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Abstract

In this paper we use Grébner bases mainly for the exact solution of systems of
algebraic equations and questions about the solvability of such systems. In particular,
we give an explicit description of an algorithm for finding all solutions of a system of
algebraic equations which is solvable and has finitely many solutions. This algorithm
is an improved version of a method which was deviced by B. Buchberger. By a
theorem proven in this paper, ged-computations oceuring in Buchberger’s method
can be avoided in our algorithm. Furthermore, some other properties of Grébner
bases of zero-dimensional ideals are proved, which lead to further refined versions of
this algorithm.

We give a structure theorem for reduced Grobmer bases of zero-dimensional
prime ideals and present an algorithm that decomposes the radical of a zero-dimensi-
onal ideal that is given by its reduced Grobner basis into the intersection of prime
ideals. The reduced Grobner bases of these prime ideals are the output of this al-
gorithm. This method reduces the problem of finding all solutions of a system of
algebraic equations to an easier problem. In addition, it is shown how this algorithm
can be used for deciding membership in the radical of a given zero-dimensional poly-
nomial ideal and for solving the primary decomposition problem for zero-dimensional
polynomial ideals.
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Chapter 1

Introduction

For many years G. Hermann’s algorithm for deciding the ideal membership problem
was the only algorithmic method in polynomial ideal theory (see [8]). However, her
work does not give solution to the ”simplification problem modulo an ideal” (i.e. the
problem of finding unique representatives in the residue classes modulo the ideal)
and to the problem of effectively computing in the residue class ring modulo an ideal.

In 1964 Hironaka defined the notion of a standard basis for an ideal in a regular
local ring (see {9]). One year later in his Ph.D.thesis B. Buchberger independently
introduced the concept of Grébner bases, which is basically identical to Hironaka’s
definition of a standard basis. However, in contrast to Hironaka, Buchberger pre-
sented an algorithm for constructing the bases. Buchberger’s Ph.D .thesis is accessible
in [31.

The method of Grobner bases, as its central objective, solves the simplification
problem for polynomial ideals and, on this basis, gives easy solutions to a large
number of other algorithmic problems including Hermann's original membership
problem. Only about eleven years ago the computer algebra community has become
aware of the concept of Grébner bases and since that time this method has been
refined, generalized, applied and analysed in a number of papers.

In the present paper we use Grobner bases mainly for the exact solution of
systems of algebraic equations and questions about the solvability of such systems.
In particular, we deal with the following problems:

Problem 1
Given: F, a finite sel of polynomials in the indeterminates x4, . .., %, over a field K .

Decide: whether

F is unsolvable,
F is solvable and has finitely many solutions, or
F is solvable and has infinitely many solutions.

(A solution of F is an element b of K™ such that
F(b)=0 forall fe F,



where K is the algebraic closure of K. )

Problem 2

Given: F, a finite set of polynomials in the indeterminates 21, ..., zn over a field K
such that F' is solvable and has finitely many solutions.

Find: all solutions of the system F.

A decision method for Problem 1 is given in [3], see also [6].

A first algorithm for reducing the multivariate Problem 2 to a univariate one by
using Grdbner bases appears in [3). W. Trinks shows that the i-th elimination ideal of
a GrGbner basis G with respect to the purely lexicographical ordering is generated by
the polynomials in G that depend only on the variables z1,...,2; (see [14]). There-
fore, every reduced Grébner basis {G11,Gay, . . ., G2rcarzr-- s Gnytye - Gnyarn y of 2
zero-dimensional ideal in K[2y,...,z,] has the form

Gia € Kz,
Gar € Klzi1,22),

]

Gz,carg € K[.’L‘i, IZ]:
Gnl € K[ml,---,zn];

Gn,carn = K{wla seey ‘Dn]:

where cary,...,car, € Ny,

In [6] an algorithm is presented, which makes use of this structure. Method 6.10
in [6] finds a solution (by,...,b;,c) of the i + 1-th elimination ideal by adjoining a
zero ¢ of the polynomial

ng(G{.{..]_,:[(bl, ey bi: 331'+1)> sy Gi+1,cu1‘g+1 (blg Sy bi}‘vi-}-l))

to the solution (by,...,4;) of the i-th elimination ideal.
One of the main results in this paper is a theorem which says that there exists
adec K andanr € {1,...,cary1} such that

d'G£+1,r(b1, .. -,bi,$i+1) = QCd(Gi+1,1(51: ce oy by, mi+1), .- -,Gi-{»l,car;+1(b1:---1 bi, ='3;‘+1))

and that the polynomial Gi.1r can be easily found by a test for zero in an extension
field of K. Therefore, this theorem leads to an improved version of Method 6.10, in
which the ged-computation is avoided. Furthermore, we show that every solution of
one of the elimination ideals can be continued.



