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INTRODUCTION

This poper is o sequel of [M0R1], where 1 generalized ths concept
of Lrobner bases [BUCY, 3] to non-commutative polynomiol rings and
discussed their moin properties ond semidecision procsdures to compute
them.

In the case of commutotive polynominl rings cuer fields and positive
term orderings, there are different equivalent characterizations of
bribrer boses, the most importont being the following:

F iz o Grobner basis of an ideal I C KIHI,...JKHE i

fi. the "naxinal terms” of the bosis elements generate the
semigroup ML(D) of all moximel terms of elements in 1

B: every el coan be represented as f=2q.1, f, €0 so that
the maximal ters of f s not lower thon every wmaximal term of g; f.
C: the terms which are not in N(I1) generate a K-vector spoce
which is isomorphic to K[HP...;HRJH, and this isomorphism is

computable,
D: property B holds for o finite set of polynomials explicitly

defined in terms of the bosis elements.
(remark thot B and € can be expressed in terms of the Buchberger
reduction relotion and then become respectively each element in I can
be reduced to 0; each element can be reduced to a unigue irreducible
slement ),
Propertizs immediately analogous to these still hold and are equivalent
also in the case of non-commutative polyromial rings,se any of them can
be chosen as g definition of Grdbner bases,

They are, howsver, no more equivalent in the other krown
gensralizations of Grébrer bases; for instance when one consider
polynomials over a ring {instead than ouer a fisld) [2AC,SCH,KRE NOL,PAN]
they lead to different concepts of basis,

In particytar, when one still works on P = K{Hi,',.,}{n], but reloxes

the condition of positivensss on the term ordering, so introducing the
concept of standord boses [HIR,GALLAZ], not only examples suggesi that
it is difficult to find a stotement analogous to € [WR3], but A and B
are squivalent ondy if stgted in some exiension R of the polgnomiol ring



P {namely either the localization at the origin or the completion), and
then B is verified not only by polynonials in I, but also by polynomials in
[R NP, the contraction of the extension of 1 in R,

The results of Robbiano in his theory of graded structures [ROB1],
which is o proposal of a generslization and unification of the known
concepts of zpecial bases (Grobner,Macauloy,standard bases) together
with other concepts related to the theories of groded and filtered
rings, clearly show thot in the general case, it is impossible to have
equivalence betwesn (the generalizations of ) R and B.

In [HOR1} T gave a definition sufficiently general to aliow for g
common tregiment olso of stondard boses in non-commutetive polynoaial
rings. This wos done choosing A as o definition of generalized Grotner
basez (which 1 cafled d-sets), and using (following [LAZ] and [ROE2])
concept of term ordering more general than the ome introduced by
Buchberger [BUCL,3], Le reloxing the condition of positivenzss for g
term ordering

While it was to be expected thot 8 and B were no more sguivalent
for nen-pesitive term crderings, it wes possible to give a weaker
analogon of B {each polynomial in I has a d-reprezentation) which was
equivalent to A, but which had some unexpected features:

13 the definition doesn't involue representations of polynonials in
the idenl through the basis elements, with coefficients chosen in some
gxtension ring;

2} the definition implies that g d-set is not necessarily a basis
rigither of the idsal {as it already happens for standard bases in the
commutative case) nor of its extension in some extension ring.

However, as it will be shown in example 2 below, this analogon of B
cannot be improved,

The aim of thiz note is then to give a possible interpretation of its
unexpected features: it will come out that the problems are originated
more by non-noetherianity thon by non-commutativity; and that the
analogon of B makes perfectly sense, once interpreted in terms of ring
completions as follows:

Fis a d-set of I, if, denoting 1" the closure of I in the
completion of the polynomial ring wrt, a topology noturally
induced by a term ordering, each element in I can be obtained
as a limit of a Couchy sequence of polynomials, each of them with
2 "good" representation in terms of F,

a concept, more similar in nature to the one related io
epresentations through Orébner bases, can still be applied, but just to
zlements "approximating” the elements one has to represent,

