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Matn purpose of these first taiks is that of illustrating a theory which
unifies various notions. Inn this way it will be easier {o understand some
fundamental concepts in Computer Algebra ,mostly that one of Grébner bases,
Se let us start by recalling some of the main sources of our discussion.

81 Standerd bases, Macsulay bsses, Grdbner bases.

A) Graded rings associated to ideals. and standard bases

Let (A, k) be a local ring and let T be an ideal of A. If a is 3 non zero element
of A, then the Krull Intersection Theorem guarantees the existence

of a natural number n, such that & e I~I"T1 | For technical reasons, which
will be ciear later on, let us denote by vI(a) the opposite of such numbse n,

If we denote by 6 = gri{A) = ® (IV/IM1) | we immediately get two functions

viA-{0} — L defined by v(a) = vila)
Fi A s G defined by F{a)= 5 in [ ~v{8} /p-via) +1 4
a =0 and F(0) =0

Let us now consider a special sttuation , which nevertheless is of great
importance: let A =S/J where S = kIX,,...,an (X;ww?«’.»,) M= -{KH”,,XQ)
o= M, T =T s in this case one gels

grplS) s kXX d s gry(a) o KD Xy, X, 17 F(,
where F{J} 1is the ideal generated by the initial forms of gll the etements of J,
Rowsver if J = (f,...1.) then it is not necessarily true that
FOI = (F(f) ..., F(f.)) . This circumstance leeds naturaily 1o the following

Definition  Anl-standard base of Jis a finite set {f,....T{} of elements
of Jsuch that F{J) = {(F{f{),...,F(f)). .. .

-~

Let us remark inat the oxistence of standard beses is guaranteed by the fact
that gry(A} s noetherian ( which is equivalent to the validity of the Artin-
Rees lemma aoplied {o the ideals M, J).

Therefore, In this situation, to “compute” G means 1o compute an
M-standard bass of J. The theory of the standard bases was initiated by
Hironaka in his famous paper on the resolution of singularities [Hirenaks ,
19841 and it was developped from many other authors. For 2 systematic account
and references on the standard bases see  [Robbiane~Valla, 1983).
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B) Compactification of affine schemes and homogeneization_of ideals

Let A = k[Xy,..., Xl andlet X C AN be an affine varisty of
ideal J = 100 c AM. We can embed A" as the standard open set
Xg 20 in P= P(1,Ay50058 o). the weighted projective space with weights
1,Q 50005y (For instance, when qy=...= q =1, then P is the ordinary projective
space). The projective closure ¥ of Xin P is defined by the ideal
J(X) =% of k[¥Xgy... X,] where M denotes the homogeneization of J with
respect to the homogenizing variable X, of weight 1.

pefinition An H-base (Macaulay base) of J is a finite set {fsenfy)
of elements of J such that  H(J) = (H(fy),...H(f)) , where H(f)) denotes the
highest degree form in the expansion of f; and H(J) denotes the ideal generated
by the highest degree forms of all the elements of J.

Proposition 1.1 If {f;,...,fy} is_an H-base of J, then M= (My,..ey Mp.

Proof (Hint).  One sees that M= (My,..., M) + Xy*J and then one
concludes by using the graded Nakayama Lemma.B

(We observe that also the converse is true , and it is easy to prove it , but
we do not need it in the following).

Therefore, in this situation, to "compute® ¥ means 1o compuie & suitable
H-base .

C) Computation of & "canonical’ base of the k-vectorspace k[Xy,...,Xpl/d.

In his thesis [Buchberger , 1965] Buchberger solved the problem, posed by
Grébner, of determining a base of the k-vectorspace k[ Xgy0.0sXp1/d5 DY
introducing the concept of the so called Grébner-bases (G-bases) amd by giving
an explicit algorithm for thelr computation. Since, as we shall see, this concept
ptays a fundamental role in Computer Algebra, let us descripe it.

Let T be the set of the terms in k[Xy,...,X,], where term means monomial
with cosfficient 1. Then T is a multiplicative semigroup with identity.
Let us denote by log the canonical injective hormomorphism
tog: T — ZN where log(X,HD---x W) = (1(n),..., )
This homomorphism identifies T with WP .
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52 Graded structures and generalized standard bases.

In this section we are going to give some account on the theory of graded
structures which was developed in [Robbiano, 1986], and which has, among its
features,the property of giving some systematic and unifying treatment of the
subjects mentioned in §1. We are not going to handle all the technicalities of the
theory, but only 4o report loosely on its main achievements (see [Robbiano
1886 ] and [Robbiano, 1985]) .

A) Graded structures

In every situation we have discussed so far, we always deait with a
composite object of type
A = (A,T,v,G,F) where

A Is a commutative ring with 1,

(",<) 15 a totally ordered abelian group,

Vi A-{0} — T isa function, such that I" is generated by Im(v),

F:A —G is a function,
and the five components of A are linked together by some suitable eight axioms
(nine axioms if A is a k-algebra over a field k) .

For instance in the case of the theory which leeds to the notion of
H-bases, A 15 k[ X(,....X; ], T 1s Z with the usual ordering, G is
ki Kiseaesky 1 with the graduation induced by the total degree with respect to
some preassigned welghts Qyseas,, of the variables, v ts the function which
sends a non zero polynomial o its degree, F is the function which sends O to 0
and a non zero polynomial to its maximum form with respect to the total degree.

Alternatively,we can say that in every situation we have discussed so far,
we always dealt with a composite object of {ype

A= (A, T,F,)  where

A is a commutative ring with 1,

(I',<) s a totally ordered abelian group,

Fp = (FS(A), 5el) is an increasing valued filtration in groups of A,

f.e. an increasing filtration in groups of A, such that for every a=z0

there exists a minimum ¥ with ae F¥(A).

We observe that, if we want to use increasing filtrations, we are induced to
define vy(a) as the opposite of the usual vila) , in the case of filtrations given
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Definition A lerm-ordering on A= kIX(,...,X ] is a total ordering <
on 2 such that
1) (ZM,<) is an ordered group
2) tog{ )= MM c(ZM™*, where (ZM* denotes the set of vectors of ZN,
which are non negative with respect to <.

Given a term~ord'ering on A, to every polynomial f we may associate its
maximum term, which we denote by T(f) , and to every ideal 4 in A we may
associate the ideal T(J) qenerated by the maximum terms of gl the
polynomials in J. Hence we get two functions

viA-{0} —= T defined by v(f) = log{T(f))

Fe A ——s G defined by F{f) = T(f)

Pefinition A G-base (Grobner base) of Jis a finite set {f{,..., ]
of non zero elements of J such that equivalently
1 T = AT, TED)
2)  Every non zero element f of J can be represented as = Taf; where
v{f2v{a) + v(f)  for every i such thal o =0,

The equivalence of these two properties will be discussed later {see
Thecrem 2.8 )

Coroliary 1.2 6G-Dases exist
Proof. It follows immediately from 1).8

It should be remarked that in the literature sometimes G~bases are called
standard bases,

In the next talks it will be shown thal G-bases are the main tool fer performing
some basic operations on the ideals of A and for solving some fundamentsl
computational problems in Commutative Algebra. Finaily, since that topic will
not be {reated, el me remind that G-bases were applied fo some guestions of
set-theoretic complete intersections (see [Rebblane—Valla, preprint]).
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Proposition 2.5 Lel Abe a noetherian structure. Then MO(A) generates
a_finitely generated semigroup and 1" is_iscmorphic to 71,

The proof relfes on a result of [Goto-Yamagishi, 1982].8

Basic sxample Let A = (A,Iv,5,F) be a graded structure and
M=(MT,w,T,8) an A-module, Let us choose {my,.c.,m .} to be a set of
non zero elements of M; let AT be the free module of rank r over A, whose
canonical base we denote by ( ey,...,e,.). Let w; = w(m;) and Jet
wt: AT-{0} ~— " be defined in the following way

wi(ay,0,8,) = max {v(a)+w;} a;=0

To w¥ we associate a flitration on A™ as we did in Proposition 2.1; this turns
out to be a valued filtration, Then we get an as:ociated graded G-module,
which turns out to be @ G(-wy), i=1,...,r and a map
F¥: AT+ & G(-w) which is defined by F¥(ay,...,a.) = (F'(a;),....F'(a,)
where

0 if a;=0 or vla)+wi< wt(ag,...,a.)

F’(ai) =
F(a) if via) + wi= w(ay,...,a,)

We denote by  Llwy,...,wp) or by @A (-wy) the A~modie

(A", 7, w,@, 6(~w), F*). Then the A-homomorphism & : A” ——

defined by  Aley) = my Induces an  A-morphism of Llwi,own) in 81 and the
corresponding graded G-homomorphism A : @;G(-w;) ——T is defined

by Ale) = &(my) (here ( ey,...,e,) 15 the canonical base of @ G(~wy) ),

This morphism (A A) 2 E(wy,...,w.) — I is called the canonical morphism

@MM_.Q’C mjs“ﬂamg‘«

Definition  An A-module L is said to be finile free if it is isomorphic to-
an A-module of type Llwy,...,wp).

At this point the theory needs the introduction of & cuile technical notion,
which is essential for several purposes: it is the notion of Kruil-module over a
noetherian structure, The reader can check the paper [Robbiane, 1986] for the
details. Let me only say that this notion is a suitable generalization of the Krull
intersection property of finitely generated modules over local rings.
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by powers of ideals,

Definition A quintuple A = (A,I,v,G6,F) , where the components satisfy

the eight axioms, is termed a graded structure on A.
Atriple A'= (A, T, F,) where the components satisfy the properties

described before is termed & v-fillered_ structure .
Proposition 2.1 To_gvery graded structure A = (A,I",v,6,F) on At is

canonically associated a v-filtered structure A* = (A, I, Fa) on A ,where
F, is the filtration defined by F3(A) ={aeA /v(a) <y} U {0}.B

Proposition-Definition 2.2 Im(v) = {vel* /7 G3= 0}
This set generates the group I and it is denoted by I"(A).&

The proof of these facls easily follows from the axioms.B

Proposifion 2.3 If A is a graded or a v-filtered structure and
rO(A) <0 then FY¥(A)is an ideal for every el

The proof of this fact is again an immediate consequence of the axioms and
it shows a first difference between the case of standard bases and the ¢ase of
H-bases and G-bhases.§

Over these "objects® A, A it is possible to define “medules"
M, M* and morphisms between them and one gets two categories "A-modules"
and “A%-modules .
it turns out that the axioms are such that the following siatement holds {rue

Theerem 2.4 Given a graded structure A and its_sssowigled v-fillered
structure . A¥, the categories "A-modules * and “A*-modules " are -
equivaient .@

This fact, whose proof is not too difficult, allows us to treat the two notions
in some sense interchangeably. This is quite important for applications, and we
feel free Lo use the symbols A and M both for graded and flitered structures
and modules over them.

In the following when we say that A has a property, we mean that
both rings A and G have that property and the same for M.
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And then we have the following main

Theorem 2.8 Lel us consider the following conditions
a) {mq,...,m.} is a std-base of M .
b) {&(my),...,8(m )} I5 a base of T a5 a G-module .

Then a) > b) and if M is_a Krull A-module , then. a)¢=>b).8

Corollary 2.9 If Alis _a noetherian graded structyre, then every finitely

generated Krull A-module does have std-bases.B

The Krull condition ptays also a fundamental role in the next theorems

Theorem 2.10 If Ais a str Krull structure and M is_a finite Krull
A-module , then M has a finite free resolution.

Theorem 2.11 Let Abe a strong Krull structure. Let M = (M,I",w,T,3)
be a finite Krull A-module and Myyee.,M e pe non zero elements which generate
M. Let wy=w(my), 1=1,...,r, andlet (MA): Liwy,.,w) M

be the canonical morphism associated to my,...,m. (see the hesic sxample at
pag. 6). Then the following conditions are eguivalent
1) (0, A) is_an_epimorphism

2) Afs_surisctive
3) Eor_severy homogenecus non zero element e Ker{A), there exists an

element s eKer(2), such that 3%(s)=0
4) There exists a homogeneous base {61,...,0} of Ker{/j and elements

S1s..s»S¢ € Ker(A) such that 8%(sy) = o;.
5) {my,...,m} is_a std-base of M.®

This theorem is a generalization of both a theorem of [Zsbbiano—Valla,
1983] on standard bases in local rings and a theorem of [Buchberger ,1975 J-en
critical pairs and Grébner bases '

B) Morphisms of graded structures. Double structises.

It is possible to define morphisms between graded structures; however a lot of
pathologies can occur. Therefore we skip the discussion of the generai
situation. We consider instead a special one, which is nevertheless suitable
for many applications.
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Definition A nostherian structurs A such that every finite free A-module
is a Krull A-module is termed a glrong Krull structure .

For applications to the theory of Grobner and Macaulay-bases , and also for
the study of standard bases the following theorem is essential, because it
impifes that in these cases we can forget about the Krull condition. Mamely we
have

Theorem 2.6 2a) Let A_be a graded noetherian structure such ihat
ro(A)20. Then every finite A-module is_a Krull-module; in particular A is a
strong  Krull-structure.

b) Let A be a graded structure over a local ring A, such that M(A) = -,
F_pA =17, where 1is an ideal of A. Then A is a strong Krull structure.