The most time-consuming subalgorithm in our improved version is the algo-
rithm that continues every partial solution (b; ..., b;) by computing the zeros of the
corresponding Gi41,. Therefore, we investigate the problem whether it is possible
to decompose such a G4, by using properties of the structure of reduced Grobner
bases. We show that it is often possible to find non-constant polynomials fi,..., f,
such that

Giyir=hH-...-frand s > 2.

In this case we can compute the zeros of Gy, by computing the zeros of the
polynomials fi,..., f,. As the degrees of fi,..., f, are smaller than the degree of
Git1,r, this strategy might lead to a speed-up.

Furthermore, we present a method for solving Problem 2, which has the ad-
vantage that a subalgorithm for finding the zeros of a univariate polynomial over
K and not over an extension field of K is required. Roughly, this is achieved by
multiplication of appropriate univariate polynomials over an extension field of K.
The result of this multiplication is a univariate polynomial over X.

We give a structure theorem for reduced Grobner bases of zero-dimensional
prime ideals and present an algorithm that decomposes the radical of a zero-dimensi-
onal ideal, which is given by its reduced Grobner basis, into the intersection of prime
ideals. The reduced Grébner bases of these prime ideals are the output of the
algorithm. This method reduces Problem 2 to an easier problem. In addition, the
following question can be answered too:

Problem 3
Given: fi,..., fm,g, polynomials in the indeterminates ey,..., o, over a field K.
Fuyrthermore, we assume that {f1,..., fm} is solvable and has finitely many
solutions.

Decide: whether
f1(8) = ... = fr(b) = 0 implies g(b) = 0 for all n-tuples b in K™,
or in other words, whether

g is contained in the radical of the ideal generated by {f1,..., fm}-

Another method for deciding membership in a radical is due to Rabinowitsch
and can be found in [15].

Our algorithm for decomposing a radical can also be used for solving Problem 4,
the primary decomposition problem for zero-dimensional polynomial ideals (see, for
instance, {13]):



Problem 4

Givem: I, a zero-dimensional ideal in the polynomial ring in the indeterminates
Z1,.-.,%n over a field K.

Find: Qi,...,Q,, primary ideals such that

I:Q;ﬂ...ﬂQ,

18 a reduced primary decomposition of I.

In Chapter 2 we give the necessary definitions for working with multivariate
polynomial rings and exactly specify the problems we want to solve in the present
paper. In Chapter 3 the definition of a Grdbner basis and the algorithm for con-
structing reduced Grobner bases are given. Furthermore, we review how Grobner
bases can be used for solving Problem 1 and Problem 2. In Chapter 4 we show
that every solution of one of the elimination ideals can be continued. In Chapter 5
we prove some new properties of reduced Grobner bases of zero-dimensional ideals
and present different versions of Buchberger’s Method 6.10 for solving systems of
algebraic equations. In Chapter 6 an algorithm for decomposing the radical of a
zero-dimensional ideal into the intersection of prime ideals is given. Furthermore,
we apply this algorithm to Problem 2, Problem 3, and Problem 4.



Chapter 2

Definitions and Problems

2.1 A Model for Multivariate Polynomial Rings

In this section we review a suitable model for the ring of polynomials over a field K
in n indeterminates (see [4}).

If we think, for example, of polynomials in the polynomial ring over the rational
numbers Q in two indeterminates, we usually think of expressions of the form

3zy’ 4+ 5z — 1 or
¥z — 2y + 3zy + 4.

Note that several of these expressions may denote the same polynomials. For in-
stance,
zy? + bz — 1,
~1 + 5z + 3zy?, and
022 + Szy? + bz — 1

are expressions denoting the same polynomial zy? + 5z — 1 + 2zy%. If one wanted to
think of the polynomial ring over Q in two indeterminates to be a set of expressions
of the above kind, one had to norm these expressions by some rules (for instance,

1. combine equal terms
2. omit terms with zero coeffictent
3. use a fired order of terms) .