This helps to understand the role of the formal power zeries ring
in the defirition of (commutative) stondard bozes, it stresses the fact
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{already suggested in [ROB1]) that Grébrer bases and their
generalizations have a strong connections with ring topologies; it
suggests also how to state a generalization of B which is still equivalent
to {the gensrafization of) R in the gemeral context of graded
structures,

It can be worthwhile to remark that I waz able to translate the
results here described for non-commutative polynomial rings, to the
theorstical setting of graded structures [NOR4]
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LRECALLS

11 1f R is o ring and F C R, we will denote F*¥={feF.f=0}
Let 5 denote a free semigroup generated by o finite alphabet A.
If mn are in 5, we sill say m iz o nultiple of n (n divides m) Hf there
are I,rin 5 st a=ine
K[51, K a fieid, will denote the ring whose elements are finite linear
combinations of elements of 5

K{5] = Zooomoic, € i, m €3,
with multiplication cancnicolly defined in terms of the semigroup
multiplication,

t2 A term ordering < on S iz a total ordering at.
i} for all mymy, ™ in g, m < m, impliez mm <mm, and &, nim, @

i) for all @ in S, there exists no infinite decreasing sequence
w2 o.rm2 e st foroall m; > m,

A term ordering will be colled positive iff 1<n for all @ in 5 a tern
srdering will be called negative iff t2a for oll & In & or eguivalently iff
a:ma and mznm for ol m,n in S

13 Let < be a term ordering on 5 If f:= Ty g Gl E K¥, m €3,

My *mg > vy, defing MAf)=n, le(f) =c,,.



o

14 R distinguished set {shortly a d-set) for 1 is a set FeI¥ s, MLF)

generates M1.(1),

15 We =say that f in K[S] has a d-representation in terms of a (possibly
infinite) set F cK{S] iff there is o sequence Gy renGire St gy = f and for

all |
1) g, € K[S]
2} if g;=0 then g, =0
31 if g, #0 then there ore 1, r. €5, a £K¥, foeF st

) Gy =90l iy

i Mg = M (f ),
i) if g, =0 then H{g) > Mg,
He zay that f has a finite d-representation_in terms of F iff;

Y =% - - U C
Df=E polifry gek¥, n el fef,

2y A =L e L) e 2 b T e For all £
Let us denote, for each m in 5, Uln) the K-vector space with hasis
fnneS,n<ml
He say that f has a mod.m d-representation in terms of F iff there is g
s.t. g has a finite d-representation in terms of F and f-g is in U(n),

Lo THEORER The following conditions are equivalent:

1y Fis a d-set for [
Jevery f in I has a d-representation in terms of F
Jfor alt fin Lfor all @ in 5, f has g mod m d-representation in
terms of F.
Proof:[1ORT] Prop.2.2.

2
<
ey
3

L7 Given an ordered pair of terams, (m’,mz) € 32, the set of matches of

(m“mz}, denoted by ﬂ(mi;mz}, is the finite set of all 4-tuples

(11,1.?,@ .)€ 88 s teither:
© =z

=r =1 e =hm,ry,

2y ly=r =1, m, =l omr,

3) heEro=lh L2l r 21, there iz we S ot w2, m=low, my=wr,

4) L=r, =1, L#, ro#1, there is €5 at, wel, p, 2w, m= 1, m
Z i H P 1 24 72 1

18 LENMA Let I be an ideal in K[S], FCI* a baziz of I, m¢ S The



following are equivalent:
1) every g€ 1* has a mod.m d-representation in terms of F
2) for all £,,f,¢F, for all (I ,lyryiry) € 1M{my my ), where m, =ML (f.),
for all Lre§,
fo=lo(f )1l 1, r rﬂ-!c(fi}HE for,r
{if not zerc) has o mod m d-representation in terms of
Praof: [MDR1]2.4.

9 COROLLARY Hith the same assumptions as in Lemma 18, if < iz negative,

then the following are equivalent
1) every q£I* haz a nod.m d-representation in terms of F
2) for aft £, €F, for ol {1 hryry) € e, ),
Fe=delfod fyry - lelf )L fry
{if not zero) has o mod, m d-representation in terms of F,
Praof: 2321) Ue have just to prove that 18.2) holds.