The proof of part a) depends upon the description of the orderings on AL
which will be discussed later.B

The first achievement of the notion of Krull module is the following

Proposition 2.7  Lel A be_a noetherian structure, M a_Krull A-module
and let M be a submodule of M . Then
1y M is_a Krull A-module .
2} The filtration induced on M/N is valued, hence M/M is_an A-module and

Fe{ /B Y ¢ oM.

3y /M 1s_a Krull A-module .
4} 1f A is a strong Krull structure and § is_a_submodyle of A, then A/l is a
strong Keull structure.®

Mow we coms 10 one of the basic nolions

Definition LeotM = (M,I,w,T,3) be a finitely generated i%—mdd_ule,
and lel mq,...,Mm bs non zero elements of M. We say that { mg;...,mr} 1%
a generalizeq standard base  std-base ) of P§ if for avery meM we have

m = Tagmy with wm) 2 viay) +wim;) for every i such that ag=0.
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83 Orderings on ZP. An application to fiat families.

In this section we report on some results of [Robbiano, 1985] and some
other unpublished results, which give a description of the orderings on ZN. This
is important for several reasons; namely special orderings (term-orderings)
on Z" are used to define Grobner bases (see §1) and moreover Z" equipped with
an ordering came into play also in the general theory of graded structures
(see S2). In the following, when we speak about an ordering < on a commutative
group G, we mean that (6,<) is an ordered group i.e. the ordering < is
compatible with the sum in G.

Lemma 3.1 Every ordering < on Z" uniquely extends to an
ordering < on @,

Proof. Given v = (qq,...,qp) € @7 let meN™ be such that mvez™ .
Then v>0 iff mv>0R

Let us now consider the subset V of RP of the vectors v such that
for every open nbh. U{v) of v in the euclidean topology, ulvyn(@M* and
H(vINERM)™ are non-empty.

Lemma 3.2 Vs a subvectorspace of RP of dimension n-i.

Proof. To see that V is a subvectorspace is an easy exercise.
By using the obvious map RMY —{-1,1} with the discrete topology, we
see that RMV is disconnected ,if not empty. On the other hand RV cannot be
empty since at least one “octant” of RN is "positive”. So the dimension of ¥
has to be n-1.8

L -
-~

Definition  Given a vector veR" we denote by d(v) the dimeﬂs‘ion
of the @-subvectorspace of IR spanned by the coordinates of v,

Definition On R™ @7 ZN we call Jexicographic  (lex) the ordering defined
by: (31’--'9%) > O iff the first non zero coordinate from the left is positive.
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Solet Ap = (A, T,v,6(F),Fp) = (A, T, F(Mp), Ap = (A0,w,6(4),Fp)=
=(A, A, F(A),) be two graded structures on the same ring A, and let

o : ' — A be an ordered homomorphism, such that  w(a) = alv(a)) for
every a =0,

Definition The triple Aa = (Ap, Ap, o)  with the properties described
above fs termed a double structure on A .

Let now M =(Mp,Mp) , where Mp =(M,7,wp,T(M),&p), Ma
=(M,A,wA,T(A),84) and « has the property that o{wp(m)) = walm) for every
m =0; then we say that M is a modute over Ao( and we define
G(P)p =B G(r’)é’g and T(M)p=@g T(P)a,g where
6(Mp,5=@6(") y and T(M)p 5 =@ T(M)y and these direct sums are taken
over all the y's such that o{¥)=6. So we are rcady to state the following main

Theorem 2.12 .L_QE_AO( be a_ncetherian double structure on A, and
]g_LM Q&MM@@AQ—M; let S be the semigroup generated by
Fo(Ap) and_assume that Ker{o) NS = {0}, Then
1) 6(Mg=6(A)y and_we shall denote it by Gg .

2) 1f [...] denotes the image in the Grothendleck group of finitely gensrated
Go-modules , then
(T(M sl = [T(A)g] for every 6eA%(Mp).B

As a corollary we get a result, whose direct proof is anvhow much easier

Corollary 2.13 Let A=k[Xy,...,X.], 1 an ideal of A, Let T(I) denote the
ideal generated by the maximal terms of the elements of I, with respect to an
ordering on ZN, whose first vector is ur=(dq,...,qp} (this assumption will be
clear a little later) and let F(I) denote the ideal geperated by the forms of
maximum dedree. of the elements of I, where deg(X)= g.

Let A/T(I) and A/F(1) pe considered as graded over iN bv the graduations
induced bv the graduation on A defined by the total degree, where deg(¥)= gj.
Finally let H(A/T(D)}, H(A/F(1)) be_the Hilbert funciions.

Then  H{A/T(1}) = H(A/F(I)).

This a generalization of an old theorem of Macaulay (see [Macaulay, 1926]).8
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Remark  We must be careful about the word "lexicographic”; it looks like
reminding the order of the words in the dictionary. However in a dictionary one
reeds & before aa and aab before ab and this relations are clearly
incompatible. However, within a set of words having the same length, if we
understand " > " as "precedes in the dictionary” then the ordering in the
dictionary is the same as the lexicographic ordering induced by a > b > ¢ >.....
as we described at the beginning of Example 1,

Example 2 Reverse lexicographic ordering (rev. lex}.

The reverse lexicographic ordering on Z" is defined by:

(G1s.0509p) > O 1ff the first non zero coordinate from the right is negative.

Then it is clear that rev.lex = {-en,...,~eq) .
Then again Xy> Xo>...>X, but X; < 1 for each f and it fs not_a_term-ordering.

Example 3 Degree-compatible orderings (see Corollary 2.13).

If a term-ordering is given such that dy = 1, then the first vector uy of <

can be chosen in such a way that u*z(q“...,qn)ezn; then, given two terms M, N
of k[Xy,...,Xp] We got MKN if deg(M) < deg{N), where the degree is computed
after endowing the variables Xpseens X, with the weights qy,...,q, respectively.
Of course if deg{M) = deg(N) then we must look at the ncixt vectors in the
sequence characterizing <. For instance the term-ordering given by the
following rule: M > N If either deg(M) > deg(N) (degree computed with respect to
deg(X{)=1 for every i) or deg(M) = deg(N) and M > N in the lexicographic
ordering generated by Xi>...0X,, 18 given by the sequence of vectors
(Ugyenstin) where ug = (1,1,0.,,1), up =(n=1,~1,...,=1),.euuy Up-q =
(0,...,0,2,-1,~1), u, = (0,...,0,1,~1), or by the sequence of vectors
(Viye¥p) where vy = uy, v = (1,0,...,0),...,v, = (0,...0,1,0)

(see the remark following Theorem 3.4),

For instance if n=3 and we denote Xy by X, Xp by Y, X3 by Z we get

(%) TCZCYCXCZECYZ Y2 ¢ X7 < XY < X2

Instead, the term-ordering given by the following rule: M > N if either deg(M) >

deg(N) (degree computed with respect to deg(X;)=1 for every i} or deg(M) =
deg(N) and M > N in the rev.lex ordering generated by Xy>...0%, is given by

12
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A suitable use of Lemma 3.2 leeds to the following

Theorem 3.3 Given an ordering < on 0F, then there exist an inteqer s
with 1<s¢n, and s orthogonal _vectors uy,...ug such that d(uq)+...d{ug)=n, and
such that the map

o 2 (@1,<) — (R®,lex) given by «(v) = (viuy,..., voug)
is_an_injective ordered homomorphism.#

If we denote by s(<) the integer which arises in Theorem 3.3 we get

Theorem 3.4 The orderings < on Z" and on Q" are classified by:

- an_inteqer s(<);
- a partition (dy,...,dg) of n;
~ a_sequence (uy,...,ug) of orthogonal unitary vectors of RP, such that
d(U|)=di and_such_that uy belongs to Gi_;®ﬂ?, \_VLG_@_Gi_, is the
G-subvectorspace of @7 of the vectors orthogonal to (Ug,...,uj-1)

(here G_y =@M,

The extra condition that the first (from the left) non zero coordinate of
{(VUy,..., viug) 18 positive for every veNP\{0} characterizes the

{erm-orderings .8

Remark Elementary considerations show that aiso a sequence (uy,...,ug4)
of vectors which are not orthogonal can define an ordering: for, it is sufficient
that the sequence (ty,...,Tg), which is obtained from {uy,...,ug)
by orthonormalizing , is one of the sequences described in Theorem 3.5.

Definition Given s vectors “1;-"3“3 which define an ordering <,
we say that <= (Uggannylig) and that uj = uy (<3

Example 1 Lexicographic ordering (lex.) . "
We have aiready seen that the lexicographic ordering on Z7 is defined by :
(9y5...,Gp) > O iff the first non zero coordinate from the leff is positive.

Then it is clear that lex = (ey,...,e) where e = (1,0,..,,0),

er = (0,1,0,...,0) ,..... y € = {0,...,0,1).

This means that if we assume, as usual (see §1 ()}, that

log(Xy) = (1,0,...,0),.cc0nun,l0g(Xp) = (0,...,0,1), then Xy > X5 >0 X,

For instance if n=3 and we denote X by X, X5 by Y, X3 by Z we get
1¢2¢22 ¢3¢y YZevz2 ¢vz3 ¢ v2 <27 <272 ¢, < X < X2.
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Corolliary 3.6 Let Ube a finite set of vectors of ZN, < a total ordering
on U. Then either the set of orderings on Z, which_induce < on U , is_empty,
or its cone has dimension n.

Proof. et U = {u;,...,u,.} and assume that U1<.a.CUp. Then let
E= {u2~u1,...,un—un_1} and apply the theorem 3.5.8

Remark We observe that the term-orderings are nothing but the
orderings which are positive on {e,,...,en}.

Corollary 3.7 Let E be a tinite set of vectors and let <be a
ferm-ordering , which is positive on E. Then » if X denotes the set of the
term-orderings positive on E, C(X) is_contained in the first "octant ",
and dim(C(X}) = n. Therefore there are infinite_sets of weights (Q,.e00ap),
such that the hierarchy of inequalities induced by <on Eis the same as that ong
induced by _the degrees of the glements of £ computed with respect to the
weights (qq s+4050p) given to the variables.&

As a very important application of the preceding discussion, we prove the
following Theorem (ses {Bayer, 1982 ].

Theorem 3.8 Let Khe a field, A = k| KiseesXn 15 1 2 ideal of A.
Let <be _a termordering on Aand let T(I) be the ideal generated by the
maximum terms of the elements of I. Then A/T(I) is a special fiber of a flat
family _parametrized by kit], where ali_the other fibers over closed points are
isomorphic to I, In particular, if I is_homogeneous with respect to a set of
weights {41,...,9p) of_the variables, and up<) = {415.00,ap), then the Hilbert

function is constant on the fibers (see Corollary 2.13).

L
-~

Proof. Let {fl,...,ft} be a G-base of I with respect to < and let Z denote the set
of the term-orderings on A which yield the same hierarchy of inequalities

as that induced by < on all the terms of f;,...,ft. By Corollary 3.7 we get a

sel of weights (qT,...,qn) such that the hierarchy is the same. Let us denote
by o an ordering having q = {415.00,Gp) as first vector.

An easy consequence of the algorithm of Buchberger for computing G-bases is
that {f;,...,ft} is also a G-base of I with respect to .
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the sequence of vectors (uy,...,un) whers up = (1,1,...,1),

up = (1, 1,0, 1,-n+ ). » Up-1 = (1,1,72,0,...,0), uy = (1,-1,0,...0),

or by the sequence of vectors (vy,...,vn) where vy=uq, v5 = (0,0,...,~1),...
eV = (0,-1,0,...,0)..

For instance if n=3 and we denote X1 by X, Xo by Y, Xz by Z we get
1CZCYCKCZZ ¢ YZ < X2 ¢ Y2 <XY X2,

Example 4 Let Us consider the ordering < on Z3 given by (uq,u,,us)
where uy = (1,1,1) , up = (4,2,1) , uz = ( 0,1,1) . Then with respect to < the
relations given by () above hold.

However, while here %23 < Y4, there x23 > Y4,

Example 5 If u is the real vector { i, nn“‘,...,n,l) , then u defines an
archimedean ordering on Z" and @7 such that X1> Xp>...0%,.

Definition Given a set X of orderings on Z", we may associate to it 2
cone, which 1s denoted by C(X) and which is the cone generated by the first
vectors. of the orderings of X . These cones will be referred as “cones of

orderings ",

Let now E = {vy,...,v} be a finite set of vectors in Z7 , and let ¥ be the
set of orderings positive on E. Let C{X) be the cone of ¥, and lst [ be the dual
cone of £, 1.6, the cone {v / v»vy 20 for every 1 = 1,...,r}. An easy application of
the theory of cones vields the following

Theorem 3.5 If 0 denotes the interior of I', the following conditions
hold true

aMlccs)cr
D) dim(M <n=> 3 =¢
) dim{M z=n=> CF)=1.8

Example Let n=2 £ ={e;} Then I ={(x,y)/x20}, C(X)=T.
On the "edge” of " we have 4 orderings; namely <y, <5, <z, <4, where
<1 ={eg,eq), o =(~ep,e ), <z = (ep,~¢y), <4 = (~6p,~e) and
(qy¢p € C(Z), while <z,¢4 ¢ C(Z) .