One should carefully distinguish between the two meanings of the sign + in expres-

sions like
(52% + 3y) + (22y + 1),

where the first and the third + are separators between terms and the second + is
a symbol for addition of two polynomials. Otherwise, by the suggestive notations
above, one is easily mislead to draw incorrect conclusions in reduction argurments for



polynomials. In order to make the subsequent discussions unambiguous we adopt
the following model of the set of polynomials in n indeterminates over a field X .

Throughout the paper K denotes an arbitrary field, K the algebraic closure of
K, and n an element of N \ {0,1}. (¥ ... set of natural numbers including zero,

Ny =N\ {0}).

The following typed variables will be used:

m... an element in {1,...,n}
l an element in {2,...,n}
rs,t,u... elementsin N
d,e... elements in K
L... afildwith KCLCK

For k,k" € N™, k + k' is the componentwise sum of k& and &'

We write f(j1,...,7n) instead of f((j1,...,7n)), where f € Klzy,...,en] and
j € N7". Furthermore, (7,#') denotes (i1,...,4,,4],...,4,) € N7** where i €
NTand i’ € N*.

The polynomial ring in n indeterminates over the field I is the structure
(L{zs,...,2n),+,), where

Lizy,..,en]i={f:N" L |{i|ie N", f(i) # 0} is finite }
and for f,g € L{z1,...,zn] and i € N7

(F+9)@) = f(&)+9(i)
(f-9)(@) = 3 J(3)-g(k)

jeN™,
keN®
Gk

Furthermore,

C(fy=1{i|ie N"and f(i) #0}.

Note that in this definition the "indeterminates” zi,...,2. do not play any
logical role. They are only "syntactical sugar”.

In this model polynomials in L{zy,...,zqs] are functions from N™ to L. In
examples, however, we will use the usual notation of polynomials as arithmetical
expressions involving indeterminates. For instance, the polynomial g € Qiz1, z2]
with

9{0,0) = ~1, ¢(1,0) = 5, g(1,2) = 3, and g(i,43) = 0 otherwise,

might be written in the form 3zy® + 52 — 1 in the examples.
If we replace z by v/2 in this polynomial we get the polynomial

(8- v2)2% + (5 v2 — 1)2%".



In this paper we want to conceive this polynomial as a special bivariaie polynomial.
In the formal model this replacement operation is defined as follows:

Let f € K[z1,...,2,) and b € K™,
Then the polynomial f(b) is an element of K[zy,...,z,} such that

W:Nﬂ

-
7o

K
0 if there exists an
re{1,...,m} with j, #0
i Z i, Gty - s dn)) - 8 otherwise,
iENﬂl m
where bt ;= Hbf.’.
r=]

(Note that there are only finitely many i € N™ with f(i) # 0.)
We write f(by,...,bn,) instead of f((b1,...,0m)).

For the above g,

9(\/5) is (3- \/ﬁ)moyz 4+ (52 - 1)2%"° and
g(v/2,0) is (5 - v/2 — 1)2%°

in the usual notation.

Before we prove a few basic properties of the introduced model we make the
following convention:

Convention: To avoid confusion we denote 0 € K™ and 0 € N™, the neutral
elements with respect to + in K™ and in N™, by O, 0 € K21, ..., 2p), the neutral
element with respect to + in K[z,...,2n), by 0p, and reserve 0 as symbol for the
integer zero and the zero in K.

Lemma 1 Let f,g € K[z4,...,2,] and b€ K™,
Then

(f + 9)(b) = F(b) + g(b) and (f - g)(b) = f(b) - 9(8)-

Proof: Let i€ N™ and j € N*™™,

Case 1 # O
(F+9)B)(5,7) = 0 = f(b)(i,5) + g(B)(,5) = (F(8) + 9(B)) (5, 7).
(F-9)(0)(3,5) = 0= 3 FB)(E, 51 - g(B)(&", ") = (F(b) - 9(B))(4, 7).
i e N,
jhgteNn—m

(i’,j'}-l—(f",j”):(i,j}



Case ¢t = O,,:

(f+a)O)O0m, ) = Y (F+g)(k,5) b* =

keNﬁl

= D, fk3)- 654 3 g(k,5) 6% = F0)(0m, 5) + 9(6)(Omm, 7).

keN™ kEN™

(F-0)0)0m,7) = 3 (f-g)(k,5)-b* =

keN?n

— Z Z f(kl,jl) i g(kﬂ,j”) . bk -

keNm kl kleNm
Jr JHGN"—
(kr'Jf)_i_(kH fl) {k])

SBD DI DI DI { () BPTC LN LY o

Jr JHGN:-; ™m kEN"" krr Nm
J +J -.J kl_'_kﬁ' k

> Do F(RLG) - g(RY,57) B =

Jl' JﬂeNﬁ—-m kl,krreNm.