Let then f f £F, (!1,!2,;*1 NSO N(m‘,m.z)} frlelf ) £y - el 3 1, ry

and assume f=0; let Lred and g:=1fr,
By ozsumption we know ¥ hos o mod. m d-representation, ie there is

hellm) st f-h=Z_,,alfr is a finite d-representation. Then, since

< iz negative, thr £ Uln} and g-thr=Z_, ,allf r.r is g finite

=1t %

d-representation.
2. BH ERANAPLE

24 The aim of the following example is to show that, gccepting as
dafinition of d-set the one given in 15 (ie. a definition naturally
inuoiving "the ideal of maximal terms”}, we cannot hope to improve on the
copcept of d-representation given in 15 He will show in fact that it is
unauoidable to have not just a "series representation” involuing infinitely
many summands, but also infinitely many bosis elements will be required in
the representation, '

2.2 Let A = {ab,cde}, § the free semigroup generated by A, < any
term ordering st for all m,n in S, degin) > deg(n) implies m<n {eg. ths
inverse of the graduoted term ordering defined in [HORI] 591,

Let fy=bede - cdc®, f, =ab'e - ab™?e for i 21, so M{f,) = bede,

N (f)=abln if P21,

Because of {[MORI] 2.4, since ﬂ(l’lT{fi},ﬁT{fj)}R@' for all 1§, G={f:ieN}

i @ d-set for the idecl it generates,



Let m, = atlode®™, 121, and n, = ab™2edc! )

©2.3 It is then immediate that the following hold:
1 if mi—t=1fjr=, t,l,r €S, then j=i, t=n,

2y if t—mi:lfjr-, th,reS, then j=0, 121, t=n_,

3 n-t=lfir, t,red, then j=0, t=n,,

41 if t—ni=ifjrﬁ, tLLres, then j=i, t=m
S)iteSit-mpelt={m:ieN}iU{n:ienN]

b3 m, iz not in [; for alf t in 5, m, is in [+W1) and kas o mod. t

d-representation in teras of G
for, let do=deg{t), 5 st. d<3s+2, then

- 21, < it 212
My = 2oy oy fode™™ + 2, ey A

iz such g repressntotion
?) the only d-representation of m, in terms of G iz (using with some

gbuse of notation a "series" representation):
- 21, % i+1 2i-2

mi-ziszidc +"-i=1,mﬂb fgee =

24, It should then be clear that the concept of d-representgtion

propoesed in 15 canrot be improved and that no techniqus as in [MOR2,3]

to compute d-representations in finitely many steps can be gpplied

3. POLYHONIALS HITH 4-BEPRESEHTATIOHS

31 The example abowe shows another bad feature of d-representations:
there are polynomiala not in the ideal, which haue d-representations in
terms of a distinguished set of the ideal

This parallels a situation which occurs also for standard bases in
commutative polynomial rings: there, if 1 is a polynomial ideal, all
polynomials which are in IR, R being either the localization or the
completion of the polynomial ring, have a series representation in terms
of a atandard basis of L

The aim of this section is to characterize the set of polynomials with
d-representations in terms of g d-set of the ideal; we Jike to give a
characterization given in terms of operations within the polynomial ring
only; obeiously such a characterization is pessible also in the
cammutative case.

3.2 DEFIHITION If 1 is an ideal of K[S], denote C{I)=n_ . {1+Uin))



3.3 REMARK If < iz positive,since Y(1} =0, then C{I} =1, so the results
below are trivial in this cose.

If < i3 not positive,there is n €5, n< 1. There is then an infinite
decreosing sequence of teras Tty sy Mipend ON1E obtains such o sequence

detining n, = . In the proofs below, we il freely make reference to

this zequence.

