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Abstract. Using methods from algebraic combinatorics, we prove that the set of
(r + 1) x (r + 1)-minors of a generic m x n-matrix forms a reduced Grébner basis (for
certain term orders). This yields an eflicient normal form algorithm and an explicit Stanley

decomposition for the coordinate ring of matrices with rank < r.

1. Introduction

In this paper we study classical determinantal varieties from a computer algebra point of
view. We obtain efficient algorithms for computing with polynomial functions on matrices
of bounded rank by explicitly describing the reduced Grobner bases of the corresponding
vanishing ideals.

Recently A. Kovacec [Kov| has obtained a characterization for the reduced Grébner
bases of ideals generated by elementary symmetric functions. Both Kovacec’s and our
results fit into a larger program, suggested by B. Buchberger, which aims to “predict”
Grobner bases for important infinite families of ideals. Whenever such characterizations
are possible, one can use many tools from Grébner bases theory (e.g. normal form al-
gorithms) without ever having to compute a Grobner basis, which is usually the most
time-consuming step. For introductions and references to Grébner bases theory we refer
to [Bul],[Bu2],[SW1].

Let K[X] denote the polynomial algebra freely generated by the entries of a generic
mxn-matrix X = (2; ;) over afield K of characteristic 0. We view K[X] as the coordinate
ring of the mn-dimensional vector space K™*™ of m x n-matrices with entries from K.
We write 7, C K[X] for the vanishing ideal of the affine subvariety K**™ of matrices

of rank at most » < m,n. In this paper we prove the following result.

Theorem 1. The set of (r + 1) x (» + 1)-minors of X is the reduced Grobner basis of

T, with respect to the lexicographic term order induced from the variable order 1, >
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The proof of Theorem 1 will be given in Section 3. 1t is based on two well-known results
{from algebraic combinatorics, namely the Doubilet-Rota-Stein straightening algorithm and
the Knuth-Robinson-Schensted correspondence for Young bitableaux. With an exposition
of these techniques in Section 2 we cxpress our belief that many interesting connections
between combinatorics and computational algebraic geometry are yet to be explored.

In Section 4 we discuss some computational implications of Theorem 1. Section 5 con-
tains a more combinatorial application. Using a theorem of A. Bjérner on the shellability
of higher-order complexes [Bjo], we derive an explicit Stanley decomposition ISW2] of the
quotient ring K[X]/Z,. This generalies a result of Billera, Cushman and Sanders [BCS]

who settled the special case » = 1.

2. Tools from combinatorics and invariant theory

We use the abbreviation

Tl Tlipr o0 Tlp,
Tloypy  Tlo,pa o0 Tlyyp,

(Lily .. lsipape - ps] = det , , , . (1)
T'lnu’ﬂ't mlsuPZ Lt wi,,,p,,

for the minors of the generic m x n-matrix X. A product of minors B =

[lllli2 < -'{131|P11P12 ---plslj UZ] . -12.-;2!?32}, . 'P232] S [lul . --lus,,lpyl .. -Pva,,] (2)

will be called a (Young) bitableaur provided s3 > 5, > ... 2 5,, and [;; < l;j41 and
Pi; < pij+1 forallz,7. (These expressions correspond o the bitableaux in the letter place
algebra of [DKR)]: “I” stands for “letters” and “p” stands for “places”.) The integer s,
will be called the length of the bitableau B. The bitableau B is said to be standard if
Lii < lijrr and pij < piga,y forall 4,7

There is a natural N®*™.grading on the ring K[X] which is defined as follows. The

aij

degree of a monomial m = 1Il;;z;” is the integer vector

deg(m) =  (Zja15, 55, ooy Bitmj 3 DiGi1s Didhiny -+ Dilin ).

In other words, deg{m) is the vector of row and column sums of the m X n-exponent
matrix of the monomial m. Every bitableau B & K[X] is homogeneous of {multi-)degree
deg(B). In the combinatorics literature the integer vector deg(B), viewed as a pair of

multisets, is usually called the content of the bitableau B.
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We now discuss a certain bijection between the monomials and the bitableaux of
fixed degree. Such a one-to-one correspondence follows from a combinatorial algorithm
of D.E. Knuth [Kn2] which generalizes earlier constructions due to G.B. Robinson and
C. Schensted [Sch]. We refer to R. Stanley [Stal for a discussion of the Knuth-Robinson-
Schensted correspondence and its application in the theory of symmetric functions. Ap-
plications to sorting algorithms are given in [Knl, Section 5.14].