' +5"=j
= D (3 RN (D gk ) =
JrJHGNn,—m kleNm. k"ENm
i'+i"=ji

= D FB)Om, ) g(B)(0m, ") = (F(B) - 9(6))(Om, 7).

Lemma 2 Let f € K(zy,...,2,)], refl,....0~1}, be K7, and c € K-,
Then

78,9 = F5)(0r, <).

Proof: Let j € N,

)(O,.,c) (Or, 7) Z f (I i) (0,-,(:) Z ]_’m(ﬂr,i’,j) et =

’-EN! N EN!-—-r
Z Z f Ha ’,j ' i = f(b,c)(@;,])
SENt-rilleNT

Let i € N\ {0}

F(6,9)(, 5 = 0 = F(8)(0,, ¢)(i, 7).
Thus, f(b,¢c) = ”fij(o,,c). .




2.2 Definitions and Theorems

In this section we give further definitions and state some well-known theorems.

Definition 1 Let {r{,...,7,} C {1,...,n}. Obviously,
{h|h€Llx,...,zn)and iy =0forallic C(hyand allt € {1,...,n}\{r1,..., 7} }

is a subring of Lizy,...,zn). It is called the polynomial ring in the indeferminates
Loy ..y Tp, over the field L, abbreviated Liz.,...,2.,].

Let J be an ideal in L[z1,...,2m] and 5 € {1,...,m}. We call the ideal
JﬂL[.’cl,...,a:,]

the s-th eltmination ideal of J, abbreviated J,, .

Let .fl:fZ € L[mly'";mml-
We write

fi = f2
for fi is congruent to f; modulo J (j.e. f1 — fo € J).
Let f € K(z1,...,2a] \ {0,}. We denote
max{ 7 | there exists an ¢ € C(f) such that i, = r}

by deg(f,m). Furthermore,

deg(0p,m) = —1.

Example 1 Let f:i=zy?> - y® -2y +y+ 2 € Q[z,7).
Sometimes it is necessary to consider f as a univariate polynomial in ¥ and to
write it in the form
(e —1)y* + (-> + Dy + 2.

We denote the coefficient of ¥" in f by f.(=))- In this example:
flgay = =-1,
f(,(l)} = —:03+ 1, and
fon = 2
As the degree of f in y is 2, f( (2)) is called the leading coefficient of f. e

We give a formal definition of f(;y and the leading coefficient of f:

16



Definition 2 Let f € Klz;,...,z4) and i€ N™,
fly o N = K
j L if(jn—m+11"'fjn) ?l_-[)m
7 = f(j, - n-m,t1,--.,im) otherwise,
Let g be a non-constant polynomial in K|z1,...,2,] and j € N*=*'+1 such that
jl = deg(g,s’) and j2 == jn—-a’-{-l = 03

where
8 :=maz{m|deg(g,m)>0}.

The polynomial g(.,5) is called the leading coefficient of g, abbreviated le(g).

Let ¥ = {f1,...,f-} be a finite subset of Llz1,...,2m]. By Idealy m(F) we
denote the ideal in Lz, ..., 2] generated by F (i.e. the set

{fl‘ gl+---+fr‘ g'rl gaEL{m}a---:mm]t faE F(s:l,...,r)}).

Let J be an ideal in L{zy,. .., 2]. The set
V(J):={blbe K™ and f(b) = 0, forall f € J}
is called the variety of J. e

By Hilbert’s basis theorem, we can choose a finite subset H = {hy,..., A} of
Llz1,...,2.m] such that Idealp m(H)=J. Let g€ J and b € K™ with
hi(B) = ... = h(b) = 0.
As there exist ¢1,...,¢, € Lizs,...,2,,] with
g=ki g+ ... +h g,

we have o

g(b) = Op.
Thus, the common zeros of Aq,..., A, are exactly the elements of the variety of the
ideal generated by {44,..., A }.