3.4 PROPOSITION If 1 s an ideal of XK[S1, C(I} is an ideal of K[5],

Praof: Remark that if < is positive, C{I} =1, z0 we nesd a proof only in
the case that there existzs ne§, n<l,

He have to prove that if f e C{J¥, g e K[5)¥, then fg ond gf are in
[+Ua) for svery m<5; we will proof just that, given me s,
fgel+Um), since the other proof is ;.gmmetrical

Let n':=M,(g); in the decreasing sequence n',,. . where n' =,

1)
there is i st n<m Since £ €T+U(nJd, there are h'el, A" e U{n], s.t.

f=h'"+h"; so fa=h'g+h"q, with h'ge], h"g€J(n) c Ulm). So
tgel+U(ml,

3 PROPOSITION The conditions of Theorem 16 are equivalent to:
4} f € C{I} iff f has a d-representation in terms of F.

Froof: 132 4% Assume f € K[S* has a d-representation in terms of F,
Then (by implication 223 of theorem 16) for each m ¢S there is g s.t.
f-geUm} and g has a finite d-representotion in terms of F. Then
gel, so t e [+U(a} for eoch me§, and t € £(I).
Lonuersely, we wont to show thet for sach f € (1M, f has a
d-representation in terms of F. Becouse of remark 33, e houé to
prove it only in the case < i2 not positive, and becouse of Theorem 3.6
we can prove instegd that F ois a d-set for C{[}
S50, let £ e L{IJ*, me=T0f); since fel+Uin], thene is gel st
f-gqéeUm); then I1T(g)~ﬂT£:), and since F is a d-set for I, M{f} is in
the ideal generated by lz(F).

43220 obuicusly if feI*, f e C{I)¥, so it hos a
d-representation in terms of F,

4. RING COHPLETIONS

41 Ue intend now to give an interpretation of d-representations in
terms of ring completions, Therefore, we premit some recaills on hasic
concepts which will be useful in the following of the paper.



1.2 Let R be an associative ring and, for each m€ 5, let Ulm) be a
subgroup of B

He say U={Un):n €5} is an S-filtration of B if, for each m,nes,
Ulm) Uln) € Unn).

The S-fittration U induces o topological group structure on R (the one
which is obtained considering U as a system of neighboroughs of zero),
which iz Hausdorff iff nlim)=0.

He say R is an S5-filtered ring if, moreover, R is a topological ring wr.t,
the topology induced by U

43 If Ris an S-filtered ring, »ith U as filtration, a sequence (fi:ie M)

ot elements of R is colled a Cauchy sequence iff for every m €5 there
iz n el st forall sten, f ~f ¢l

A sequence (f.:1€ M) converges to f€R {f is g lisit of (fii e m) ) iff
for guery m €3 there is ne N st for all s2n, f-f ¢ Ual

Tun Cauchy zequences (f.) and (g;) are called gquivalent iff {f.-g)
convarges to .

f is called complete iff esach Couchy sequence of elsments of R
conuerges to an element of R

Each S-filtered ring B has o completion R™ wret, the topology induced by
U, iec B™ is a topologically complete ring, st B is topologically isomorphic
to o dense subring of it {see e.qg. [HUDD)

14 Dlearhy, U={Unl:meS5} is an S-filtration on K[S], and the topslogy
induced by it is Housdorff, and moreouer is discrete iff < iz pasitive. In
thiz cose, K[5] is o complete topological ring with respect to this
topalogy,

Therefore, in the following, we will exclude this trivial cose, while,
obuviously, the results belon hold also in this case. 5o, throughout this
section, we will assume < is not positive; Py ool oo will denote the infinite

decreasing sequence defined in Remark 3.3

4.5 LEMMA KIS] is an S-filtered ring with U={U{n):mn € 5} as 5-filtration,
Progf: He have just to prove that, for sach m €5, there are m'n" in 5,
st if fe¥m'), geUn"), then fge Uln),

To proue this, fix an arbitrary a' and let Ny M. e the decreasing
sequence defined by n';=a'n; there is i st ' <n. Define then n" = rig.

