978). It
means that the i-th elimination ideal of an ideal I with Grébner basis G is generated by
the basis elements in G that depend only on the first i variables.

Lemma 1.2: Let [ be an ideal in K{X] and G a Grobner basis for I with respect to the
lexicographic ordering < with #; <2y <+ < z,,. Then, for 1 <1 < n,

INnK[zy,... 2] = (GNKlzy,...,2]),
where the ideal on the right hand side is formed in Klzy,... ;).
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Proof: Obviously the right hand side is contained in the left hand side. On the other
hand, assume that f ¢ IN Klzy,...,z;]. Then f can be reduced to 0 modulo G with
respect to the lexicographic ordering <. All the polynomials occurring in this reduction

process depend only on the variables zy,...,z;, and we get a representation of f as a linear
combination of polynomials in G, where all the summands in this representation depend
only on q,...,x;. |

Given bases for the ideals I and J, bases for (fUJ) and I-J can easily be determined.
In general, however, computing bases for I N J and [ : J is a hard problem.

Lemma 1.3: Given bases for the ideals J and J in K[X], bases for the following can be
computed:

(a) INJ,

(b} I:J,

(¢} radical(l).

Proof: (a) For a new variable z we have
InJ =((z—-1IUz2J)nK[X).

From bases for I and J we immediately get a basis for {(z — 1)J U zJ). The intersection
with K[X] can be computed by Lemma 1.2,

(b) If J = (f), then compute a basis {91, g} of IN(f) by (a). {@1/Fr.. . gx/f} isa
basis for I': (f). In the general case J = (fi,-..s fm) we have

I:J:ﬂ(f:(f,-)).

(c) The zero-dimensional case is treated in [Kalkbrener 1987], {Kobayashi et al. 1988] and
the general case in {Kandri-Rody 1984], [Gianni et al. 1988]. =

Definition 1.4: Let < fi,..., fm > ¢ KIX]™ < g1,0..,9m > € K[X]|™ is a syzygy of
<frseoos fn > YT figi = 0. Fora subset M of K[X]|™, < g1,...,0m > is a syzygy of
M iff it is a syzygy of every element of Af. =

For a finite set M C K[X], the syzygies of Af are the solutions of a homogeneous
system of linear equations with coefficients in M. A (finite) set M C K[X|™ generates a
module over K[X], and on the other hand, as a consequence of Hilbert’s basis theorem,
every submodule of K[X|™ has a finite basis. The set of syzygies of a subset M of K[ X]™
is equal to the set of syzvgies of the module generated by M over K[X], and it forms again
a module over K[X]. The Grébner bases algorithm can be used to compute a basis for the
module of syzygies of M.

Lemma 1.5: For every finite subset M of K{X]|™ a basis for the module of syzygies of M
can be computed.

Proof: see [Buchberger 1985] for the case | Af |= 1 and [Winkler 1986] for the general case.
An alternative approach via extending the notion of a Grébner basis to modules is taken
in {Galligo 1979] and [Méller,Mora. 1986]. L
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2. Geometry theorem proving: a decision procedure

We consider a geometry whose associated number system is the algebraic closure K
of a field K, i.e. the geometric objects lie in K™ for some n € N. The statements we allow
have to be expressible in the form

(Vz € K™)[f:(z) =0A- A ffz) =0=> f(z) = 0] (2.1)

for some polynomials fi,..., f, fin K(z;,...,2,] = K[X]. The fi,..., fm are called the
hypothesis polynomials or hypotheses for short, and f is called the conclusion polynomial
or just the conclusion. Basically, this enables us to talk about incidence, parallelism,
perpendicularity, cocircularity, congruence, etc., but not about “betweenness”, because no
order predicate is available.

As an example let us consider the geometric theorem (in R?) that “for every triangle
ABC the lines orthogonal to the sides of the triangle and passing through the midpoints
of the associated sides have a common point of intersection”. Before we can express this
theorem algebraically, we have to place the triangle in a two dimensional coordinate system.
Without loss of generality we can assume that 4 is placed at the origin, 4 = (0,0}, and
that the side AB is parallel to the z—axis, B = (a,0). No restrictionis put on C, C = (b,¢).

f\.y C (bic')

A' (oto') // 1-F1

The equations for f;, f, and f are

fl(m}y) =T — é‘a:

folz,y) = b(z — %b) + e{y — %c),

F(2,9) = (@ =b)(z ~ 5(a—8)) + ey — 30).