Definition 3 An element b of V(J) is a generic zero of ideal J iff
forall f € Lizs,...,zm]: f(b) = 0p implies f € J.
An ideal P in L[zy,...,%m] is prime iff it satisfies the following condition:

Given f,g€ Llz1,...,2m], f-9€ P, and f ¢ P, then g€ P.

An ideal @ in L{zy,...,2,,] is primary iff it satisfies the following condition:
Given f,g € L{zy,...,zm), f-90€Q, and f ¢ Q, then g €@ for somer e N,.
A prime ideal P in L{z,,..., 2] is called zero-dimensional iff

there exists an element b in V(P) such that b is generic zerc of P. e

11



Theorem 1 [Let P be o prime ideal in L(z1,...,2m].
Then V(P) is non-empty and finite ff P is zero-dimensional.

Proof: see [15], section 129, p. 162. and [6] Method 6.9.

Theorem 2 Let P be a zero-dimensional prime ideal in L[z, ..., Tm].
Then every b € V(P) is a generic zero of P.

Proof: see [15], section 129, p. 162.

Definition 4 Let J be an ideal in L{zy,...,2,m]. We denote the set
VI = {f|feLz,...,2m) and there exists an r € Ny with fr € J}

by radical of ideal J. o

Theorem 3 Let Q be a primary ideal in Lizq, ..., 2]
Then +/Q is a prime ideal and V(@)=V(/Q).

Proof: see [15], section 117, p. 129, and [15], section 131, p. 167.

Definition 5 When ideal J in L{zy,...,z,] is written as a finite intersection of
primary ideals in L{z1,...,Zm}, say

J=@N...Nn¢g,,

we call this a primary decomposition of J. A primary decomposition such that
V@i,...,/ @, are distinct and J cannot be expressed as an intersection of a proper
subfamily of the primary ideals {Q,...,@,} is said to be reduced. e

Theorem 4 Let J be an ideal in Lizy,...,2m].
Then there exists a reduced primary decomposition of J.

Proof: see [15], section 118, p. 136, or [11], chapter 6, p. 235.
Theorem 5 Let J = @1N...NQ, = Q}N...NQ", be reduced primary decompositions

of J.
Thent =3 and {\/Q1,...,v@r}= {ﬁ,,\@}

Proof: see {15], section 119, p. 187, or [11], chapter 6, p. 234.

12



Definition 6 If a prime ideal P is an element of the uniquely determined set
{V@Q1,...,+/@Q;,} in Theorem 5, then we say that P is associated with J.

An ideal J in L[z, ..., zm] is called zero-dimensional i

every prime ideal P that is associated with J is zero — dimensional.

Theorem 6 Let J be an ideal in Lzy,...,2m].
Then V(J) = 0 implies J=L[zy,...,2m).

Proof: see {15], section 130, p. 164.

Theorem 6 is a special case of Hilbert’s Nullstellensatz. As we consider only
zeros in K™, we state this theorem only for zero-dimensional ideals.

Theorem 7 (Hilbert’s Nullstellensatz) Let J be a zero-dimensional ideal in
Llzs,...,em] and f € L{z1,...,zm] such that f{(b) = 0, for all b€ V(J).
Then there exists an » € Ny such that f" ¢ J.

Proof: see [15], section 130, p. 164, or [11], chapter 10, p. 375.
An easy consequence of Theorem 7 is the following theorem:

Theorem 8 Let J be a zero-dimensional ideal in Liz,,...,z5) and f € L{zy,. .., m).

Then f € v/ 7 iff F(b) = 0, for all b€ V(J).

From the fact that J = JiNJy implies V(J) = V{J;)UV{J3) for all ideals J, Jy,
and J3 in L{z1,..., 2], from Theorem 1, Theorem 3, and Theorem 6 we obtain the
following result:

Theorem 9 An ideal J in Lizy,..., 2] is zero-dimensional iff V(J) is non-empty
and finite,

2.3 Problems

In this paper we are concerned with the following problems:

13



Problem 1

Given: F, a finite subset of Klz1,...,%n)].
Decide: whether
V(i) is empty, or
V(1) is non-empty and finite, or
V{I) is infinite,

where I := Idealg ,{F).

Problem 2

Given: F, a finite subset of K{zy,...,zn] such that I is zero-dimensional, where
I:= Idealg o(F).

Find: V(I).