13
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S4 Characterizations of Grébner bases

A) Characterizations related to semigroups

Let A:=k[Xy,...,X,] be a polynomial ring over a field k, let T denote the

semigroup of terms (monic monomtals), and let < be a semigroup total
ordering on T; let M be the semigroup of non-zero monomials, M:= K*xT.
Then each polynomial feA¥ (we will use the following notatfon: if G is a subsel
of a ring we will denote 6*:={ geG / g=0 } } can be written in 2 unique way as:

f=2 CiMy,y Ciek y miGT, m,>m2>...
Denote ¢ T(f) := my, le(f) := ¢qy M(f) = cymy.
IfFF c A, denote T{F} := {T(F) / feF*}, M{F} := (M(f) / feF*}, M(F) the ideal in
A generated by M{F}.
We recall that if U is a subset of a commutative semigroup g, it is called a
semigroup Ideal if, for every seS, for every uel, suell,

Proposition 4.1 IfICA s an ideal, gg_q_FcI*, the following conditions are
byious] valent:
Al: T{F} generates the semigroup ideal T{I}cT
A2: M{F} qenerates the semigroup ideal M{I}C M
A3 MF)=M(D). B

(¢f. the definition of G-base on page 3, where the first equivalent condition
is A3)
Al the definitions given above hold, however, a}so if A is the semigroup ring
k[ T1, T a semigroup ordered by <, k an integral domain; in this context
however the three conditions listed above are no more equivalent (AZ and
A3 lead then to different generalizations of Grébner bases, while Al is
interesting only if k is a field, being then squivalent 1o A2) and only the
implication A2 A3 holds, as it is clearly shown by the following example in
ZiX, Y]

Fez {3X,2Y), 6 1= {3X,2Y,XY}, [ := (F) = (6)
where F satisfies A3 but not AZ, while G satisfies both.
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Let us now consider A[t] and let us extend the term-ordering o on A to the
term-ordering v on A[t] defined by the following rule:
30X . X8 > 0 iff Za;> 0 or Tay=0and Xy%...X,% >0 according to

o (if log(t) = (1,0,...,0), log(Xy) = (0,1,0,...,0),.... then as first two
vectors of ¥ we may take (1,q4,...,q5) and (0, gy,...,qp)).

Let us consider now the ideal I, i.e. the homogenized ideal of I with respect to
the variable t, where deg(X;) = g; and obviously deg(t) = 1.

CLAIM: {}1,...,*}} is a G-base , hence a base of ¥ with respect to .

Namely T(*) is generated by {T{¥) / fel} because of the definition of 3 but, for
the same reason, T(M) = T(f) . Therefore ‘
TCD = TOALT = (T(F),.., TEDALRT = (T, TCED).

Let us now consider the ring F = A[t]/*  and the hornomorphism
¢t k[t] — F This is the family that we are looking for.

Namely the fiber over the ideal (1) 1s A[t]/(3,t) ; but our choice of ¢ implies
that (ML) = (M, 00, M0 = (T, T, = ( T(f4) .., T{f),0) =

= {T(D),1); therefore the fiber over the origin is AltI/(T(D),t) « A/T().

The fiber over (T-a), a=0 is Fu= Alt)/(M,t-a).

The isomorphism  A[t] — A[t] given by t ~— at induces an
isomorphism AltIZ( M, t-a) — AltI/(M,t-1)

But A[tIZ( M,t-1) is clearly isomorphic to A/,

CLAIM: The family ¢ is flat (see [Bayer, 1082]).

Indesd by standard arguments on base change of flatness (see [Matsumura ,

19701) we may assume that k is algebraically ciosed. Moreover since kit] is a
principal ideal domain, flatness is equivalent to torsionfreeness. Of course
torsonfreenes has to be checked only on irreducible elements: so we have to
check only two cases:

1) tf{t}=0 mod *, hence t-f(t)= *, hence f(t)e * by the very definition of ™
2) (t-a)*f(t) =0 mod * ; in this case we write f(t) = Zf;(t) with f; form of
degree i; being * homogeneous, we get
—afp(t), tfp(t)-afi{t),..... e {-af (1) e ¥ whence fi(t) e ¥ for every f;-
and we are done,

If moreover I is homogeneous with respect to a set of weights (@1se00y0p) of
the variables,and u;(<) = (qy,...,qp), then the flat family induces flat families
parametrized by k{t] on the finitely generated k-vectorspaces (A71),, and
(AZ(T(1)), for every nelN, whence we get the constancy of the Hilbert functions
along the fibers.B



Mora 3

generated subsemigroup E of an ordered semigroup (RS,lex),s.t. all its
elements have non-negative coordinates. Let F be a non-void subset of E
and let t be such that every element of F has the first t-1 coordinates zero,
and at least one element of F has the t' coordinate different from zero.
Denoting 11 the projection from RS to the tih component, we have just to
prove that 17(F) has a first element. Since 1 (E) is a finitely generated
non-negative subsemigroup of R with the usual ordering,which is
archimedean, the result comes out from the fact that, if ref, the set {r'ef /
r'sr} is finite, B

Proposition 4.4 <is_a term-ordering iff for every ideal I, for every set
Fcl*, A2 >B1,

Proof: ®: Assume < s a term~ordering. Let I be an ides), FcI* s.t. A2
holds, gyel®, |
Since gyel®, M(gy)eM{1}, so there are feF, m,eT, ajek®, s.t.
M(g,) = a;m,ﬂ(f;).
Define g, 1= gy~aymf, e I, If g0, then T(g,)<T(gy) and one can repeat the

argument.
So one finds either a representation of g, as required by B1 or one gets an

infinite sequence of elements of I*, GysGnseee1Giye-e St for cach |

T(gg)ﬂ"(g,;i), against the assumption that < is a well ordering.

¢ Assume < is not a term-ordering and let neT be s.t. n<l.Let F:::{n-nQ},
I:=(n). Then F and I satisfy A2 but don't satisfy B1. &

Proposition 4.5 < is_a term-ordering iff for every ideall, for every get
Fci¥*, A3 >B3. 8

Lemma 4.3 holds for any ordered finitely generated commutative semigroup.
Then propositions 4.4 ahd 4.5 hold in the more general context of a
semigroup ring.

Conditions B1,B2,B3 and A3 can be stated in the more general context of
graded structures; then B3 coincides with the definition of generalized

8
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B) Characterizations relaied to the graded ring structure

Proposition 4.2 Let us consider the following conditions on an ideal ICA

and a set Fcl™:
Bt: every fel* can _be represented:

f = Zaum;f;, aek®, meT, feF,
B2: every fel* can be represented:

f= }:aimifi, a"Ek*, mieT, fieF,

T(f) = T(myfy) > T{myf,) for every i
B3: overy feI* can be represented:
f = Igif;, geA¥, fieF, T(gf)LT(f) for every i

Then the following implications hold trivially:
AZ2 < Bt > B2 > B3 > A3. B

{ ¢f. the definition of G-base on page 3, where the second equivalent
condition is B3).
Remark that in B1,B2 one cannot assume that fi:zfj if i=j, We could, buwt we

don't , assume such a condition in B3,
Recail that a total semigroup order < on T is called a term—ordering  iff 1<m

for every meT,

Lemma 4.3 <is a well-ordering iff < is_a_term-ordering.

Proof: If there is neT, n<1, then defining ni::n", one gsis an infinite

¥
>

decrgasing sequence.
Conversely assurne < is a term-ordering and not a weli~ordering; then there

is a infinite decreasing sequence My>...2Momg, ... of elements of T. By

Dickson's Lemma, there are then m;, m; in the sequence, neT, with i<j and m;

= m;n. Then n<l,

An alternative proof is as follows ([Robbiano ,1986], Corollary 2.6): by the
results of §3, T is isomorphic {as an ordered semigroup) to a finitely

17
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a:zc(h,t T(f))=0, g = h - a/lc(f) t 1.
Let then m := t T{f), b := c¢(p,m), and remark that c(g,m)=0. There are
different cases:

1) b= Q: in this case clearly h+p » g+p.

i) b.# 0 and a+b = O: in this case h+p « g+p, since c(h+p,m)=0 and
h+p=g+ p=-b/le(f) t f

i) b= 0 and atb = 0: Let then

gi=h+p-{(a+b)/lec{f)tf=g+p- (b/1e(f)) t 1.
Then ¢{g,m)=0 and h+p » q < g+p. &

Also if < 15 not a term-ordering,some relation - defined as above could still
be noetherian (6.g. the relation defined by a finite set consisting of
monomials). However if < is not a term-ordering, let meT s.t. m<1 and let
S:={m-m2); ~ is then non-noetherian since m-mZ=...»m bam o,
{(cf.Lemma 4.3)

Lemma 4.7 Let g,h ¢ A, Then g-h e (F) := 1 iff there are hy,...;hpeA gty
g=hg, h=hy, and Yor every i, gither h_j-h;or by gy,

Proof: =1 g-hel iff gzil,mm,f{ + hy meM, fef (the f's belng not necessarily
different). By induction on n.
If n=1, then g=mf+h, meM,feF; since mf»0, then (by RS) there is ¢ s.t.
g-+q+h.
Inductively, et g = Ty ppqMyfy + hand let g 3= Zioy nMyfy + h.
By inductive assumption and by the definition of -+, there are hg,...,neA s5.t.
g = hy, h=hy, and for every i, efther hy_y» by or hy € hy-qe
Define q;:= by + Moy 1fpe g S0 that, in particular, dy = ¢. By RS there are
PiserssPp 8:Le Qg 2P+ Gy
Also My, ifpeq =0 S0 there is pr,y 8.t

Gy = Pyt Mg ifper > Py <y = e
Since ¢ = ¢ + Moy = o hy= N, the sequence qo,pi,q,,...,pm,ht

satisfies the requirement.

20
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standard base and A3 with condition b) of theorem 2.8. In this context
proposition 4.4 holds and is the same as the first part of theorem 2.8.

C) Characierizations related to rewrite-rules

Let < be a term ordering on A.
We will denote by ¢(f,m) the coefficient of the term m in the polynomial f, so

that { = Iy c(f,m} m.

Let F € A be a finite set. Define - as the reflexive-transitive closure of the
relation » defined as follows:

h»g iff there is feF, teT, s.t. a:=clh,t T(f)}=0,

g=h-astel(f) tf,
Remark that if h»g, then g is obtained from h by substituting a term t T(f) in
it with terms less than t T(f).
heA is said irreducible iff h-g implies ¢ = h.
+ i said noetherfan. Iff in every infinite sequence hy=+...=h ;+h ...

there is N s.t. if >N then hi=h;, (. Remark that, if < s noetherian, for every

heA there is an irreducible g s.t. h-g.
it is said confluent if gep-h implies there is g s.t. g~qeh.

femma 4.6 - is_a relation satisfying:
R1) h-=h
RZ) h-g,g~p imply h-p
RZ} h—+g and ¢g~h imply. h =g
R4) h—+g implies. mh-mg for every meM
R5) for_every h,qg,p s.t. h»g, there is ¢ s.l. b+p-+g+g+p
R6) 0 is irreducible
and which is noetherian if < s a_term-ordering.

Proof: - satisfies obviously R1,R2 and R6.

Since the effect of » is to substitute a term with terms which are less than it

w.r.t.<, then R3 is verified, and = is noetherian if ¢ is a term-ordering.

To verify R4, w.l.0.g. it is sufficient to show thal h»g impHies mh¥mg, which

is trivial, ‘

Let us verify R5: if h»g there is feF, teT, s.t.
: 19
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44,

The following ¢onditions are equivalent:
Al: T{F} generates the semigroup ideal T{I}c¥
AZ: M{F} generates the semigroup ideal M{I}c M
A3: M(F) = M(D
B1: every fel® can be represented:

f = Zamfy, aiek*, mel, fef,
T(f) = T(mifj) ? T(mlfi) ? T(mw]f“_‘) for every i

B2: every fel®* can be represented:;

f=Zamf;, aek™, meT, feF,
T(f) = T(myfy) > T(mf,) for every i
B3: every fel* cap be_represented:
f = 3g/f), geA*, fieF, T{gf)<T(f) for every i

C1: hel implies h-0
C2: if h and g are irreducible: h-gel imples h = g.
C3: for _every heA there exists a unigue g irreducible s.t. h-g

C4: - is_confluent
D1: Each _homogeneous element of ker{s) b-extends to an element of
ker(8)

D2: 1f W is_a base of ker(s) ¢onsisting of homogeneous elements.,
sach element of W b-extends to an element of ker(S)

D3: There {5 a base W of ker(s) consisting of homogeneocus
slements, s.t. each element of W b-extends to an element of
ker(S)

1f F satisfies any. of these conditions, it is called a Grébner base of I (¢t
the definition at page 3)

Proof: We sketch here the implications proved throughout these .hotes:

Al &2 €= A3 D2
$ $ R
Bi=> B2=b B3 &> D1 ¢= 03
Y A
Cl = C2
t
C4 & C3

24
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ueker(S) and w b-extends to u. §

Corollary 4.11 If <is_a term-ordering and {Wqyeeawy) 18 2 base of ker(s)

consisting of homogeneous elements, anﬁwip;@xmg_s_mui,mgu..{ut,---,ut}

is a base of ker(S).