The basic idea is the following. Every monomial m = Hle-’lfl,-,p,- of total degree d

corresponds uniquely to a “generalized permutation”

L b Iz ... 1y (3)
Pr P2 Pz ... Pd

where [} <1, <3 <... <ly,and if I; = I;; then p; < p;o(. The length g of the longest
strictly decreasing subsequence p;, > py, > ... > pi, in the sequence p1,p2,ps,...,Pa
is called the width of the monomial m. Observe that width{(m) = 1 if and only if

m = I1;[l;|p;] is a standard bitableau,

Proposition 2. [Knuth-Robinson-Schensted] There exists a bijection, denoted £ : m —
B, between all monomials and all standard bitableaux in K[X] such that

(1} deg(m) = deg(B), and

(ii) width{m) = length{B).

As the second tool for our proof of Theorem 1 we will need the straightening law
for bitableaux given by Doubilet, Rota and Stein [DRS]. For additional details we refer
to Désarménien, Kung and Rota [DKR] and DeConcini, Eisenbud and Procesi [DEP]. In
Section 3 we will discuss the straightening formula from a complexity point of view. Here

we only need some of its theoretical properties.

Proposition 3. [Straightening law] Every bitableau B ¢ K|[X] can be wrilten as a
K -linear combination B = Zf\il AiB; of standard bitableaux B; such that deg{(B) =
deg(B;) and length{B)} < length(B;} for i = 1,2,...,N.

The Knuth-Robinson-Schensted correspondence, together with an easy counting ar-
gument, implies that the representation in Proposition 3 is necessarily unique. This consti-
tutes an alternative proof for the second part of the standard basis theorem which avoids
both the use of the Capelli operator (as in [DKR]) and Hodge’s straightening law for the
Grassmann variety (as in {DEP]). Our counting argument will yield the following stronger

version of the basis theorem.



Proposition 4. [Standard basis theorem] Every monomial m ¢ K[X] has a unique
representation m == Z?:l M\ B; as a K-linear combination of standard bitableaux. In

this representation we have length(B;) < width(m) for all 1 =1,2,...,N.

In order to prove Proposition 4, we need to introduce some notations. Fix de N™tm
and consider the graded component K[X]; as the free K-vector space generated by the
monomials of degree d. We can write K[X|; = B, K{X]qw where K{Xl4.w denotes
the subspace generated by the monomials of degree d and width w.

Let S, denote the free K -vector space generated by all standard bitableau of degree d,
and write S; = .., Saw where Sy, denotes the subspace by all standard bitableau of
degree d and length w. All these K -vector spaces are finite-dimensional, and Proposition 2

implies that

d’i?’?l}((I{[X]d,w) = diﬂII{(Sg{,m) (4)

Expanding bitableaux as K-linear combinations of monomials of the same degree defines

a linear map

expand : Sq —  K[X4l. (5}

Proposition 3 states that every monomial m of degree d is a linear combination of standard
bitableaux with degree d. In other words, the expansion map (5) is surjective.

If follows from {4) (i.e. from the Knuth-Robinson-Schensted correspondence) that the
expansion map (5} is a K-vector space isomorphism because every epimorphism between
vector spaces of the same finite dimension is automatically injective. The (unique) inverse

of {5) is the straightening map
straight © K|{X4 — Sa (6)

Hence the standard tableau representation in Proposition 3 is automatically unique.

Proof of Proposition 4. Fix d ¢ N™™ and L € {1,2,...,m}. Restrict the expansion
map (4) to the subspace @ij“‘ Sq generated by the standard bitableaux of degree d
and length at most L. It is easy to see that every such bitableau expands into monomials

of width at most I, and hence we obtain an induced map

i3 i
expand @ Siw @ K[X]d,w (7).
w1

w1

Since the expansion map (5) is injective, also the induced map (7) is injective. Again by
(4), the vector spaces on both sides of (7) have the same finite K-dimension, and therefore
also the induced map (7) is both injective and surjective. Consequently the straightening
map (6) satisfies straight(K(X]er) C p-

840 This proves Proposition 4. A
w=] y



3. Proof of the main result

We are now prepared to prove Theorem 1. Let “<” denote the term order on K{X]
defined in the statement of Theorem 1. Consider an (r + 1) x (v + 1)-minor D :=

Uily o lows|pipe oo pryr] where I <y <o <D gy and p; < p2 < ... < Pri1s

[£4

Lemma 5. The leading term of D with respect to the term order “<” is given by

7’”’”([3) = Tlpeps Plagps Tlapecr o0 Bloanpse

Proof. Consider the Laplace expansion of the determinant D with respect to the first row.
Clearly, =1, p,., is the most “expansive” variable occuring in ). By induction on », we

may assume that Lemma 5 holds the cofactor of z, ,,. Thus we have

iﬂit([lz...lr_‘_ll‘pl PT‘}) ey m;z,pr .’Bln,p)_l mlr-}«l:pl'

This implies the claim. 4
Consider the set

QT,H_ = {[5152---3r4-1|P1P2---Pr+1} 1< Iy < oo < ligy and pr <pz <... <p7‘+1}

of {r + 1) x (r + 1)-minors of X, and let wnit(Gry1) denote the mononial ideal generated

by the initial terms of G,4q. From Lemma 5 we obtain

Lemma 6. A monomial m € K{X] is in init(Gry1) if and only if width(m) = r + 1.