The algorithm that is given in chapter 6 reduces Problem 2 to an easier problemn.
In addition, it can also be used for solving Problem 3 and Problem 4:

Problem 3
Given: g, a polynomial in K[z,,...,2z,] and
F, a finite subset of K|z1,...,2,] such that I is zero-dimensional, where

I:= Idealg o(F).

Decide: whether

g(b) = 0, for all b € V(I),

or in other words, whether

ge VI

Problem 4

Given: F, a finile subset of K|r1,...,2n] such that I is zero-dimensional, where
I = Idealg o{ F).

Find: Hy,..., H., finite subsets of K[zy,...,z,} such that
I= IdealK,n(Hl) n...N IdealK!n(H,.)

is o reduced primary decomposttion of .

Let us consider the following example:

14



Example 2 Given F := {f}, f2, fa} C Q{z, y], where

fio= dly-y+a® -1,
fZ = 3y+3“‘1:
fa = e+ +y+2,

and G := {91:92} c Q{:c't y]; where

g1 = T + 13

gz = y+2.
Both sets are generating sets for the same ideal I. Note that the solution of each
of the given problems does not depend on a specific generating set. Therefore, we

could choose F' or G as generating set for the ideal I. Intnitively, G would be the
right choice in this example. »

This idea, the idea of looking for a "favourable” generating set for a given ideal,
Ieads us to the concept of Gribner bases.

15



Chapter 3
Grobner Bases

In this chapter we give the definition of a Grébner basis, an algorithm for constructing
one, and describe how a Grobner basis can be used to solve Probem 1 and Problem 2

(see [6]).

3.1 Definition of Grobner Bases

Definition 7 The polynomial v € K{z,,...,z,] is called a power product iff
there exists an i € N™ such that v(i}) =1 and v(j) = 0 for all j € N™\ {i}.

We denote the set of all power products in K{z1,...,z,] by K{z1,...,2,). *

Convention:
We will use v, w as typed variables in A {zq,...,2n).

Definition 8 Before one can define the notion of Grébner bases the notion of "re-
duction™ must be introduced. For this it is necessary to fix a total ordering of the
power products. In this paper we use the "purely lexicographical ordering” and
denote it by <

v w iff
there exists an m such that
deg(v,m) < deg(w, m) and deg(v,r) = deg(w,r)
forallr e {m+1,...,n}.

With respect to <, we use the following notation:

Let f € Kizy,...,%a}, 1 € N7, and v such that »(3) = 1.
We call f(1) the coefficient of v in f, abbreviated coef f(f,v).

16



Let us assume that f # 0,. The leading power product of f, abbreviated Ipp(f),
is the maximal power product (with respect to <) occuring with non-zero coefficient

in f (ie.
Ipp(f) := max{v | coeff(f,v) £ 0}).
We denote

coef f(f,ipp(f))

by hcoeff(f), the head-coefficient of f (Note that it is not possible to denote
coef f(f,lpp(f)) by leading coefficient of f as in [6], because we have already intro-
duced this notion in Chapter 2).

Let F be a finite subset of K[z1,...,2,], 9,2 € K[zy,...,2n),and d € K.
We say that g reduces to h modulo F, abbreviated ¢ — ¢ h, iff

there exist f € F, e € K, and w such that g ., andh=g—e-w- f.

We say that g is reducible using h,d,v, abbreviated g —p g, iff
coeff{g,v-lpp(h}} # 0 and d = coef f(g,v - Ipp(h)}/hcoef f(R)}. »

Hence, roughly, g reduces to & modulo F iff & monomial in ¢ can be deleted by

the subtraction of an appropriate multiple e - w - f of a polynomial f in F yielding
h. Thus, the reduction may be viewed as one step in a generalized division.

Example 3 Consider F := {fy, f2, fa}, where

fi = 32%y 4+ 2zy +y+ %2 + 5z — 3,
fo = 22% —e2y—y+62°— 22 - 32+ 3,
fa = z3y+a:2y+333+2m2.

The polynomials fy, f2, f3 are ordered according to <. The leading power prod-
ucts are =%y, 2%, and 2%y, respectively, and the head-coefficients are 3, 2, and 1.
Consider

g = 5y® + 22y + (5/2)zy + (3/2)y + 8% + (3/2)z — 9/2.
Modulo F, g reduces, for example, to
h o:= 5y% + (T/6)ey + (5/6)y + 227 — (11/6)z — 5/2.

