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EFFICIENT COMPUTATION OF FUNDAMENTAL INVARIANTS -
AN APPROACH USING BUCHBERGER'S GROBNER BASES METHOD

BERND STURMFELS* AND NEIL WHITE*}

for (a) uses classical ideas as well as modern results of Kempf, Hochster, Eagon and Roberts, and it gener-
alizes to infinite reductive algebraic groups provided a computable Reynolds operator and ideal generators
for the nullcone are given.

1. Introduction. Let T he g finite group acting linearly on the polynomial ring
R = Clzy,2,,. .. yZx], and let R be the subring of invariant polynomials. A Reynolds
operator for the invarians ring RY' is given by

'R - RT
(1) fomofoe %Zo(f).

cel’

In other words, * is an R -module homomorphism such that *Irr is the identity on the
invariant ring RT.

By Hilbert’s classical finiteness theorem [Hil] there exists finite set F ¢ R of fun-
damental mvariants, i.e. the invariant subring Rl = C[F] is finitely generated. Another
classical result due to E. Noether [Noe] states that the elements of F may be chosen of
degree less than or equal to the group order |I'l, which implies the existence of a finite yet
impractical algorithm for computing such a set F.

In & recent article G.R. Kempf summarizes the state of the art concerning the compu-
tation of invariants [Ke2]. Classical ideas are combined with a recent theorem of Hochster,
Eagon and Roberts [HoR],[HoE] to yield an algorithm for computing a fundamental sys-
tem of primaery and secondary invariants. A very nice and elementary exposition on the
invariant theory of finite groups and its applications to coding theory is found in N.J. A
Sloane [Slo].

In Section 3 we summarize the method described in [Ke2] from a computer algebra
point of view. As Kempf points out, “this algorithm uses some commutative algebra which
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is now on the level of computer programmable calculations” [Ke2, pp.82], but he gives no
hint as to how to actually implement certain techniques from commutative algebra, such
as testing algebraic dependence or containment in (modules over) subrings of R.

It is the objective of the present note to close that gap by showing that all neces-
sary steps can be programmed easily using B. Buchberger’s Grébner bases method. This
approach seems very promising from a practical point of view since Grobner bases are
implemented in many widely available computer algebra systems.

2. Four commutative algebra subroutines based on Grébner bases.

Let us briefly recall some basic definitions concerning Grébner bases. For a detailed
account on computational algebraic geometry and its applications we refer to Buchberger
[Bul], [Bu2] and the references given there. All definitions and results in this section
remain valid when C is replaced by an arbitrary field.

A total order “<” on the power products :cila:éz ...z% in the polynomial ring R =
Clzy,@9,... ,2,] is called admissible if p#1 = 1 <p,and p<q = pr < qr for
all power products p,g¢,r. Given any ¢ € R, we write lead(g) for the leading term of
g, that is, the maximal (w.r.t “<”) power product with non-zero coefficient in g. The
initial ideal Init(I) associated with an ideal I C R is the monomial ideal generated by
{lead(f) | f € I}. Aset G={g1,qs,... , 91} of generators for I is said to be a Grébner
bases for I with respect to the order “<” if the initial ideal Init(I) is generated by
{lead(g1), lead(gs),... ,lead(gr}}. As is customary, we assume the elements of G to have
leading coefficient 1. An important property of Grébner bases is that they provide a fast
normal form algorithm for the residue classes modulo 7. The first algorithm to compute
Grobner bases, given by B. Buchberger in 1965 (see [Bul]), has been refined many times
since, and today quite efficient implementations are available in many computer algebra
systems [Bu2].

One of the most frequently used admissible order is the purely lezicographical order
induced from a given variable order, say z; < 2, < ... < Zn. That ordering is defined by
wil T & wfl ...zt if there exists m, 1 <m < n, with 2, < hp, and for all § > m,

In the following we summarize four commutative algebra “subroutines” based on Buch-
berger’s method which will be applied to invariant theory in the next section. Whenever
the monomial order is unspecified, any admissible order will work for the Grobner bases
computation.

SUBROUTINE 2.1. (Radical containment [Bu2, Theorem 2.5.1])

Input : fl:f?v'-' :fTrug € R
Question : Let I =< fy,..., fm > be the ideal generated by the fi’s. Is ¢ € Rad(I)
(the radical of I') 7

Solution : Let G be a Grobner basis of < fisfo,ooo s fm, 92 — 1 >, where z is a new
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variable. g € Rad(I) if and only if 1 € G.

SUBROUTINE 2.2. Solvability of homogeneous equations [Bul, Method 6.9]
Input : Homogenous polynomials f1, fa,... , fm € R.