In order to prove the theorem, it suffices to show that f vanishes on the variety of (fi,f2) C
R(a,b,c)[2,y], or in other words that f ¢ radical(f1,f2). By the method described in
Chapter 1 this problem can be decided by computing a Grobner basis for (f1, f2,2- f ~ 1)
in R(a, b, ¢)(z,y]. The computation can be carried out completely over the field Q(a,b,c),
yielding the Grébner basis {1}. So f is indeed in the radical of (f;, f2) and the theorem is
proved. A geometry theorem prover along these lines is described in {Chou,Schelter 1986].

An important step in this approach is the transition from the question whether a
polynomial f vanishes on the variety of an ideal I to the problem whether f isin the radical
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of I. That is only possible if the varieties are defined over an algebraically closed ground
field. So, for instance, one cannot decide geometric statements in real space but only in
complex space. Theorems in real geometry can only be confirmed, but not disproved. For
actually deciding statements in real geometry one has to consider the theory of elementary
algebra and elementary geometry, based on real closed fields. This theory has been shown
to be decidable by Tarski [Tarski 1951} and has become known as Tarski algebra. Tarski’s
decision procedure has recently been improved in [Collins 1975}, {Ben-Or et al. 1984] and
[Grigor’ev 1988].

Often a geometric theorem is true only after certain degenerate situations have been
ruled out by a nondegeneracy or subsidiary condition. As for the hypotheses and the
conclusion, we require that the subsidiary condition be expressible by a polynomial, this

time by a polynomial inequatijon of the form s(z1,...,2,) # 0. So the problem becomes
to decide whether for given fi,..., fin, f and s in K[X]
(V2 € K™)fi(z) = = fm(e) = O A s(2) # 0 = f(z) = 0]. (2.2)

Moreover, as we have mentioned above, in a geometry theorem proving setting it is rea-
sonable to require that a subsidiary condition be determined algorithmically.

So we arrive at the following formal specification of the geometry theorem proving
problem posed in {Wu 1984]. Let K be a field, K the algebraic closure of K.

given:  polynomials f1,..., fim, f in K[X]

decide: does there exist a polynomial s € K[X] such that

(1)d(va: £ f(“) (filz)=...= fm(z) =0 A s(z)#0 = flz)=0)
(2) (32 € B™) (file) = ... = fr(e) =0 A s(z) £0)?

If so, find such an s.

Part (2) in Pw, guarantees that the subsidiary condition does not exclude all points on
the variety of f1,..., f,.. Sometimes it seems natural to use a finite number 81,08y of
subsidiary conditions, replacing s(z) in Pw, by s;(2) # 0A ... A s,(2) # 0, thus getting
a modified problem. However, it can easily be seen that a single subsidiary condition s
is sufficient. The factors of s satisfy the modified problem, and if s3,...,s, satisfy the
modified problem, then their product sy - ... - s, safisfies Pyy,.

In [Wu 1984] Wu describes a decision algorithm for P, which has been partially
implemented by himself and by Chou [Chou 1985]. Wu’s algorithm is based on the com-
putation of characteristic sets of polynomial ideals, as introduced by Ritt [Ritt 1950}, In
this paper we solve Py, by computing a basis for the module of syzygies of the geomet-
rical hypotheses and conclusion, thus getting also a method for computing the simplest
subsidiary condition,

Theorem 2.1: Let fi,..., fm, f be the parameters of an instance P of Py.,.
(i) Those polynomials s € K[X], which satisfy part (1) of P, constitute an ideal Np.
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(ii) Forevery s € Np there exist sy,...,3m € K[(X)and k € N, such that < 81,...,8,,,4*.

C P> s asyrygy of < fiyo f f > 0 sy fi bt o fn b ot AL g,
(i) < s1,...,8m,8 f* 1> keN,is a syzygy of < fi,..., fm,f >, then s € Np.
(iv) If we let

SP ={‘,|< 81)..,8m,8> 15 a syzyqy Of <.f1:"':fm:f> fOT some "1!"'?"711-}!
then Np = radical(Sp) : (f).