Proof: Let ueker(S), w:=M(u), then w=Zmw;, meM, wieW, T(mw)=T(w). Let
uyi=u-Imu;; then ujeker(S) and, if upz0, then T(u;)<T(u).

The conclusion follows, since < is a well ordering. ®

Proposition 4.12 1f <is a term-ordering and F s 2 base of 1, B3 is
sauivalent with the conditions of proposition 4.2,

Proof: B3 2D1: Let weker(s),homogeneous, w i= Zme;; then 8(w) = Imf;, if
not zero, is s.t. T(S(w))<T(w). By assumption S{w) = Zg;f;, with

T(gf S T(S(WICT(w)=T{mye;)s Then u 1= Z(m;=g;)e; e ker(S) and M(u)=w.

D1 3B3: Let hel* and let h 1= Ig;f, be any representation of hj lat uyi=2g;e;,
so Sluyi=h, If T(uy)=T(h) we are through, while if T{uy)>T(h) we will show

how to obtain UneAl 5.t. S(up)=h and T(up)<T(u;). Since < 1s a well ordering,
this is sufficient to complete the proof.

Assume, therefore, T(u,)>T(h). Let w = M(uy), then weker(s), so there
exists ueker(S) s.t. M(u) = w. Let then Uy 1= Uy~ Uj Up satisfies  the required

conditions. W

The conditions D1~3 can be stated in the more general context of graded
structures; then conditions 3 and 4 of Theorem 2.11 respectively coincide
with D1 and D3.1n that context, the theorems stated in this section still hold.
et us summarize the results proved in this paragraph in the following:

Characterization theorem 4.13 Let<beo a term-ordering on T, 1 an
ideal of A, FCI* 2 base of I, ~ induced by F as n C), s and S defined 25 In

23
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T(h) = T(myf ) DT T (M) for every 1.

t=1,...,0. Then h:h"‘".u"’h t"’h L_[,"'*.u"’h n*O.

Define ht = Zi"t,n aimifi,

C12B2: if hel* then h—0 so h = Tamyf;, aek™, meT, fieF, and T(N2T(mfy)

for every i, with equality holding just for one index.8

D) Characterizations related to syzygies

Let fy,.0n,fy€P¥, Fi={fy, i fi)s
Denote by {ey,...,¢;) the canonical baso of Ab.
The graduation induced by T on A extends obviously to Al defining
T(Sgie():=max(T(gf):9=0); define also M{Zgie;):=Zhe;, where

hy:=0 1ff gj=0 or T(gyf)<T{Zgje)

hiz=M(g) 1ff T(gf)=T(Zg,ey).
w 1=3g6, i then said homogeneous  If, for every g=0, gebt and T(gf)=T(w).
Define S : Al+A by S(Zge,) i= Zgfyi s + AbeA by s(Zge) := ZgM(f)).

Remark that T(S(UY)XT{u) and equality holds unless M{u)eker(s),

If w is a homogensous element of ker(s), we say w Lrexiends to ueker(S) iff
M) = w.

Remark that, If ueker(8), and w = M{(u), then weker(s).

Propositién 4.10 1f<is a term-ordering, the following conditions are
equivalents.
DI: Each_homogeneous element of ker(s) brextends 1o an element of
ker{S)
D2: }f Wis.a base of ker(s) consisting of hormodeneous glements,
each element of W b-extends to an element of ker(S)
D3: MWQL ker(s) consisting of homogeneous
elements, s.t, each element of W b-extends to an element_of
ker(S)

Proof: D3 2D1: Let weker(s),homogeneous; then WEZY W, _m,eﬂ,.wiew,

T(mywy)=T(w). Let ueker(S) be s.t.w, b-extends to uj. Let u:= Zmu;; then
n 22
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¢ : The assumption ImpHes there exist fy,...,fieF, my,...,m M, PoseeesPreA,
S g=h = Py~ Pyy Py Py = My f, €l for every i,

The thests is then obvious.E

Proposition 4.8 Let F,~,I be defined a5 above.lf - is_noetherian {e.q, if <
is a term-ordering), the following conditions are equivalent:

Ci: nel implies h-0

C2: if h and g are _irreducible: h—gel implies h=g.

C3: for_every heA there exists a unique g irreducibie s.t, h-g

C4: - is_confluent.

Proof: C12€2: If h and ¢ are irreducible, then also h-g is such. Since, by
C1, h-g-0, then h~g=0.

C25C3: since ~ is noetherian we have just to prove uniqueness. However if
g,p are irreducible elements s.t. geh-p, then ¢-pel and $0 9=p.

C3>C4: Let h,g,p be s.t. ge-h-+p and let ¢',p' be irreducible elements s.t.
g-+g', p-+p'. Then g'e-g«h-p-+p'. So g'=p' is the required element.
C4:5C1: Since hel, by Lemma 4.7, there are hoy - fpq€P* 8.4 h=hy and

(defining h,:=0) for every i, either hi_y=+hjor Ni=+hyy.
Since 0 is frreducible, h,_y~+0. Therefore, either h-Q or there is jcn-l 8.t
hy~0 it 1), but it is false that hj%O.Then hjwhjﬂafo. By tonfluence,

however, there is g s.t. hj-»gwo, and, since O is irreducible, hngzo, 2

contradiction.t

if for any ideal 1CA, one is ablé to provids a set F which induces a confluent
and noetherian relation -+, then one is able to decide ideal membership (by
C1), ideal congruence (by C2), and to compute canonical representatives
for elements in R/1 (by C3).

Proposition 4.9 The following implications hold:
Bi>Ci>B2.

Proof: BI1>C1: Let hel*, h = Sjuy  aymifj, aek™, meT, fief,
21
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Lemma 5.2 If 5(i,j)-0 then s(i,j) b-extends to an element of ker(S)

Proof: The assumption implies there is a representation 5(i,j) = Zgf; s.t. for
each i, either g;=0 or T{gf;) ¢ T(S(i,3)) < T(s(i,1)).

So w b-extends to u := s(i,]) - Zgie;. &

Lemma 5.3 If T(i,}) = TU)T(), then s(i,j) b-extends 1o an element of
ker(S). '

Proof: u := Ic(fj)“1 fye = le(f)1 e, e; € ker(8) and M(u) = 5(1,j). 8

Lemma 5.4 Wg t= {s(1,)) / {1,/}eB} s a base of ker(s). ®

Impose on B a total ordering « s.t.
if 3meT, m>1, with T(k,1) = m T(i,j), then {i,3} « {k,)}

We say CcB is «-admissible, if: :
(1,3 € © 2 3k sty TOLE) = TULK, (Lkk{h i) {kfd«{ti}

Lemma 5.5 If C is «-admissible , Weis{s(i,}) / {1,)}eC} {s.a base of ker(s).

Proof: We show that if {i,j}¢C, then s(i,§)} can be represented in terms of
elements s(k,NeB, s.t. {k,}«{i,i}
Since {i,j}¢C, then there is k s.t. T(,1)=T(5,5,k), {i,k}«{i,i}, {k,i}«{i,i}.
The following equality holds easily:
TCLLK /T s(h,) - TULR/TUK) s,k) + TCL,5K)/T(,k) 8(f,k) =
=0

s(i,j) = T(i,5,K)/T(,k) s(1,k) = T(,5,k)/T(,Kk) s(,k). B

The idea on which Buchberger algorithm is based is the foliowing: let
Fi={f,...,f,} be a base of I, and let C be a «~admissible subset of B.

If for each {i,j}eC, s.t. T(,N=T{NT(), 8(1,i)~0 then, by lemmata 5.2, 5.3,
and 5.5, D3 is verified and F is a Grobner base.

26
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S5 Buchberger algorithm

A) An_informal description of Buchberger algorithin

Let A := k[X;,...,X,), k a field, < a term-ordering on T.

Let fy,.u,f eA%, Fi={fy,fy}, [i=(F), = the relation induced by F.
Denote by (ey,...,&,) the canonical base of AU, Let AYbe graded by T, as in
S4, defining T(Zg,e,):=max(T{gf;):gz0); define also M(Zge,) as in §4.
Define 5 : AU=A by S(Sgie;) := Sgifj 5 + AY=A by s(Zgey) := ZgiM(fy).
Let us recall the following definition: if w {s a homogeneous element of
ker(s), we say w b-extends to ueker(S) iff M{u)=w.

Let us also recall the following equivalent definitions of the concept of
Grébner base:

Proposition 5.1 F is a Grébner base of I {ff any of the following conditions
s verified:
A3 M(f) = M(])
C1 fel iff -0
D3 There is. 2 base W of ker(s) consisting of homogeneous
elements, s.t, each element of W h-extends to an element. of
ker(S). W

Since im(s)=(M(f{),...,M(f,)) is @ monomial ideal, it is very easy to compute

a base of ker(s), 1.6, a base of the module of syzygies of M(I),
Denote:

T(Y 1= T, =13

B:={{1,i} 7 1¢4<jsul;

T(4,)) 1= heeam. (T, T, {1,1}eB;

T(1,,k) := Leem. (T(1),T(9,TK)), ted,fkeu;

s(i,) 1= e () T /TH) ¢ - lc(fj)" T3 /T ey 161,0805
S(1,)) 1= S(s(h,i)) = 1e(r)™! TGLH/TA) £ = 1e(fp™! TUN/TE) £}, teh,ic0,
the S-polynomial of f,_and f;.
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Remarks : 1) Buchberger proved that if < s s.t. deg(m) < deg(n) ® m < n,
then an optimal choice is to choose {i,j} s.t. T(i,j} is minimal w.r.t, to <.
This choice however can be very bad if < is a lexicographical ordering.

2) Order { {1,j} 7 1¢i<jeu} so that it T(,3) < T(k, D then {i,j} « {x,1},
while pairs {1,3}, (k,1} s.t. T(i,))=T(k,1) are sorted according to the order in
which they are chosen by the aigorithm,

The set C := Cy U{{1,i} / T(1,j)=T)T()] is then «-admissible so the set
{sli,j) 7 {i,j}eC} is a base of ker(s), s : AV-+A defined by
s{Zg;e;) i= TgM(f;), whose elements b-extend to. elements of ker(é),

S 1 AS-A defined by S(Zgje;) := Zgjf;, so that G is a Grobner base of L.

We present now two examples of Grobner base computation; at any step in
the computation in which a new element i1s added to the base, the following
information will be presented:

1) a list of the base elements

2) a Mst of all pairs {I,j}, together with the list uf the exponents of

T{1,§), and if S(ﬂ,fj) has baen already treated by the algoritivn:
- the symbol "P* to denote that S(f;,f)) has not been computed

because T(i,j)=T()T{).
- & number k, i=kzj, to denote that S(f,,fj) has not been computed

since T(LD=T(1,3,k), T(L,R=T,]) or {i,k}eB, T(k,)=T(1,1) or {k,j}¢B
- the symbol =" followed by a number 1, to denote that S(fi.fj)
has been computed by the algorithm and there is cek® s.t. S(fi,fj)-vcf i

The pairs {i,j) will be ordered by «:
(i,))«(k,1) iff T(L,D<TR,D
or TU,N=T{k,1) and i<l
or T{i,j)=T(k,1) and j=1 and i<k,

C) EXAMPLE

We compute here the Gribner base of the ideal I:=(X3-Y,XY-2) C@[X,Y,Z]
w.r.t. the graduated rev-lex ordering on T generated by 2>Y>X,i.e. the
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Otherwise if some {i,jleC is found s.t. S(i,j)~g, g irreducible, g=0, C1
doesn't hold and F is not a Grobner base. In this case, one can force the
condition $(i,i)=0 to be verified, just adding g {which is an element of 1) to
the base F; this leads to a necessary enlargement of B and of C and so
requires to check S(i,j}~+0 for several new pairs {i,i}-

Since the element g which has been added to the base F, being irreducible, is
s.t. T(g) is not multiple of any element of T(F), it 1s impossible to add
infinitely many elements to F,since this would contradict Dickson's Lemma.
If one likes, the same can be proved using the noetherianity of A, because of
the inciusion (M(F))G(M(FU{gh)}.