Question : Is there a non-zero vector x € C™ such that f1(x) = fa(x) = ... = f(x).
Solution : Compute a Grébner basis G of the ideal I =< fi,f2,..., fm > We have
Rad(I) =< z1,22,... ,&n > (i.e., there is no non-zero solution) if and only if a power

product of the form z!* occurs among the leading terms in G for every i, for 1 <1 <n.

Remark : An alternative but worse solution would be applying Subroutine 2.1 with ¢ := z;
foralli=1,2,... ,n.

SUBROUTINE 2.3. (Algebraic Dependence [Bu2],[Stu])
Input : F = {fi,f2,...,fm} C R, where m < n, considered as subset of the field
Clz1y... ,2n)
Questions : Is F' algebraically dependent over C ? If so, find an m-variate polynomial P
such that P(fl, fg,. . ,fm) =0 in R.
Solution : Introduce m new “slack” variables yi,... ,ym, and compute a Grébner basis
G of {fi —yi,f2—vy2,--., fm —ym} with respect to purely lexicographical order induced
from y; < ... <ym <2y <...<xp Let G' := G N Clya,...,ym). F is algebraically
independent if and only of G' = (. On the other hand, if P(yy,...,ym) € &', then
P(yiy... yym) =10 in R.

SUBROUTINE 2.4. (Containment in subrings [Stu, Prop. 5.1})

Input : fl'.\fZa-- : afm¢ g € R.

(Question : Is ¢ contained in the subring C{fi,..., fm] of R 7 If so, find an m-variate
polynomial Q such that ¢ = Q{f1, f2,... ,fm) in R.

Solution : Compute the Grébner basis G as in 2.3, and let Q(&1,...,&nY14.++ yUm) be
the unique normal form of g with respect to G. Then ¢ € C[fy,..., fm) if and only if
@ is independent of the z;’s, i.e. @ = Q{y1,...,ym). In that case we have the identity

g = Q(fl:f2:"' :fm)

3. Computing fundamental invariants.

We describe the basic steps in the computation of a finite set of fundamental invariants
for action of a finite group I" on R. Most algebraic results underlying these steps are
well known in invariant theory. For details the reader is refered to Diendonné & Carrell
[DiC], Kempf [Kel],[Ke2], Sloane [Slo], Stanley [Sta], and the references given there. We
summarize the algebraic results needed for the special case of a finite group in order to
give a correctness proof for the proposed algorithm.
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We mention parenthetically that the computation generalizes in a straightforward man-
ner to infinite reductive algebraic groups provided the Reynolds operator * and the ideal of
the nullcone are given effectively. In the finite case, the Reynolds operator * is computed
using formula (1), and the ideal of the nullcone equals M =< zy,24,...,2, >, i.e., it
is the maximal ideal generated by the coordinate functions. The latter fact is proved in
Lemma 3.3. We order the set of nonconstant monomials in R by any admissible linear
extension of the total degree : my <my <mg <my <....

ALGORITHM 3.1.

Lett:=0 and Q:={}.

Repeat ¢ :=#+1 until m} # 0 and m} ¢ Rad(< Q >) (using SUBROUTINE 2.1).

Let Q@ = Q@ U {m}}. If Rad(< @>) # M go to1 (using SUBROUTINE 2.2).

If @ is algebraically independent over C (using SUBROUTINE 2.3).

3.1. then P = Q;

3.2, else modify the set Q to an algebraically independent set P of invariants with

Rad(< P >) = M (see below).

4. Write P = {P1,Py,..., Py}, let §:= {1}, and let bound = Y_,_, degree(P;) — n.

5. Lett:=t+ 1. If degree(m;) > bound then STOP. In that case P and S are primary
and secondary invariants respectively (see below), and their union generates R’ as a

W=D

ring.
6. If mi{ ¢ C[PUS) (using SUBROUTINE 2.4)
6.1 thenlet § := 8 U {m}}. Go to 5.

Let us outline a proof of correctness for Algorithm 3.1.

PROPOSITION 3.2. Algorithm 3.1 terminates with finite sets P = {Py, P;... ,P,} and
§ = {S81,82...,5k} (S1 = 1) such that the invariant ring RY is a free C[P]-module with
basis §. In other words, for any f =& R, there exist unique polynomials f; € R such
that

k
F=> fPy... ,P.)- S
i=1

This implies in particular RT = C[P U §].

LEMMA 3.3. Let I' denote the ideal in R generated by all homogeneous invariants of
degree > 1. Then Rad(I') = M.