Then fgeUln'a")=Un') cUln)



46 Ue intend here to give a representation of K[S]" which is different
by the one recalled in 4.3,
Define K[[S5,<]) to be the set of all applications f:5 2 K s.t, there is no
infinite increasing sequence {n) of elements of S with f{n)=0 for all i
KI[5,<]] is given g ring siructure, defining

(f+gkm)==1{m}+glm)

(fg}mi=3f(n)gln"), where the sum runs on all pairs (which are
finitely monyl st a'm"=m
Since K[5] can be defined as the ring of those functions f:5 = K which
are zero ae., K[S] can be canonically identified as a subring of K[[5,<]L
This definition naturally sxtends the definition of the (commutative}
“farmal power series” ring K[[X;,...,Hn]}, so we will (with the usual nbuss

of notations) use a “series representation” for the elements of K{[5,¢}]

which are not in K[S], denoting them as: T eomy, o €K% m €5,

=1, i

m > m, for ali L

i+
For every such element f, one can define N{f) =m, lo(f) =c,.
One con also define Y(m)* ={f e K[[S<1, =0 or M) <m}

(re has then that U"={ W} 1m €S} is an S-filtration inducing on
S-filtered ring structure on K[[5,<]1] and that U{m) =¥{n}* N K{5]

4.7 LENMNA K{[5,¢1] is the completion of K[5]
Proof: 1) KI[S,<3] is_complete
Let {f.} be o Cauchy sequence in K[[5,<]].

He intend to construct a (not necessarily infinite) decreasing sequence

My e,y 0f elements of S and o sequence o, . {indexed on the

AL

iy
If one can extract from (f} on infinite subsequence (gj st Mylg) form

same zet) of elements of K¥ st. (1) converges to Zc.m
)

a decreasing ssquence, then (f.) conuerges to 0

Utherwize there is N st if s 2N then lc(f )15 ) is constant,

Define then m, == ﬂkaﬂ), c, = lckfm).

Remark that the Couchy sequence {g) with g =f -c,m, for all i, is st.

Meig<m for sufficiently large i,

Hzzume now we have defined Cy ey ByynpM st the m's are a

decreasing sequence and the Cauchy sequence (g.) with

g, = fi—Ej:‘ﬁ ¢y m; for all i, is =t M(g) <m for sufficiently lorge i

Then, again, either one can extract from it an infinite subseguence {hi}

.t ﬂT(hj} form a decreasing sequence, in which case {(g) converges to



0, and (f) to iy nCily i or there is N st if s 2 N then le(g, ) My(g,)

iz canstant, in which case one defines oy = T‘ET(fN), Cpy = iCUN)} and
the procedure can be repeated.

If, in this way, one obtains an infinite decreasing seguence My sz OF
elements of 5 and a corresponding sequence Cy pronsCiane of elements of K¥,

Ziay 0o C3 My since for all me€5 there

then clearly (f.) converges to g:=
2 noet.om 4w, oand, if 5 iz sufficiently large:

Mef, - g s o, - - mj} <m <,
23 For each element f of K{[5,<1] there is o Cauchy seguence in K[S]
converging_to it

If £ eK{S], then the thesis is obuious. Otherwize let f = EF’ e O Byl

define f =2 - Then clearly {f ) converges to f,

=i C}' m}’
5. BING COHPLETIONS AHD Jd-REPRESENTATIONS

30 LENMA Let 1™ ¢ KI[5,<]] be the ideal of all limits of Couchy
sequences in L Then the following hold:
2y =t dm) )
JE =1 nK[S]
Proof: 10 Let f e, £20; (f) be a Cauchy sequence of elements of I

-

converging to ity by the argument in the proof of Propd.71}, i s is
sufficiently farge, 1) =1L {f_} So the thesis,

2k Let fen(I"+Un)" ) then for each n, in the decreasing sequence
of terms defined in 4.4, there are f,€1%, g € U(nJ" st 1=1, +g.

Since f, iz the finit of a Cauchy sequence of elements of 1, there is

p, €1 st fi-p, €UlnJ" .Then (p,) is a Cauchy sequence of elements of I
converging to f, since, for each i, f-p =g +(f - p) € Uln )" Therefore
felm

Iy If fe 1" K51, then, by the argument above, it iz the limit of a
Cauchy sequence (p,) of elements of I So for each m, if 2 is

sufficiently large, f-p e U{mi* MKIST=U{n); 5o for each m,
f=p +if-pJ)el+Un], therefore f € C{I)

5.2 LEMMA If f £ KIS] has a d-representation in terms of F, then f is
the limit of a Cauchy sequence (pi) of elements of K[5], st each p, has

a finite d-representation in terms of F.