Proof of Theorem 1. Since Gp.; generates the ideal I, it suffices to show that every
non-zero polynomial in 7, is reducible modulo the set G.i1 with respect to the term
order “~<".

Suppose that there exists an f ¢ I, \ {0} which is is irreducible modulo Gri1,
and let f = Y . A m; with A; # 0 be its monomial expansion. Since [ is irreducible,
Lemma 6 implies that width{m;) < r. Using the straightening algorithm (Proposition 4)
we can write my; = Zj pij B35 where the B;; are standard bitableaux with length(Bz-j) <

width{m;). Hence the (unique) expansion

foo= Z)‘iﬂ'ijBij (8)
1,3

of f into standard bitableaux satisfles length(Bij) < r.
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On the other hand, f is contained in the ideal I,., which is generated by the
bitableaux of length > » + 1. Write

f = Z a; (9)

7

where a; € K and the C; are (possibly non-standard) bitableaux with length(C;) > r-1.
Applying the straightening algorithm (Proposition 3), we obtain C; = Z;‘ Bij Di; where
the D;; are standard bitableaux with length{D;;} > length(C;) > » 4+ 1. From (9) we
get

fo= ) @fBiDij. (10)

i

In (8) we have written f as a K-linear combination of standard bitableaux of length < r,
and in (10) we have written f as a K-linear combination of standard bitableaux of length

> 7+ 1. Since f was assumed to be non-zero, this is a contradiction to the standard basis

theorem (Proposition 4). This proves Theorem 1. A

Remark 7. The set G,y is the reduced Griébner basis of 7, also with respect to the
lexicographic extension of any variable order which respects the rows and columns of X,

This follows easily by symmetry arguments.

In particular, Theorem | remains valid if we replace the order *~<" by the lexicographic
term order induced from the (perhaps more natural) variable order @11 > 252 > ... >
Tin > Tog > By > .. > Tam D oeee... > T > Tga > ... > Tmon. Por the purpose
of this paper we prefer the term order “<" because it fits easier into the combinatorial
scheme of Section 2.

We close with the observation that ¢,;; is, in general, not a Grobner basis for lexi-
cographic term orders which do not respect the rows and columns of the matrix X. For
example, if n = m = 3 and » = 1 then the reduced Grobner basis of Z; for the lexico-
graphic term order induced from x| > ©yy > maz > Tag > iz > Ty > Tiz > Typ O Tag

equals

{ Ti11%22 — T12®21, E31T33 — T13Pzr, Ti1¥3 — T3Py, T1®zz — T12831,
Lo2T33 — Tp3T3z, T13%93 — Tiz®a3, L32T3y — T21®32, Ti2%33 — L13¥32,

L2iL3a — Taa®zr, Ligipa®ay — m21-”3133’732}-

The underlined leading terms show that the tenth polynomial is irreducible with respect

to the nine others. Hence ¢y is not a Grobner basis {for this term order.
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4. Computational applications

In this section we discuss some computational applications of Theorem 1. We write R, =
K[X]/Z, for the ring of polynomial functions on m x n-matrices of rank » or less. By
standard abuse of notation, monomials in K[X] are identified with their images in the
quotient ring R.,.

Since Gppq is a Grobuer basis of R, the set of monomials not contained in #n4t(Gy.p1)
forms a K-vector space basis for the residue ring R, [Bul, Lemma 6.7}. From Lemma 6

we obtain

Corollary 8. Every element f in R, can be written uniquely as a K -lincar combination

NFE.(f) = Y. \im; of monomials m; with width(m;) <r.

This normal form NF.{f) can be computed easily with the normal form subroutines

which are available in many Grobner basis implementations (e.g. in MAPLE).

Example 9. We consider the case m = n == 5, that is, we are working in the polynomial
ring K[X] with 25 variables 2;;. Let r = 2. Then the Grobner basis Gz of 7, consists
of all 100 3 x 3-subdeterminants of X. Given a polynomial function f € R, on the
subvariety of matrices with rank < 2, then NF(f)} is ils unique expansion in terms of

monomials of width < 2.