Proof of Lemma 3.3. Note that IT is generated by the (infinite) set {m¥,m%, m3,mJ,...

that is, I' a subset of the radical ideal M. By Hilbert’s Nullstellensatz, it is sufficient to
show that the zero set V(IT) of I in C" is contained in V(M) = {0}. More precisely, we
shall prove that x # 0 implies x ¢ V(IT) for any x € C*
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Suppose X # 0. The underlying representation of T' over C* maps every ¢ € I' onto
an invertible matrix, and we have 0 ¢ I'x = {ox € C" | ¢ € I'}. The set I'x is Zariski
closed in C™ because the group I' is assumed to be finite, Hence there exists a polynomial
function f € R such that f(0) =0 and f(ox)=1 forall o €.

Symmetrizing the polynomial f, we obtain an invariant f* which is contained in IT
because f*(0) = 0. On the other hand we have f*(x) = _Ifl‘_i Yeer fox) = 1, and thus
x & V(Y. [

Lemma 3.3 shows that the condition in step 2 will eventually be satisfied. Indeed, the
resulting set P will be optimal with respect to degree. If P is algebraically independent,
then it contains precisely n elements. If this is not the case, we can perform step 3.2 as
follows.

First delete succesively elements p € P with p € Rad(< P\ {p} >) (using SUB-
ROUTINE 2.1). Only if the resulting set P has still more than n elements, (which will
probably rarely be the case), then we can proceed as suggested in [Ke2, Theorem 3]: We
replace the elements of P by appropriate powers in order for all invariants in P to have
the same degree. Pick randomly n-|P| rational coefficients to form n linear combinations
of the p; € P, and replace the old P by these. By Hilbert’s normalization theorem these
will be algebraically independent with probability 1. To make sure, go to step 3.

At this stage, we pause to ask the following question. If we choose the lexicographically
smallest set of m} which are algebraically independent of cardinality n, then is their radical
equal to M 7 If so, then with that set as P we need not perform the normalization step,
and we avoid the high powers of the previous paragraph.

The correctness of the remaing steps and thus the proof of Proposition 3.2 follows now
from the following theorem which combines the the Hochster-Eagon—Roberts theorem on
the Cohen-Macauleyness of R" [HoR],[HoE] with a degree bound given by G. Kempf [Ke2].
For more details see Kempf’s exposition in [Kel].

THEOREM 3.4. (Kempf, Hochster, Eagon, Roberts) Let P = {P;,P;...,P,} be
a set of algebraically independent invariant generators of I¥. Then there exists a finite
set of invariants & of degree bounded by 3.,  degree(P;) — n such that RY is a free
C{Pl-module with basis S.

Let us see in a very simple example to show how Algorithm 3.1 works and why we
distinguish between primary and secondary invariants.

Example 3.5. Consider the action of the cyclic group I' = {1,6,6%,6%} of order 4 on
R := Clz,y] which is given by é : 2 — y, y = —2. An admissible total degree order on

the monomials is given by

x<y<m2<$y<y2<a:3<:52y<$y2<y3<m4<w3y<....
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Clearly 2* = y* = 0. (The underlying linear representation of I is irreducible, hence there
is no invariant 1-form !). For degree 2 we have p; := (2%)* = (y2)* = 1(2? + ¢?) and
{zy)* = 0. There are no invariants of degree 3 since (z%)* = (z2y)* = (zy?)* = (v*)* = 0.
Next, we have py = (a*)* = Z(a? 4+ y*) = p,, and the condition in step 2 is satisfied:
Rad(< p1,p2 >) =< @,y >, and bound := 4 in step 4. Cleatly, P = {p1,p2} is
algebraically independent.

Let s; := 1 and consider the next monomial 2°y. We have s, := (2%y)* = 1(a¥y -
zy®), and we check that s, ¢ Clp1,p2,81), i-e., sz cannot be written as a polynomial in
P1,p2,81. For the next monomial z%y* we have (2?y?)* = 2%y? = —py +2p?. If not
already precomputed, the identities (zy®)* = —(23y)*, (y*)* = (2%)* € Clp1,p2, s1] will
be discovered next. Next, in step 5, the bound is exceeded, and the program comes to a

STOP.

We conclude that R' = C[py,pa] + Clpi,p2] - s2, and we find (using the Grébner
basis computation in SUBROUTINE 2.3) that the syzygy ideal of relations among py, ps
and sz is generated by ~s3 + 3pips — 2p} — pi. (Note that s, is necessarily integral over

Clp1, p2]). In other words, we have imbedded the orbit space C?/I" into affine 3-space C?

as the hypersurface 2? = 322y — 22* — y2.
Y
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