Proof: Let g;» d '1" fi, ry be gz in 13

iJ

For euery n, define By =9y = Gey =2 a,l.t.r; then, for every n, p_

=i i i
has a finite d-representation in terms of F.
He need to show that {p } is a Cauchy sequence converging to f; this is

obuicus if g =0 for large n, 30 assume g =4 for suery n
n 3]
(N.{q J) is then a decreasing sequence, so for each m£ 5 there is n
T “n g
5.t HT{gn}{ ®. Therefore for each m €5, there is n st if 8,1t 20,
Py~ Py = Gepy ~ ey € UU(g D) CUln), and f-p, =g, € VN (g 3}  Uln),

This completes the proof.

5.3 THEOREM The foilowing conditions are equivalent:

1) Fis d-set for [

g3 ETT{F) qeneratea NT{I")

63 f 1" iff there is a Cauchy sequence {p) of elements of K{5]
converging te f, st each p, has a finite d-representation in terms of F.
Proot: 195} @ ohuious from Lemma 5.1}

G151 Let me ﬂTf_I”'_‘J, fei” be st m=ﬁT(f}, (pi} the Cauchy ssquence
of slemants of K[S] converging to f, shose existence iz implied by 6).
Then, if 5 iz sufficiently large, NT‘:DS)Hﬂ, and if Eci Ii fi ARE the finite
d-representation of p_ in tsrms of F, HT(f}=l1 ”T(T’f:’t’!.

326k If f is the limit of o Couchy sequence {pi} of elements of K[5],
st. each p; has a finite d-representation in terms of F, then for all i
poe(Ficl o feln

Conversely, if qel”, there are f,€F, 1,,rg €8, st U dgd=1; 0 dr,.
Then thers iz a, € K* st g =g-a5ly fyry either iz 0 or is st

fiyigy ) <fiplgh

He can repeat the argument getting o sequence g§=G,,..g,,. of elements

of 1™ s.t., for all i
1) if g=0, then g, =0
2y if g,=0, then there are a €K% €5, fL€F, sty
U gy =gkt
i) if g, #0, then HT(gi) >,
“Remark that this is a d-representation except that g, 4 K{S).

Soas in the proof of PropS52, defining p =g,-g,, =%, alfr, {pJ



is a Cauchy zequence of elements of K[S] converging to f, st. each Py

has a tinite d~representation in terms of F.

6. TRUNCATED STAHUARD BASES

6.1 The interpretation of d-set provided by Th.S.3 shows that the
following definition is a natural one, which extends in o sense the
concept of trunceted power series, An enalogous concept has been
recently introduced for the ring of conuvergent pomer series in [KF5],

6.2 DEFINITION If m €5, we say F is o m-truncated d-set for an ideal |
iff every t €1” has g mod.m d-representation in terms of F,

63 If <is a negative term ordering, a d-set will be colled {as in the
commutative case) a standard basis, In this case,every ideal 1 has o
finite m-truncated stondard basis for all m €S,

It iz obuisue thatmaking use of Lemma 18, just minor modifications to
Buchberger’s algorithm provide an olgorithm which,giver a finite basis F
of a finitely generated ideal 1 and m € S, computes a finite m-truncated
standard basis of 1,

T.STRNDBARD BASES IN COHHUTATIVE POLYHONIRL RINGS

7.1 Let ¥ be o {either finite or enumerable) set of variables {Xi,,..,Hn,...},

and let K{K] be the (commutativel polynomial ring in these wariables.
The main definitions we hove given throughout the paper are
generalizations of the onalogous definitions for the commutative
poiynonial ring,
In particular we can define a term ordering < on the commutative free
semigroup T generated by ¥ (whose elements, as usual, we will call
terms) as a total ordering st

i) for ali momy, Ry €T, <my implies mmy <mom,,.

i) for every m< T, there existz no infinite decreasing sequence

My > ¥ M2 Bt for all i, m > m

{remark that thiz definition doesn’t agree either with Buchberger's
[BUC1,21,which considers enly positive term orderings, nor with Lazard's
[LAZ1, which doesn’t require condition i} ),
e can then define Ic{f) and 1,(f) for o polynomial f; NiF) for o set F
of polynomials, 20 that M(1) is a senmigroup ideal, if 1 iz an ideal; Yia)
far- every term m; U={Unm)ime T }; C(I) for every ided 1.
He can introduce also (with just the minor changes required by



commutativity) the concepts of d-set, d-representation, finite
d-representation, mod. m d-representation.