B) Buchberger _algorithm

Algorithm Given A,<, fr,...,ft,F,1 a8 above, compute a Grobner base G of I.
Gz F |
u:=t
B = {{i,j} 7 1¢igjsu}
fCp:= 3
. While Bz¢ do
choose {i,j)eB [see remark 1 below]
B := B~{{i,j}}
If TCL,D=TUT() or (there fs no k, 1<ksu,ixka], 8.t
TU,=T0,5,K), TOK)=T{,]) or {i,k}¢B, T(k,§)=T(4,§) or
' {k,j}¢8) [see remark 2 below] then
[Cy := Couii,i}l
f 1= §(i,})
while =0 and M(f)e(M(G)) do
choose meT, 1, s.t. M(f) = le(f)/1c(f) m M(f)
fi=f=-1e(f)/1e(f) mf
If f=0 then
Uiz u+l
fgi=f
G := GU{f,}
1= BU{{i,u} / 1<icu}
27
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XYZ
fr=xS-y 12 3103
fri=XY-Z 13 3010
f3:=X22-Y? 23 211 -4
fi=Y5-%22 24  130-0
14 330°P
34 231P

So {fy,f5,f3,14} 18 @ Grobner base of L.

D) EXAMPLE

In this example we compute the Grobner base of the ideal
1=(T3-%, T4-Y) cQlX,Y,T] w.r.t. the lexicographical ordering induced by
X<Y<T, i.e. the ordering characterized by (0,0,1),(0,1,0),(1,0,0), if we
denote X by Xy,Y by Xy, T by X3.

XYT
f:=T3-X 12 004

f:=T4-Y

S(f‘,fz) =T fi - f2 =Y - XT =: “f3

XYT
fe=T3-X 13 103
fyi=T4-Y t2 004-3
fy=XT-Y 23 104

S(fy,f5) = X fy - T265=YT2 - X% =z 1,
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ordering which is characterized by (1,1,1),(-2,1,1},(0,~1,1}, if we denote
X by Xy,Y by Xo, Z by Xg.

XY2Z
fya= X3-Y 1tz 310

f2 1= XY-2Z

S(fy,fo) = Y fy - X2y =X2Z - Y2 =: 3

XY2
fra=x3-Y 12 3103
fo1=XY-Z 13 301
f5:=X22-¥2 23 211

S(fy,f3) = 2 f, - X f5=XYZ - ¥Z-0
S(f,,f3) = XZ fy - ¥ fz= Y3 ~ XZ22 =: 1,

XYZ
f,:=X3-Y 12 3103
foizXY=2 13 3010
frzx22-¥2 23 211 -4
f4=Y3-%22 24 130

14 330
34 231

S(fp,f4) = Y2 - X f4= X222 - Y220

29



fy 1= T3-X
for=TA-Y
fz2=XT-Y
fgi=YT2-X2
fo:=Y2T-%3

forzy3-x4

BV R

o S, TR S ¥ N N S S Y SR N &S B o % S L 2

RGN C S SN N SRIUAR UG,

w

XYT
121 -6

031
131
112 =5
022

032

103 -4
013
023
033
004 3
104
014
024
034

S{f,fg) = Y fs = T fg = X4T - X3Y 0

S(f40fs) = Y 4= T fg = X37 =~ X2¥ =0
S(fy,fq) = Y £y = T fq=X2T - XY =0

Mora
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fa=To-X 34
fpr=T4-y 13
f3:=XT-Y 1 4
f =Y T2-X2 P2
3
4

S(f5,fq) = YT f5~ X fq= X3~
f,::TZ’-X 35
fpi=T4-Y 34
fz:=XT-Y 45
f4:=YT2-X2 3
for=Y2T-%3 I 4
15
12
23
, 2 4
25

Mora 16

XYT
112

103 -4
013
004 3

104
D14

Y27 =: ~fg

XYT
121
11245
022
103 ~4
013

023
004 -3
104
014
024

S(f3,fc) = Y2 f5~ X fg= X4 - Y3 =2 ~fg

31
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S 6. Applications not depending on term-ordering.

A) Canonical form of the elements of a_guotient ring and Hilbert function

Let A= k[)(,,...,xn] be a polynomial ring over a field and let < be a
Let us recall the following notations and definitions:

term-ordering on A .
T(A) 1is the set of the monic monomials of A ;

if feA iswritten as T¢ym; with ¢ = c(f,m) ek* , myeT and

Mmy> My ..., then we put T(f) =m, , c(f) = ¢y, M(f) = cym ¢}
if 1 C A, we denote by M(I) the ideal of A generated by {M(f) |fel};

given a finite subset G = {gq,...,05} of A, anelement f=Zc¢im; of A

is called irreducible  with respect to G if no monomial of f belongs to the
semigroup ideal of T{A) generated by {M(g),...,M{gg)} . An irreducible

element f w.r.t. G is aiso sald to be in_normal form w.r.t. G.

Given a finite subset G of A, for every feA il is possible to construct

algorithmically an element f'e A such that:

i} ' 1is in normal form w.r.t. G i
f = f' modulo the 1deal generated by G .

it)
Such an element f'  1s called a_normal form of f (w.r t G)

Normal Form Algorithm
INPUT; fGA,G:{g“u-,gS}CA.

QUTPUT:
©of=f+ Ipjgy with deg(pygy) < deg(f) .

Py= e =Pg= 03
while f' is reducible do
choose a monomial my of f', T(gy) and ueT(A) s.t. my = uT(gy);

8 = gy~ e(f',m )
fr =1 -yug;;
pj = pj + gu.
34
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fla=T2-x
for=T4-Y
fei=XT-Y
f 41 2YT2-%2

fg:=Y27-x3

N O Y Y e

T, B S SURNE CRN. NS B S 7 B B S B AL
o
w
{
<

fei=Y3-x4

(R A T A I T

S0 {f1,f2,f5,f4:f5,fg} 18 @ Grobner base of 15 then
{M(f!),M(fz),M(f\,,),M(f4),M(f5),M(f6)} is a base of (M(I)); since
M(F,) = TM(f,), then {f{,f3,f4f5, 4} is also a Grobner base of L.
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Corollary 6.3. Let I be a homogeneous ideal of A . Then
H(A/T) = H(A/M(1)) .

Proof. 1f G ={gy,..., 85} 1 a G-base of I, then G' = {M(gy),...,M( gg)} is
a G-base of M(I) . So the set B , defined in theorem 6.1 , is the same for the
G-base G of I andthe G-base G' of M(I). Let B4 be the part of degree d

of B. As ak-base of (A/l}q (resp. (A/M(I))4 ) is glven by the images in
A/l (resp. in A/M(I)) of the elements of Bq , we have: dim(A/l)y =
dimy (A/M(1))4 for all d. ®

Corollary 6.4. If I {8 a homogeneous ideal of A , then the Hilbert function

of A/M(I) does not depend on the particular term-ordering on A ., B

Algorithms to compute the Hilbert function of an ideal generated by
monomials and, hence, of a homogeneous ideal are discussed in
{MBller—Mora ,1983) and [MBller~Mora ,1986b)

B) Svzvgles.
Given a fin'ite subset F = {f,,...,f.} of A, the syzygy module of F 1s
the sub A-module of Al
Syz(F) = {(hy,.u,hp) e AT /7 Shify =0},

In this section we want just describe how, using G-bases, we are able to
find a system of generators for Syz(F). Though not necessary in this context,
it is suitable to worki with reduced G-bases.

Definition A G-base G is a reduced G-base if and only if each g e G has
leading coefficient equal to 1 and is in normal form w.r.t. 6\ {¢} .
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Remark . If G is a G-base, then each f e A has a unique normal form w.r.t,
G (theorem 4.13, C3). We shall dencte it by N(G,f) .

This result can be got, in a mors constructive manner, as a corollary o
the following theorem which gives an answer to the problem of a canonical
representation of the elements of a quotient A/I of A . Note that its proof
depends only on the characterizations C1 and C2 of the theorem 4.13.

From now on let G = {g;,...,04)} denote a G-base of an fdeal I with

respect to some given term-ordering of A,

Theorem 6.1.([Buchberger ,1985]) Let G = {g{s++:195) be a G-base of an

ideal I of A.Let A be the semigroup ideal of T{A) generated by
{T(g1),000sT(gg)} andlet B = T\ A . Then the image B of B is a k-base of

A/l

Proof. Note that the canonical map B — B , u +— U s bijective.

Let T« A/l and let f' be a normal form of f 3 then f=Tand f' 162
linear combination of elements of B . So B spans A/l .

If 2cyUj=0 with ¢yek,ujeB, then f=Scujel , hence, by CI of
theorem 4.13 , 0 18 a normal form of f . On the other hand, as uyeB for

all i, the eiement f is already in normal form ; thus, by €2 of theorem 4,13,
fe0, thatisgi=0 foralli and B 1s a free set, &

Corollary 6.2. Let f,ge A . Then:
1) fel if andonly if N(G,f) = 0 ;
it) f =g in A/ 1ifandonly if N(G,f) = N(G,g) .

Proof. It follows immediately from theorem 6.1 . &

In the next corollary we denote by H{(R) the Hilbert function of a graded
ring R. ‘
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compatible lexicographic ordering induced by W > X > Y > Z i.e. the
ordering which is characterized by (1,1,1,1), (1,0,0,0), (0,1,0,0),
(0,1,0,0). We have:

hyp = S(fy,f5) = Y21y =21, = -xY3+ X222 = Xfy
hyz = S(f;,fs) =.WYf, AR = ~WXYZ + X352 = - Xfy
hyg= S(f,f4) = XZfi =Wy, = ~XZYZ+WYS = Yf,

hoy = S(fp,f3) = Wiy~ Yf3 = -WX2ZZ+X3Y = -X2f,
hoq= S(fg,fg) = X226 ~WY2f, = ~X3Z3+WYS = Y31, -X2Zf,
hag= S(f3,fq) = XZ2f3 ~W2Yf, = -X922+W2y4 = Y35 -X31y

so Syz{F) is generated by the rows of

~y2 2 0 X

-WY ~X Z 0

-X2 Y 0 W

%2 ~W Y 0
0 y3 - x22 0 WY2 - %22
0 0 y3 - xz2  wly-x3

Now let F be any finite subset of A . Let us write F as a row vector
(f1seeesfp) « Wo wish to find a matrix N, having + columns, such that the
finitely many rows of N are a system of generators 6f Syz(F). For this
purpose 16t us compute a {reduced) G-base G = (gy,...,05) (row vector) of

the ideal generated by F . Keeping track of how to write each g, interms of
fyyeensfr s Wo get an rxs matrix Q@ suchthat G = FQ . Applying the Normal
Form Algorithm to fy,...,f. , we can also construct an sxr matrix P such

that F =GP .
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It is easy to modify the algorithm of S5 in such a way its output is a
reduced G-base, It suffices to add some instructions to reduce every elemen
g of G innormal form w.r.t. G\{g} at the beginning and, also, each time a
new polynomial {s adjoined to the base.

Buchberger ({Buchberger ,1976b)) has showed that, fixed a term-
ordering on A , for every fdeal of A , there exists a unigue reduced G-base.

First let us consider the syzygy module of a {reduced) G-base. We recal
that theorem 2.11 and proposition 4.10 characterize G-bases by means of
their syzygy module. Now, given a (reduced) G-base G , which we write as a

row vector (91,...,93) s We are going to show how to construct a matrix ™

with s columns such that GMt =0 (Mt 1s the transpose of M ) and the
finitely many rows of M are a system of generators for Syz{(G). From
lermma 5.4 and the characterizations of the G-bases related to syzygies (see
§4), we get an algorithm ([Spear,1977], [Zacharias ,1978), [Trinks,1978],
[Schreyer ,1980], [M8ller-Mora ,1986]) which constructs M and which we
prefer describe informally as in [Buchberger ,1985].

- Start with the empty matrix M,

- For all pairs (1,§) (1<1¢j¢s) et h,J = S(g;,ng = Ujgy- uyg; be the
S-polynomial of ¢; and 9

- Apply the Normal Form Algorithm to h and G to get the
representation h= pygy+ ..+ pggg s

- Add

(P issensPiugs Pj=Upy Piagsorss Pj-ts Py~ Ujs Pragseess Pg )

as last row in M,

Example 6.5. In this example we compute the syzygies of the idea)l 1 of the
rattonal quartic curve. This ideal is generated by:
fi=WZ-XY , f3=WY2-X22 , fy=W2y-x3 | f,=%z2~Y3

and these four elements are a reduced G-base of I w.r.t. the degree-
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Proof. An r-uple H satisfying (¥} can be constructed in this way:
find a G-base G of 1, represent f as GP and G as FQ , then H=@QpP .

Each other r-uple is givenby H + K where Ke Syz(fy,...,f.) . &

Corollary 6.9. Given a system of generators of an ideal 1 of A , 1t is
possible to find a minimal one.

Proof. If F = {fy,...,f.} is a system of generators of I , then fre(fo, ., fl) it

and only if there exists (hy,...,h.)eSyz(F) with hy=1.8

Corollary 6.10. Given two ideal ! and J of A, then INJ can be
computed .

Proof. Let I = (fi,u0i,f.) 4 J= (f'y5000,f'y) and let S be a system of

generators for  Syz( fy,uuu,f.,f'y,000,f') . Let S' be the subset of the
elements of § having not all the firét r components and not all the last t
components equal to zero. Then INJ is generated by

{E'h,fi /o Tsisr and (hyyoi,hg, hysensh'y )€ 8 for some h'y,..,h, }. @

Example 6.11. Let f, fy, f5, f4 be the generators of the Macaulay's

quartié curve as in the previous example. Then
(f1y 1) NCfgy f4) = (Y5, 2fs, X WEL) .