(a) For f == mizmaszs; — TipT93ws; we have
NF(f) = Ty11Te2®ez b TiaWa1Taz - T12T21%3s - T11723T32-

(b) For g = ®15@24733T4225; we have NF{g) =

3Ti11T2pT33Taass — 22112022033 TesT54 — I T T22T34Ty3 L5 -+ T11T22T34Ta5 sy
+ L11T2Ta5TasTsa — L1123 T2 LeaTss + 2213 T23W32Ta5T54 2m11223 T34 L4255
— L1 L3 L3445 Tsy + 2B1194 T2 Ta3Tss - V11 T2 TI5T42Tsy — T11T25T32T43Ts4
— 2212801 T33T44Tss + 21T B33 TasTra + 2T 2 To1T3aTe3Trs - L1221 T34 L5 53
- L312T1Wa5T43Bs4 + T12T23 31844855 — T12T2381T45Ts54 — L12%823834T41T55
+ X12T3L34Ta5Ls1 T T13L21T32T44T55 — T13L21L32T45T54 — T13T24T31 L4255

+ T13T24T35T41T52 — T14T21L32T43T55 1 T14Te5T31 242853 + L15T21T32T43T54- £\

This normal form reduction can be used to decide whether a given polynomial f € K[X] is
zero in the ring R, because NF(f) = 0 ifand only if f € I,.. It follows from Proposition 3

that also straightening algorithm for bitableaux could answer this question, at least in
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principle. Indeed, a polynomial f is contained in 7, if and only if length(B;) > r + 1
for all standard bitableaux B; in the expansion f = > . A; B;.

Comparing these two methods for verifying identities in R,, we find that from a
practical point of view there are many good arguments against the straightening algorithm.
(a) The straightening algorithm for an n » m-matrix X requires to work in a polynomial

algebra with as many as ("‘ﬁm) — 1 variables,

(b) The relations or straightening syzygies for computing with these “compound” variables
are very difficult to describe (see [DKR, Section 3] and Eisenbud [Eis, Introduction]).

(¢) Implementating tableaux algorithms requires data structures and subroutines which
are usually not supported by computer algebra systems.

(d) Practical experiences show that straightening has a very high space complexity and
time complexity (see N. White [Whi]).

In contrast to the straightening algorithm, the above normal form computation is very

practical and conceptually simple.

(a’} It requires only the mn original variables. No additional variables are necessary.

(b’) The syzygies for computing in R, are trivial: they are just the (expanded) minors
themselves.

(c’} The Grobner basis normal form algorithm can be implemented using requires only
polynomial arithmetic and determinant expansions. In the enviroment of a computer
algebra system (such as MAPLE) no extra programming is necessary.

(d') The normal form reduction is much faster than straightening. Example 1 (b) has heen
computed using MAPLE on a MICROVAX Il in 5 CPU seconds. If we wanted to do
the same reduction with the (projective version of the) straightening algorithm, we
need to transform Example 1 (b) into a rank 5 bracket polynomial in 10 letters of

degree 5. This is a problem in (19) = 252 variables and hence almost too big for

B

the currently fastest straightening software, namely N. White’s implementations in
FORTRAN [Wh1, Table 1].

Let us point out that there is a certain disadvantage to using a (general purpose) normal
form subroutine in a computer algebra system because one does not take advantage of the
special features of our determinantal ideals. Moreover, as the parameters m and n in-
crease, the cardinality (7)({T) of the Grobner basis §,.1 grows very fast. Administrating
the large set G,,; then costs a lot of time and slows down the normal form reduction.
With relatively little extra programming effort we can substantially improve this sit-

uation: The combinatorial tools developed above allow an easy implicit representation of
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the set G,y;. We summarize the resulting reduction procedure.

Algorithm 10. The following algorithm rewrites any element f in R, as a unique K-

linear combination of monomials with width{m;) <r.

1. Given: An element f = > . A;m; of R,, expanded into monomials.
2. Pick my; such that width{m;) > » - 1. If there is no such m;, then f
is already in normal form and we can STOP.

3. Dtherwise, write

m; = m; - :Bl“p,__H mig,;ﬂ,v .’D“_'.l,pl
where mi; is a monomial, and I <l < ... < [y, and py < p2 < ... < pPrgt.
4. Replace f by
T . r—
- E , szgn(or) MG iy peegr) PlasPagey 0 Tlog1,Paa)
=3

vhere the sum ranges over all permutations ¢ of {l,...,m+1}. GO TO 1.

The most difficult parts of Algorithm 10 are, of course, the computation of width{m;)
in step 2 and the subsequent factorization of m; in step 3. This computation amounts to
finding and isolating the longest decreasing subsequence in the monomial representation
(3). This is done precisely with the well-known tableau insertion algorithm which realizes
Knuth’s bijection & in Proposition 2. See Schensted [Sch! and D.E. Knuth {Knl, Sec-
tion 5.14] for details.

5. Stanley decompositions from shellings

TO BE INSERTED

Acknowledments. [am indebted to A. Bjorner and G. Ziegler for introducing me to the
Knuth-Robinson-Schensted correspondence. Special thanks go to T. Havel and A. Kovacec

for many inspiring discussions related to this paper.
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