If we introduce also the concept of T-filtered ring, clearly K[¥] iz a
T-filtered ring and its completion is K{[®,<]], whose definition is the
commutative analogon of the one given in 4.6.

Remark however that K[{X,<11is just a subring of the formal pouwer
series ring K[{R1], and coincides with it iff < is negative; otheruise, e.q.,
if m>{ then I o is in KIIR1) but not in K[[%,<1%

i=1 00
He then have the following analogon of Theorem 15, Proposition 3.5 and
Thenrem 5.3

7.2 THEOREN The following cenditions are equivalent:

1} Fis a d-set far I

2} every f in I haz o d-representation in terms of F

3y for gl fin I, for ol term m, f hos g mod. m d-representation in
terms of F, ‘
f e {1} Hf {f has a d-representation in terms of F
N (F} generates M-{1%)

of e 17 i there is a Cauchy sequence (pi} of elements of K[¥]

conyerging to f, st each g hoes a finite d-representation in terms of F,

7.3 The following result, howesver, depends on commutativity; a non

commutative counter-exanple is obtained toking S generated by {a,bl,
Fe={b-abal, I={F)cK[5], =1

7.4 THEOREN If 1.(1J ie finitely generated, (so in particular if K[X] is

noetherian, ie. ¥ iz finite} then the following conditions are equivalent:
1) F iz g d-zet for |
7 gel” iff g=E_, (b, b e KITR<DD, £, €F, and Ho{g) 2 MAhIML(F)

Si=t
for all i
Proof: 5)=7) Since N.(1) is finitely generated, wlho.g. we coan ossume F is
finite,
Az in the proof of 5126 (see 5.3}, we con obtain on infinite zequence
3= Gyl of elements of 1™ s, for all @
1) ifg;=0, then g, =D
2) if 9,20, then there are o € K* o T, f ¢F, st
Gy = 95 Gy
i g ) = m 0]
iy if A #{, then ﬂT(gi} ’}ﬂT(g_;H:’



If there iz n st gn=D, then there is nothing to prove.

S0, assume g *U for all n. For every t € F define py(f)=10; define then,
for all nxt, p(f)=p {f)if fo2f, plf)= pn_1(f)+an m, if f =f.
Clearty, for eusry f, (p (f1) is a Couchy sequence; lst p(f} be its limit;
then M (p(f2) N (f) < m, 106, )=, (g). Rlso, g=Zep P, 30 the thesis.

T8} is obwicus,

7.3 flso in the commutative case, if ML(I) iz not finitely generated, me
cannot improve the concept of d»-r*epr'esentatio‘n as shown by the
foilowing example:

let B be infinite; let [ CKIR] be the ideal generated by F={f :i21],
whepre f}. = }{i—Hm, Let w:T = N be the unique semigroup morphism =t
w{}a’i)ﬂ and let < be g term ordering st for every a',m" €7,

wim') < wim"} implies »' > n", =0 < is negative and F is a standard basiz of

L ,
Then R, € 1" and 8, ie the linit of the Cauchy sequence {p ) where for

all n, p =&, -4, =Ei=1,n fo It is easy to se= that this gives the only

d-representation of X, in terms of F, so F iz not g basis of I" in

KI[R,<]].

To show that a stondard basiz F of I may not be a basis of I in K[X],
aiso with noetherianity assumptions, the following well-known example can
te provided:

Let Bi={8}, 1:=(%), f=H-¥%, F:={f}, < the unique negative tern
ordering on T, then F is o stendurd basis of I, but, clearly 4 § {F) and
the only representation of ¥ in terms of F satisfying the conditions of
ThIAT) dst K= T 0 &1,
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