Remark Later on it will show how the intersection of two ideals of A can be
computed without using syzygles.

Remark In general the system of generators for 8yz(F) constructed in this
way is not a minimal one. In the example 6.5 it is immediate to check that
R(S) = Y2 R(3) - XZ R(1)
and
R(6) = X2 R(1) ~ XZ R{2) + WY R(3) + Y2 R(4)
(here R(1) denotes the i~th row of M ) .
However, one can use the theory of Grébner bases for A-modules
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Proposition 6.6 ({Zacharias ,1978]). The rows of the matrix .

generates Syz(F) (I is the rxr unit matrix).

Proof. Let He Syz(F) , H=(hy,...,h.) . Then FH' =0 , hence GPH! =0 and
HPY is a syZygy of G . As the rows of M generates Syz(G), there exists a

vector K such that HP' = KM . Our thesis follows multiplying on the right by
Ql and using the identity H=HPtal+ H(1-Ptal) . &

Remark If F ¢ G, then ptat =1 y 80 Syz(F) is generated by Mal | In
general, even if G 1is reduced, it canbe [ = plat,

Example 8.7. Let A=k{[T,X,Y], where degT =1, degX =3 , degY¥ = 4, and
let us consider on A the degree- compatible reverse lox ordering induced by
Y>X>T , {.e. the ordering which 1s characterized by {1,1,1), (-2,1,1),
(0,~1,1) Let Fa{T3~X,¥Y=TX, T2Y~X2} ., Then the reduced G~base of
the 1deal generated by F s G={ T3~ ¥, T4~ Y}, S0 we have

=1 7 egerd -
FugGpsg and  GeFoe F{ 0 «1
6 -1 12 A
Hence ’
0 o 0
1- ptat = |0 0 o
-4 T2 g

So Syz(F) is generated by (~X, T2, 1) and, from the block Mat
(-Y + TX, X~ 15, 0) .

Corollary 6.8. Let 1= (f,...,f.) an ideal of A and fel. Then it is possible
to construct all the r-uples (hy,...,h.) such that

() f=hyfy+ o+ h.f. .
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S 7. Applications depending on term-ordering.
In this section we want to show how one can compute some special ideals

by means of G-bases raising from a particular term-ordering.

A) Homogeneization and affinization.

The first question, which we speak of, is the behaviour of G-bases with
respect to homogeneization and affinization processes, Though the
homogeneization is already treated in the proof of theorem %.8 y we wish to
report it here for the sake of completeness.

Let A= k[Xy,...,Xy] and B = k[XgsXqsee0sXp) be two polynomial rings
whose variables have respectively the weights (dqsee0ap) and
(1,0 q5000,Gn )0 If fe A, then Bf  denotes the homogeneous polynomial
X3 T0X /%o yeery Xpn/Xg )
in B (3f = degres of f) . For an ideal 1 of A we denote by NI the
homogeneous ideal generated by the forms Nf with fe ! ‘

If 1(V) fts the defining ideal of an affine algebraic variety V in AN, then
BI(V) 1s the defining ideal of its projective closure ¥ in the weighted

projective space P = P(1,44,40.,a,),

Given a polynomial FeB , we denote by 4F the polynomial
F(l ;Xi,aal,Xn)

of At J is a homogeneous ideal ¢f B generated by the forms FroeasFp

then 2J is the 1deal (3F,,...,8F.) of A.

When J s the defining tdeal of a projective algebraic variaty W, then
J s the defining ideal of the affine subvariety of W contained in the

standard open set Xo = 0.

Let <5 be a degree compatible term-ordering on A . Let us consider

on B the induced term~ordering defined in the following way:
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([Bayer,1983], [Méller—Mora ,19861) having some results like the previous
ones. In particular one can compute syzygies of syzygies, trim a system of
generators to a minimal one (as in the corollary 6.7), and, repeating this,
construct a minimal free resolution of an A-module.

C) Proper ideais.

The last problem having a trivial answer, not depending on the particular
term~ordering, by means of G-bases, is checking whether an ideal of A s a
proper ideal. '

Proposition ©6.12. Let I be an idealof A and G a G~base of it. Then
I=A if and only if G contains an invertible element,

Proof, Since G generates I, the impHcation ' & ° s trivial., Viceversa, If
I = A, then N(G,1) = 0. Hence there sexists g € G such that M(g) divides t .,
It follows that gek

Remark 1f G is a reduced G~base of I ,thenl = A {f and only if { e_fl%:"ﬁ

$
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Corollary 7.2. ([Robbiano-Valla, preprint]). Let W be a projective
variety in P and let V be an affine variety in AN whose projective closure
is W . If V is set-theoretic complete intersection of the hypersurfaces
fi=..=f.=0 and {f,...,f.} is a G-base of the defining ideal I(V) of V,

then W is set-theoretic complete intersection of the hypersurfaces
hf‘l = ads - hfr. = On

Proof. By hypothesis and theorem 7.1 , it follows: (W) = hI(V).z
h(rad(f1"“¥ff“)) = rad(h(fi,onngfr\)) = rad(hfI,u-n,hfr.) » E

Remarks. 1) In {Robbiano~Valla, preprint] it is showed that several
classes of projective varieties, among which rational normal curves, rational
ruled surfaces, elliptic normal curves, monomial curves in  P3 which are
arithmetically Cohen~Macaulay, are set-theoretic complete intersection. The
main ingredients used there are the corollary 7.2 and the following lemma:

Lemma. Given fy,...,fnin A, M(fy),...,M{(f.) Is a regular sequence if and

onty if {fy,...,f.} 18 a regular sequence and a G-base, B

2) The theorem 7.1 is alsc used in [Cavaliere~Niesi,1984b] to give a
characterization of the monomtal curves in PN which are complete
intersection and an algorithm to construct recursively all thess curves.

E

Now we shall show It is possible to compute a G-base of an arbitrary
ideal using homogensous ideals. This fact has important theorstical
gppHcations as, for tnstance, to the problem of degree bounds for G-bases
( [Mdller-Mora ,1984] ), but also practical ones: for instance, the Macintosh
diskette "Macaulay", due to Bayer and Stilmann, which just compute G-bases,
works, until today (February 1986), only on homogensous ideals.

Let <p any term=-ordering (not necessarily degree compatible) on A,

Define then the following degree compatible term~ordering <g on B:
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if u,veT(B) and log(u) = (g, Xy, ™) , 100(V]) = (Bg,ByyeensByy)
we put u<g v if andonly iIf Tog < Ipy or Zoy = Ipy and du <y v,

Theorem 7.1.([Robbianoc-Valla, preprint]). Let {g,...,a5} be a G-base

of an ideal 1 w.r.t. a degree compatible term-ordering. Then {hgi,...,hgs}

is a G-base of the ideal N w.r.t. the induced term—ordering.

Proof, Since a homogeneous element in NI is of the type hf)(om and
M) = MCNE) , we have MCDEX™) = M)X™ = M()X,™ , hence
MM @ MDB = (Mgy),eesMlgg))B = (MNg ), Mg )) .

The opposite inclusion being trivial, we get our thesis, &

Example (Macaulay's quartic curve) To find the projective closure of the
curve glvenby X=t,Y=13,2=1t? whoseidealis 1= (X3 -Y,6 XY ~2), we
put X <Y < 2 and consider the degree~compatible given by (1,1,4), (-1,0,0),
(0,~1,0). Then the (reduced) G-base of I is
[¥3 -y, XY =2 %22 ~ Y2 [ ¥3 - %72}

so N1 is generated by

(X5 - yw2, XY ~ 2W ,X2Z - Y2w , ¥3 ~ X22},
Remark In the previcus example, homogenizing the slements of G we get a
minimal system of generators for h1.1n general it {s not so ~even if G Is
reduced, For instance, let us consider on k{X,Y,Z, W] the ordering induced
by {1,1,1,1), (1,0,0,0), (0,1,0,0), (0,0,1,0) . Then the reduced G~base of
the defining ideal of the monomial curve given by X =t4,v=1t5,2 =16,
W =1t? has 11 slements, but hr s minimally generated by 6 elements.

Ideals of monomial curves have been studied extensively; there are
several specific algorithms to find a minimal system of generators: we
remind here [Herzog ,1970] for monomial curves in &3,
(Bresinsky-Renschuch ,1980] for those in pe , [E¥iahou ,1983] for the
general case in AN and [Cavaliere-Niesi,1984a] for that in PN .
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Given a homogeneous ideal 1, the satyration 158l of 1 is the largest
ideal J D> 1 such that Jy=14 forall d» 0,

Clearly 1 is saturated if and only If I =158 The ideal 158! i5 the largest
ideal defining the same subscheme of PP defined by I. 1530 can be obtained
by taking a primary decomposition for 1, and removing any primary ideals

having the irrelevant fdeal (Xg,...,X) as associated prime.
Given feB , we put (I:f*) ={heB/ fthe I for somet }.

Lemma 7.4. If fe(xo,...,xn ) does not belong to any associated prime

ideal of I, with the exception of (Xg,...,Xp ) , then (1:f*) =188l

Proof. The ideal (1:f*) {s saturated , because (Xg,...,X, ) cannot be an
assoclated prime of (I:f*) . Let [=0y N8 | bea primary decomposition
of 1. Then (1:f*) = (N6:f*) = N(el;:f*) and we have (d;1f*) = (1) if the

prime associated ®; of o, contains f, and (q,:f*) = g, dtherwise. |

Proposition 7.5. Consider on B the degree-compatible reverse lex _
term-ordering with Kideed Xy o 1T 94Xn 81,000,904 X%4% s @ G~base for the

‘deal I [ W1th ong Qf gi;o e;gs diViSib]e by x” ] then {gigtu-,gs} ‘!S a
G-base for {I:Xp*) .

Note that the considered term-ordering has the following property:
(%) for each feB , X, divides f if and only {f Xpn divides M(f).

Proof. Let ueM((1:X,*)) . Then u = M(f) for some fe (I:Xn*) , so
uXpM = M(f Xp™ ) & M(I) . Thus uXy™ fs divisible by M(gX,3 ) for some 1 .
Since g; is not divisible by and (%) holds, M(g,) is not divisible by Xp
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if u,veT(B),then u<g v if and only If deg(u) < deg(v) or

deg(u) = deg(v) and Ju<y 2v,

Theorem 7.3. ( [Méller-Mora ,1984] ). Let f£={f,...,f,} be a sequence
of elements of A and let Ng={Nt,,... .07 }.1f {g),...,9¢) 15 a G-base of
the 1deal (M) of B w.r.t. <g , then {%gy,...,%9,) s a G-base of the ideal
(£) of A wurit, <4

Proof. If fel , then there exists t such that ¢ = Xot he belongs to
(o) 050 M{g) = Xt M) = Xt M(F) . On the other hand
M{g)
M(f)

uM(g;) for some ueT(B) . Therefors

[}

AM(g) = qu AM(g) = quM(%g) . B

Remark. Even if the G-base of ( Pf ) is reduced, that cne of { £) could be
not such.

B) Saturation.

In this section we consider only homogeneous. ideals. Here we wish to
exhibit a Bayer's result [Bayer,1985], which shows that the degree-
compatible reverse lex ordering can be used for computing the saturation of
an ideal.

Recall the following definitions:

Definition A homogeneous ideal 1 of B = k[Xg,...,Xp] 15 said to be

saturated if, for all ideals J 1 suchthat Jgq=1q4 for all d» 0, it results
T=J. ’
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§ 8. Ellmination and its applications

In this section we describe and give several examples of how to use
G-bases in some problems which can be solved by elimination of variables.

Let A= kIX1,,,,,Xn] be a polynomial ring over a fleld k andlet 1 be
an ideal of A . The contraction I N k[Xy,...,Xg] {d<n) of Ito the subring

k[X1,....Xd] of A is very easy to compute by means of G-bases related 1o a
special class of term—orderings having the property "to separate" the
eliminating variables Xy, {,...,X, from the other ones.

From now on we denote the seliminating variables Xg, ¢,0.,X, by

¥iseees¥pg « For shortness we shall write X for Xy,...,X; and Y for

Yoo Yo.g 1 80 we shall write for Instance A= k[ X,Y] and a monic

monomial of A will be written as  XAYB,
Given two arbitrary terim-orderings <, , ¢y respectively on the set of

the monic monomials  T(X), T(Y) inthe vartables X and Y, we define a
term-ordering , called elimination. term-ordering, on the set T(A) of the

monic monomials of A in the following way:
() ¥AYB ¢xCyD  if and onty if ¥B ¢ YO, or YB=vD and %A ¢ XC

The lexicographic ordering induced by Xy <Xp{...< X, 1. the ordering
described by the sequence of vectors (e,,...,e;) where e,=(1,0,...,0),

69 % (0,1,0,000,0) 5005, &, = (0,..0,0,1) 4 s an elimination term-ordering.