Proof: (i) Suppose both s; and s; solve part (1) of P. Now let t;,£; be arbitrary poly-
nomials, and let ¢ € K™ be such that fi(z) = ... = fm(z) = 0 and (t18; + t283)(z) =
t1(z)  81(z) + 15(2) - 3(2) # 0. Then either s;(2) £ 0 or s2(z) # 0. W.lo.g. assume that
81{z) # 0. But then f(z) = 0, since s, is a solution of part (1) of P. So also t8; + ty3, is
a solution of part (1) of P,

(ii) Since s € Np, we know that s - f vanishes on every common zero of fi,..., f. in K,
That, however, means that s - f is in the radical of (fi,-..,fm), and a power of s - f, say
s* . f* keN, isin (fi,..., fm). Therefore, for some s, ..., 8, € K[X],

st fit o sm fm+ sk fF =0,
e <a1,...,8m,8% fF1 > is a syzygy of < fi,..., fm, f >.

(i) s1-fr+- 4 8m - frn+85 fF=0, 50 for every ¢ € K™

F@) == Fule) =0 A o(2) £0 =5 f(z) =0,
(iv) Clearly Sp is an ideal in K[X]. By (ii) and (iii)

Np={se K[X]|s* f*=! ¢ $p for some k > 1}.

If s € Np, then s*f*~! ¢ Sp for some k > 1. So s*f¥ € Sp. This, however, implies
sf € radical(Sp) and therefore s € radical(Sp) : (f). On the other hand, let s €
radical(Sp) : (f),i.e. sf € radical(Sp). Then s*f* € Sp for some k > 1. So s*tifk e g,
and therefore s € Np. [ ]

By Lemma 1.5 a finite basis for the module of syzygies of a sequence of polynomials
can be computed. So for every instance P of Py, one can compute a finite basis for the
ideal Sp. From the basis for Sp a basis for Np can be computed by Lemma 1.3. Hence,
we have a complete overview of the solutions of part (1) of Pw,. The remaining question
is, whether there is a solution of (1), which also satisfies (2).

Theorem 2.2: Let P be an instance of Py, B a finite basis for Np.
(i) If there is a polyomial in Np which satisfies (2), then there is a polynomial in the
basis B which satisfies (2).
(i) If B is a Grobner basis for Np with respect to the term ordering <, B’ is the set of
those b € B satisfying part (2) of P, and t = min{lpp(b) | b € B'}, then for every
solution s of P, lpp(s) > t.

Proof: (i) Let fi,..., fm,f be the parameters of the instance P of Py, and B =
{b1,...,b.}. Assume that no basis polyomial b;, 1 < i < r, satisfies (2), ie.
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(5) Set B = {h/f|he C"}. Bisa basis for radical(Sp): (f) = Np.

(6) Check the polynomials b in B for b ¢ radical(l), where I = (f1,...,fn). If Bisa
Grobner basis with respect to the term ordering < and b is the element of B with the

least leading power product satisfving b ¢ radical(I), then b is the simplest subsidiary
condition. Set s = b and stop. Otherwise output “no”.

3. Examples

We use the decision algorithm GEO to prove that

“if Py and P, are two points on a circle and M is the midpoint of P; and P, then
the line through M and perpendicular to P, P, contains the center of the circle”.

The hypotheses of the given instance P of Py, are Pi{zy,y1)
frz 2% i — 2} -yl
(P1 and P, are points on a circle with center (0,0)) AN~

far a(@a ~ 21) + b(y2 — y1) o=
((g) is perpendicular to P, P,) \ Po(za,y0)

and the conclusion is

Froa{yy +y2) = b(zy + @)
(the line y = £z contains M, the midpoint of P, and P;)

First we compute a basis for the ideal Sp, i.e. the third component of the module
of syzygies of (f1, fa, f). A Grébner basis for tdeal(f1, f2, f) in Qla,b,z1, 22,91, y2] Ww.r.t.
the lexicographic ordering witha < b <2y <2, <y, <y, is

1

1 1 1
{f.h f?a f’ f3 = a'byl - 5&21‘2 - *2‘(12232 - ‘2‘b2.’81 + ”2“(12231}.

From the Grobner basis we immediately get a basis for the module of syzygies of
< f1, f2, fs, f >. By an algorithm described in [Buchberger 1985] this syzygy basis can be
transformed to a basis of the syzygies of < fy, fa, f >:

(—b$y2 'l"ylsml - 3:2):

(—a,22 + 21,92 —w1),
(0,ay2 + ay1 — by — bay, —bys + byy — azy + azy),
(2aby; — b*zy — a’zy — b2y + a’zy,ay; — ay? + ack — az?, ~bys + by? — bel + be?).
So Sp = (22 ~ 25,92 —y1) and C = {z2 — 21,10 — w1 }.
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