Theorem 8.1, Let G be & G-base of I with respect to an alimination term-
ordering, Then G Nkl X ] 1sa G-baseof 1Nkl X] withrespect to <, .

Proof: Let Gkl ¥X1={gy..., g} . From the definition of elimination

term-ordering it follows that M{f) e k[ X ] ifandonlyif fe k[ X]. Then
MOTOKEXT)=MI)YOklX]=(Mgy,...,M(g.)). 8

Remark. A degree~compatible term~ordering 1s not an elimination term-
ordering. Nevertheless if 1 1is an homogeneous ideal for some graduation
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Thus M(g;) divides u . Since each gye (I1:X*), {gy,...,05} Is a G-base for

(I:Xn*) B

So, if X, does not belong to any rilevant associated prime ideal of I,

then the saturation of 1 can be computed using the degree-compatible
reverse lex term ordering.

Remark If the field k is infinite, then there exists an element of degree 1,

which does not belong to any non irrtlevant associated prime ideal of 1, But
the choise of such an element is not deterministic.
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¢} Kernels
Propesition 8.2. Let fy,...,fy € k[T(,...,T,.]= k[T] and let
g: kK[ X ] — Kk[T] be the ring homomorphism defined by (X)) =6 for

f=1,...,d. Then we can compute Ker ¢ .,
Proof. We have ¢ =g where ot k[ X 1-—= k[X,T] is the canonical

embedding and  p: k[X,T] — K[T] is defined by g(X,) = fis BT =T,
Then Ker ¢ =Ker g NK[ X J = (X~ fy,uee, Xy~ ) KX, TINK[ X ] can be

computed using theorem 8.1, 8

Corollary 8.3. a) Let ¢ asabove and let J an ideal of k[T). Then we
can compute ¢71(J),
by If wi k[ ¥ ] === k[T]/J s the ring homomorphism defined by

yX) = ‘i’"i s then we can compute Ker v .
Proof. Infact ¢ 1(J) = (U, Xy~ f1yeny Xy~ T KIG,TINK[ X ] and
Kery = ¢ 1(J) . 8

d) Cartesian equations
It ¥ s a vartety given parametrically by ¥ = fi( Ty, Ty ),
we ¢an compgté its cartesian equations by means of proposition 8,2 . A
G-base of the fdeal 1(V) 1is the set of elements of a G-base of the ideal
Xy Travoes Xg = fg) K%, V] whichare in k[ X1,
The followling example shows that for a projective variety given
parametrically we have an alternative method to find its ideal,

Example. Let ¢ be the twisted cubic curve in P3 given paramsetrically by
Xo= U3, Xy =TU2, Xy =12, oy = T3,

A G-base of the fdeal  J = (Xg=U3, Xy =TUR, Xy~ 72U, X5-T3) € KIX,T,U]
with respect Lo the lexicographic erder where U > T » Kz 2 voa > Xyl
given by (0,00.,0,1) ,euuy {1,0,000,0) 4 18 6 = {Xg=US, X,~TU, X~ T2U,
X5~ T, UKy~ Ty , UXy = T, U= Ty, X2 X X, %oXam X2, XoXas=XyXg ) .
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on A , then the previous theorem holds also for degree-compatible term-
orderings satisfying (*) in any degree.
In fact we can repeat the proof in each degree n because the subspace

M(I,) of A, generated by the set of the leading monomials of elements of I,

is equal to the set M(I), of degree n elements of M{1).

Using elimination we are able to compute:

a) Projections
If | defines the subscheme S of A" ( or if an homogeneous ideal
J € AlX,]  defines the subscheme S'  of PP ) then INkl &)

(resp. J NKL X,,X1) defines the profection of § to A% =Spec (k[ X])
(resp. of § to Pd=prof (k[ Xy5,X1)).

Example: Lot € C A5 be the cublc curve defined by the equations
faxX2-Ya0,q=XY~Z=0, The projection of € onthe piane Z =0 I8
defined by the ideal (f,a) N kiX,¥Y] . Since f,¢ are 3 G-base with respect
to the lexicographic ordering where X <Y <2, f.e. givenby (0,0,1),
(0,1,0), (1,0,0) , such profection is the curve defined by X< =Y =0,

If we want the equation of the projection € of € ontheplane X=0,
we note that f,0 ¢ k[Y,2], but a G=base of the ideal {T,5) with respect to the
Jexicographic ordering where X > Y > Z, i.e. givenby (i,0,0), (0,1,0),
(0,0,1), 18 6= (X2=Y,X¥~2,%2-Y2,¥3-22), Then C' fs defined by Y3-22=0,

by Discriminant and resultant
We can computa the resultant of two polynomials f,g with respect to
the variable Xy , In fact
result X, (1,00 = (£,9) Nk [Xg,0ees X1

Likewise the discriminant of a polynomial f with respect to the variable
X1 is
disc y (f) = (f,af/73X;) Nk [Xp,een X
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As the form ring 6 = @, JVJ™T 15 fsomorphic to R'/(U) , also G fs

computable.

f) The dimension of an ideal

It is very easy to check whether an ideal 1 of A is zero—~dimensional
by means of a G-base with respect to an arbitrary term-ordering. In fact we
have:

Proposition 8.4, Let 6={0y..., g5} beaG-baseof I.Then dimI=0

if and only if
(s) for each = 1,...,n thereexists gje G such that T(gji) = XM  for
some m e,

Proof. Wehave dim1=0 if andonlyif A/l 1s a k-vecior space of finlte
dimension. By the theorem 6.1 a k=base B of A/l s the imagein A/I
of the set B of the terms which are not in the semigroup ideal S generated

by T(9¢)seee T(ga)k Then B is finite if and only if for any 1 there exist e

such that X% &8  and ft is equivalent to condition {#). &

If diin 130, we can compute it by means of the eilmination, as shows
the following proposition.

proposition 8.5. dim 1 zmax {r] TNk Xy Xl =03},
proof. Let memax {r] 10K Xy Xl = (00} and let d=diml=

smax{dimp| p i, pprime} Let ® o1 suchthal dimp =d. Since
Al has trascendence degree d , d of the variables X, are algebrically

independent modulo B . In other words B N KL Xjypeey Xigl 2(0)  and
@ﬂk[ Xi‘geeng xiﬁg XJ‘} %(O) ?QE‘ @\t’@f‘}’ j ¢ {11979::’ 1!3} s SO ink[ x“,uq xid] =
={0), thatis m2d . Conversely we suppose that 1Nkl Xjg,eens Xjpl = (0)

and m>d . Then, for every » o1 suchthat dimp=4d , it results
B KL Xy qpeens ¥l # (03 and hence there exists f = 0 such that
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Then 1(E) = J Nkl X1 = (02 XX, XoXp = %42 5 Xo¥s = XyXo )

Another way of computing T{(C) , more efficient because it involves
less parameters and less elements, is the following:
we consider the twisted cubic curve €' 1in a3 given by

Xy=T, Xp=T2, %=1, Then € is the projective closure of €'

We put on the monormials of  k[¥,T] the term-ordering
¥ATP ¢ XBT™  ffandonlyif n<m, or n=m and XA<XP w.r.t. the
degree compatible ordering with X, < X5 < X3 given by (1,1,1), (~1,0,0} ,
(G,-1,0) .

So 3 G-base of the tdeal (X, =T, Xp= T2, Xz~T3) 18
G={X, =T, ¥~ T2, Xz~ T3, X2 = Xy, Xy¥p = Xz, Xg? X; Xz} and
G =GNkl X] ={X2~X%y, XXy~ %z, X2 XXz} s a G-base of I{C')
with respect to a degree compatible term-ordering.

Homogenizing the elements of G' we have a G-base of I{£)
(theorem 7.1},

o) Rees rings and form ring

Lot [ be anidealof k[ %) andJ anideal of ki X J/1 generated by
fysees oo TheRessringof J s R= @, J" (ne i) and it resuits
Re (k[ X 4/DIT T 1,71 € (k[ X VDITES

Then R & K[ X,¥ I/Ker w where wi K[ X,¥ - (k[ X J/DT] is the
ring homomorphism defined by  w(X) =X, , w(Y¥) ::‘*f'j“i’ . |

8o Ker o= (1, Yy~ 1yTyue, Voo T RE XY, TI MR XY 1 can be
computed by eliminaifon.

Stmilarly the ring R = @, J" (neZ), also called Rees ring, 18
isomorphic to the ring (k[ % /D 1T T,eus 1,7, 771} 2kl X, ¥,U) /Ker o
where o k[ ¥, ¥, 01— k[ ¥, T,U] /7(1, TU-1) is dofined by
afX) =%, o) =U and «(Y) = §T, so
Ker ot = (1, Yy~ £;T,eeny Yo 1T, TU= 1) KL E,Y,U,TI0KD X, ¥,U]
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polynomial in kixil . Then we can find the zeros of 1 by the following
algoritm ([Buchberger ,19851).

Algoritm 8.7.

INPUT 6
OUTPUT V(D)

Vye={alpla)=0}
o=
While 1<n do
Vg i= 2
while V,=@ do
choose (apuesy By) €Y
Hm {6 Cyuenny a0 Xiop) | 9 € 6 N GKIXyyeensXiag] N KDy vens XD )
B e 6,00 () |
Vigr 8% Vieg U { {01,000, 8y, 0) | pla) = 0}

Vi b vi‘\{ (a’igeuvg 31)}

V(1) 1= ¥,

Remarks. . B
To run the previous algoritm we need to know the zeros of polynomials

in 4 single indsterminate with coefficients in the field Kk shd in soms.

slgebrale extsnsion of ¥ .
Another subroutine required s a G6.C.D. algoritm. Note that the G.C.D. of

a finite set  F  of polynomials in a single variable is & reduced G- base of
the tdsal generated by F . '

h) Operations on ideals

Several operations en ideals can be performed by means oi“ the
slimination process (cfr.[Blanni-Trager-Zacharias preprint] ).

4



Cavallere O

fey (P Nk Kgreeer KD (B DT, dim P = d}. Then =0 and fRel.

This contradicts our assumption. @

Remark 8.6. Since the Hilbert functions H(A/T) and  H(A/M(D)) are
equal {corollary 6.3), we have  dim [ = din M{1) . Thus it suffices to be
able to compute the dimension of monomial ideals.

Every system of generaters of a monomtal ideal J  is trivially a
G-base with respect to any term-ordering. Hence the computing of dim 1 s
an easy maliter.

The propesition 8.4 ¢an be eastly obtained as corollary of this resuit.

If ® is @& prime ideal and we have found a particular d-uple
Xigaooes Kig Stich that POKIX 5000, Xigl =(0) and PAK X {gsenoy x,d,xj}x(e)
for any j ¢ {Iyseee, g} we can conclude that dim § = d . The following
example shows that Yor an arbitrary ideal this ts not sufficient.
Example. Lot 12 (X%, XXy, X{%q s Xo¥g » XoXq) € KU X500, Xg] . Then
10 kIXo) = (0)  and  Dk[ X, X 1 (0) forall fs2, bul
LNk Xg, %g120) and 1NKLX), X3, X1 2(0) for j=1,2. So dim 1= 2.

g} The zeros of a O-dimenslons! ideal

Given an ideal 1 of A, by zero~locus V{I) of 1 we mean the set
of the zeros of all the elements of 1 In some algebraic extension of k. of
course it s enough to ronsider 8 fintte system of generators F= {f,,.,.,fm}
of 1.

We have the following facts:
1.Y() =@ ifandoniy it 1 ¢ 1 , hence If andonly Hf 1 ¢ G for a reduced
G-base 6 of 1.
2. The set  V(I} 1s fipite #f and only if the ideal 1T s O~dimensional.
% let 1 he a O-dimensional ideal andlet G be a reduced G-base of 1

with respect to the lex-ordering where X; < Aoglennl Xy y 8o given by

(1,0,...,0) , €0,1,0,..0,0)y 000y {0,000,0,1) . Then G containg exactly one
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§ 9. Computation of some graded rings.

In this part we shall ses how it is possible to compute some graded
rings such as the Rees algebra, the form ring, the symmetric algebra,

a) Preliminaries

If 1 1is anideal of a ring A, we consider the family of ideals of A
{17}, nelN and we put Ry (1)=@p3, I, Inthis A-module we define the

following natural multiplication: if xe 1" and yel™, then xyelN*M,

Definition ¢.1. The graded A-algebra Rall) s termed the Rees

algebra of the ideal 1.

Consider now the abelian graded group  gry(A) = @y, 1IN} with the

following multipieations if xe /1M1 and  ye IM/IM* 1 then
xyelV P e me 1

Pefinition 9.2. The graded ring gri(A) is termed the form ring (or

graded ring) assoclated to the Ideal I (see also § 1 ),

In particular  gri{A)= RA(IZIRACL) , hence the computation of gry(A) is
related 'to that of R(I),

Now let M be an A-~module, T"(M) the tensor product of n coples of M

(T°G=A) and define T(M)= @,5,TN(M) . It 15 possible to endow T(M)

with a siructure of graded A-algebra since for any p,qe M we have the

A-linear canonical isomorphism Mgq? TP(M) @ATA(M) ~ TRP*4(M)

Definition 9.3. The A-module T(M) is termed the tensor algebra of M
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Propositisn £.8. let [, J belwoidealsof A andlet fe A. Then:
13 The ideal InJ dssgualto (71, (T-ODNAITIN A .
2) The ideal () =YA 0 A isequaito (I, TE=1)DA[TINA .

Proof. 1) Weput N= (T, (T-1)NAITINA . Let xelnd, then
x=Tx-(T-1)xeN. Conversely lel feA suchthat T=Tg+ (T~1)h with
ge TA[T] , ne JA[T]. Then ¢ and h must have the same degree & in
T.olet g=SaTh, h=3pT, where ael, bed for t=0,...,5. It
results  ag=by, @ =b ~by; for 1= 0,..,8-1 and f=-by, thus
8, eI d forall 1 andinparticular felnd.

2) We have Ap» AITIZ(Tf-1) . Let o A= A[T] be the canonical
embedding and let gt A[T]—— A[T]/(Tf~1) the canonical projection. Then
T A = (e JAITIATE-10) = a1 + kerp) = (1, TI-DAITIOA . B

Corollary &.8. Let | ,{ be as above. Then:
1) Let 6 5{gy,.us g} be a Gebase of 10 {f) and let H = { figsenny B}

be such that ¢ =hf, f=1,...,r. Then H is g G-baseof (f:f},

2) 1T Handonty # le(l, TT-DATINA,
Proof. 1) Tetvially He {0 ¢f) . Horeover forevery he{l:f) we
have Bfe 1N}, so hf=Zag with TOO 2 Tg) , 1= s, a8 6
i6 & G~base of 10 (f) {theorem 4.1% (B2)).

But TR =TT 2 Tlahyt) = Tlyh )T, then  h= X ah, and
T{hi 2 Tayhy) . This prove that H s & G-base of (1 1),

2) fevT f{fandonlytf Nel forsome n, hence if and only If
le{l:r*) . 8

Remsark 8,10, 1)y If = {f””” fad then (I} =n{l: f,) {EE PR L
so (I :J)  canbe compuled.

2) We can decide whether f  1s a zero-divisor modulo 1. Infact f
is & nopn zero-divisor module 1 Wandoply if (I :f)=1.
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We are going to show how 1o reduce ourselves to the homogensous case,
even If we start from an inhomogeneous ideal,

Put A=K [X{,...,Xpl , B=A[X,] and define the maps

he A B, a B - A asfollows: if feA, M= i =
= Xo0eF £(X1/Xgperokn/Xo) and 1T ge B, algd= 9= 91Xy, Xp)
so that o =, while if 1 is a homogeneous polynomial in B then
f=Xtq, ge(X,) and =t , M =g,
if an ideal 1 of A is given through a system of generators { fi,....;fm},
et us donote by £ the m-uple fy,ceo,fm ,by 1= (L) the ideal generated by
£, by ™ the m~uple My, andby (") the ideal generated by
fit , Observe that tf fisin 1, then thereis a U such that ‘Xet B s in
(hi) andif g fsin (L), then g isin 1, Moreover i @ =gq,.cgp 18
an r - uple of elements and we denote by L g the
mr ~uple (F1Gqee,fypdp)s then (M) () = (£ ) 3 in particular
(PN = h{D) for any 020 .

Proposition 8.5,  Ra(D) ¢ Rg((ME))/( X~ 1R (L))

Proof.. We consider the following morphism of groups ¢y ¢ LRI U

which sends ¢ (M) in %, and we note that if e (M) then ¥ fo
in 10, Moreover i fe (™)' &nd ge () with r+a=n, thon fge

Ca (N, e (fg) eI and 9, (fg) = eplf) 9glg) since B(19 )=

- &f 8g,

It is clear that ¢, is an epimorphism, in fact if Fell, thenthereis a 1

such that XL0F € ()0 and ¢y (XU PF) = F. Let us prove now that

Kor 9 = ( Xo= 1) (M0 we have (Xg- 1) (L) M C Ker ¢p, conversely if

Fe (), wecanwrite F=(X,~1)H+d with d eA,

It follows that ¢, (F)=fF = d = 0, o 1t fs induced an epimorphism of

graded rings ¢ ¢ Ry((*L)) = Ru(I)  whose kernel i the ideal

(X~ 1R }) as required.

38



Rossl 2

Definition 9.4. S,00 = T(M/J where J is the ideal of T

generated by the elemenis  x®y - y®x with X,y et s the symmetric
algebra of M over A.

b) Computation of Ralll, 5,000 and gry(i}

If T is an indeterminate over A , we can ldentify the Rees algebra with the
subring of A [ T 1 of the polynemials X, ¢ T, r=0,...,p,  such that

¢, €103 dnpartieular if 1= (1,000, then Rp(D) = A [T, enfpy T L

If we consider the surjective map gt A Ty,e, Ty 1 = R} which
sends Ty In §T for i=1,....m, wegel Rp(= A [ Tireee, Tl Ker
where Ker g is the ideal of A [ Ty,..., Tyl generated by the
homogeneous polynomials  F( Ty, i) such that  FQU 8 )=0
Hence 1t is possible to find the generators of Ker ¢ by using the
“elimination ", as 1t is described in § 8 @),

On the othsr hand If we consider the surjective map ¥ AT« 1 which
sends e in fy, then # is defined the surjective map

5(ky s Ba(AM= ATy, T] -+ 8000 where  Ker S{k) 15 the
fdeal of AlT{,.0, Ty} generated by the linear forms  F(V 0T} such
that F(fy,eef)=0. 1L 1s then clear that  Ker §(k) C Ker g andin
particudar Ker 5(k) 15 generated by the homegeneous part of degree one
of Ker g. Hence the computation of 54010 and gri(A) essily follows from
that of Ry (1},

We recall that i1 1 is ggénerated by 2 regulsr sequencs {f;,m,fm} in A,
then Ra(l)e 8a(De AIT ., Ty WUGTy = 1T with 1gifem and

grilAy= A/TIT 00 Tl

Moraeover if 1 s generated by homogeneous ( or quasi~homogeneous )
slements in A=kl X,...,%. 1, then an algorithm which computes Ker ¢ has

been implemented by Baver and Btiliman.
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Observe that this algorithm has ending since the terms of f with same
degree are a finite number.
What we are looking for is a set G of generators of 1 such that

{melg) : ge G} generates me(1) with respect to ¢ degree ordering.

Let "h" and “a" be the maps above defined, 1:(fi,.,,,fm) an ideal of A,
(% )= (My,...,") and <a a degree ordering.

We define the following degree term-ordering <g on AlX,) ¢

My <g My if deg(my)<deglmy) or deg(my)=deg(mp) and M 4> pfmy.

So that if f is an homogeneous pelynomials, then m,, (%) = M g(f).

prepositien 9.7, If {hy,...,hy} is a Grobner base for (M) with
respect 1o <p, then { f‘hhm,"ht} is 2 set of polynomials in 1 such that

Emepl 203 mea (B} generates me, (1)

Proof, 1f fe1 we prove thatl m(f) € (m( ), e, mahed). There is
s suchthat g=X,87 e (") andso  Mglo) = Xo® M), Bince
ge (), then Mglg) =m Mglhy forsome 1¢t; it follows that

B(Xo3 Mg (")) = 8(m Mg(hy))  and hence () =m mea {2y,

Remark 9.8. To find a M-standard base of an ideal 1 of A=Ky y000 s Xp )y
it is enough for example to find a Grobner base of () BrA[XO] with
respect to  <gthe usual degres ordering:

E<X](anp(Xﬂ<><0<K!2<X1X2<ao.<x‘lXn<onoeo aﬂd theﬂ tO put Xg'—'! »

in the following A denotes a local ring with maximal ideal M and I an
ideal of A.
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c) Lazard' s algorithm fer the standard bases

We shall see that, In particular cases, to compuie the Reses zigebra and the
form ring it {s useful to introduce the notion of standard base {see also § 1).
IfA=KI[Xy,Xg) and fe A, wo shall denote by L{f} the homogensous

form of f of minimal degree and, if 1 is anideal of A, L{1) is the idea)
of A generatedby [L{f) 7/ f=1].

I T=(1fg,.0), then ingeneral  L(1) 2 (L{fy),...,L{f) ) and 1 m
= (X100 X} we say that {fy,...,fn} ts 2 M - standard base of [ if
L(I} = ( L(f]}g"”?i«(fg’ﬁ) }

The fdea of [Lazard, 1983] is thal every alcarithm which computes Grébner
base can he used for standard bases by working with homogeneized

polynomials.
Let < be an erdering on the terms of A: we recall thal, for any polynomial

h oof A, m¢lhy (resp. M (B} } denotes the least ( resp. greatest } term
whose coefficient in h is not zaroj i 1 Is anideal of A, mc{l) is the ideal
generated by {mc(h) ¢ hel), while MAD s ({M ) helll

In [Mors, 19831 1t I8 proved the following

Lomema 9.6, Lsl < bs any dsgree ordering: 1t § iz 2 finite sef of
polynomiale such that | me{g) :+ g = 6} penerates m (1), then G is a

o= standard base of .

Proof, We shall srove that W (e 1, then LI e{L{y;: 724% Since f is
ind, medfh e {medg) s ¢ e G} henca there fs gye G euch that me(f) =
motymelgyd and then oty gp 6y with fpel, meliy) 2 melf),

If mindegify) » mindeglf}, then LN = tyl{gy} and the resull is proved.
Otherwise L{M = tyL{gyd + L{7{) and since fy el thereis ¢p € G such
that  m (fy) = to melge).  Inthe same way we can write Ty = t;gp + 1)
with o a1, melfs} > m(fy); if we repeat the same procedure , we find a

representation of L{f) interms of L{g) with g e 6.
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{ f1,f2:3 } isnot a T-standard base of ® where ™Mm=(x,y,2); in fact
6=yl x> ep, but L(6) ¢ (L{Fy),L(Fp),L(F5) ) = (zZ,yz,xz). In this case
{ f1,f2,f2 ,G} is @ M-stendard base of P. Hence:

grm/@(é) = A/(zz,yz,xz,yq) and  Rp(M/p) =A[T{,T,,T<]/J
where J = (XTp=yTy,XT3-2T{,yT5-2T;, x5y2 = 22, x3yTy=2T4, x3T,2-T42,
yz =x%, yT5=x3Ty, ToT3-xET12, xz -y3, xTz~y2T,, T T5= yTo2, y4-x5,
y3To-x47, y2T22-><3T12, yToo- X213, To%x11h,

To compute  Sp,1(TM/1) it is easier. In fact if {fiyoensfy} 15 any system of
generators of [ and M=(ay,...,a,), thenby Theorem 2.1 of [Rossi,

1G79] SA/I(m/I) = AEa,T,m,anT]/(f;,...,fm, fET’ooo’fmTJo
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d) Computation of Rp (W/1}, gry,p{A/1} and Sasp(mi)

Wo consider the form ring  grp/q(A/1)= @nye (/DN (M
associated to T/I; the canonical epimorphism ™ -+ MW/ induces the
epimorphism  gro(A) = grop{A/1)  and we denote with 1% its kernel,

Now it A=K[X{,.osXpd, then grip(A)e KIX{,...,Xy) and I* =L(D). Hence if
{f1,e0nfp} 15 @ T-standard base of I, then I =( L), Ll ) ).

We have already said that Rp(Mm) < A[T], we denote with 1' the
homogeneous ideal 1 A[T] A RA(M). It i5 clear that 1' 1s the ideal of
Ra(Mm) generated by the polynomials  p o TN, 120,000,p , With e 10
mF, hence we have  Rp/(M/1) = @y (/DN = @y (MM T) =
Ra(m)/'s In [Rosst, 1979 I' f8 completely characterized through 4

M-standard base of 1. First recall that if fe M, we denote by vp(f) the

greatest integer n such that fe MmN,

Theerem 9.%. The following facts are equivalent ¢
1) {fyyeensfyy) 15 @ M-standard base of I

H) I'= (fi,f1T;au;fiTVg§sunun§fm,fmT,nn;fmTV$) where szV'ﬁ'}‘(fi)

Remark 9.10. If A=K[X{, 00 Xp)y Ma(Xq,e0,Xp)y  the epimorphism

gi AlTy, 0, Ty) @ RA(M) has as kernel the ideal 04Ty = XyTy) 1ekjsn.
1f 1 isanidealof A, (f1 ) @ M-gtandard base of I with vp =
= mindeg (f,) and fy, any element of g1t 1), then

Ra/ (/D) = AT e, T VOXYTY = KT soensfpfpgeeensfrypene) - Wt

teijem and  r=l,...,mM,

Example 9.11. Let us compute the Rees algebra and the form ring
associated to the maximal ideal of RzK{t4,t5,t1§}. 1t is known that R=
A/p  where A=K[x,y,z] and B s the prime ideal of A generated by
fr=x3y% - 22, fp=y2 x4, fz= xz -y3. |
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