Namely,
gD sew for fi=f1, e:=2/3, w:= 1, because

H

2 £ 0,
coeff(g,l-a:zy)/hcoeff(fl), and
9-(2/3) 1 -f1. »

coef f(g,1-z%y)
e

h

li

If
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Definition 9 Let F be a finite subset of K[z1,...,2,] and f,h € K[z1,...,z,).
We say that & is in normal form (or reduced form) modulo Fiff

there is no b’ € K{zq,...,2,) such that h —p h'.

We say that h is a normal form of f modulo F iff

there is a sequence of reductions
f=90—~Frg1Fg2—=F...oFgm=nh
and h is tn normal form modulo F.

An algorithm § is called a normal form algorithm (or simplifier) iff

S(F,g) is a normal form of g modulo F for all finite subsets F of K|z, ..., o]
and for all g € Kz1,...,2,]. »

Lemma 3 The following algorithm is a normal form algorithm.:

Algorithm 1 (h:=NormalForm(F g)):

input: g, a polynomial in K{zi,...,z,], and
F, a finite subset of K{z,,...,z,].

output: A, a polynomial in K[e1,...,z,] such that 4 is a normal form of ¢ modulo

F.

h:=g
while there exist f € F, e € K, and w such that ¢ “rpe o G0
choose f,e,w such that h —y .., and
w - lpp( f) is maximal (w.r.t. <)
hi=h-e-w-f

The correctness of this algorithm should be clear. For the correctness, the
selection of the maximal product w - lpp( f) is not mandatory. However, this choice is
of crucial importance for efficiency. The termination of the algorithm is guaranteed
by the following lemma:

Lemma 4 [{]: Let I be a finite subset of K[zy,..., %)
Then s p is a noetherian relation (i.e. there is no infinite sequence

Example 4 The polynomial k& in the Example 2 is in normal form modulo F: no
power product occuring in Ak is a multiple of the leading power product of one of the
polynomials in F. Thus, no reduction is possible, Another example:
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2%y =5 —(2/3)2%y - (1/3)ey — 32° - (5/3)e% + 2 =: gi.
g1 can be further reduced:
91 =5 (1/9)2y +(2/9)y - 32° + (1/8)e” + (19/9)e ~ 2/3 =: g].

The polynomial g{ is in normal form modulo F. Therefore, ¢1 is a normal form of 2%y
modulo F. Actually, g{ may be the result of applying the algorithm "NormalForm”
to z3y (depending on how the instruction "choose f € F, such that ...” in the
algorithm is implemented). In this example, a second reduction is possible:

2%y =g (1/2)zy + (1/2)y - 32° + 2 + (3/2)z — 3/2 =: g,.

g2 is already in normal form modulo F. »

From the example one sees that, in general, it is possible that, modulo F, g, and
g2 are normal forms of a polynomial g, but g; # g,. Those sets F, for which such
a situation does not occur, play the crucial role for this approach to an algorithmic
solution of problems in polynomial ideal theory:

Definition 10 [2],[3] Let F be a finite subset of K[zy,...,x,).
F is called a Grébner basis or Grébner set iff it satisfies the following condition:

Given g, hy,hy € Klz1,...,2,] and hy and hy are normal forms of g
modulo F, then hy = hy. »

Grdbner bases can be equivalently defined in many different ways. One of the
well-known equivalences is the following:

Theorem 10 (Characterization Theorem for Grébner Bases):
Let § be a normal form algorithm. The following properties are equivalent:
(GB1) F is a Grébner basis.
(GB2) Forall fige F: f=rg iff S(F,f)= S(F,g),
where [ := Idealy ,(F).

3.2 Algorithmic Construction of Grébner Bases

Before we give the algorithmic applications of Grobner bases we show how it may
be decided whether a given set F is a Grébner basis and how Grobner bases may be
constructed. For this the notion of an ”S-polynomial” is fundamental:

Definition 11 Let fi, f, € K[z1,...,2z,].
The S-polynomial corresponding to fi and f, is

SPol(f1, f,} = v fi —~ (di/dz) vy - fa,
where d, = hcoef f(f.) and
Ipp(fr) v» = the least common multiple of lpp( fr), top(f2) (» = 1,2).
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Example 5 For f; and f, as in Example 2, the SPol{fy, f;) is

2z%y + (5/2)zy + (3/2)y + 82° + (3/2)z — 9/2.

Note that the least common multiple of Ipp(f1) and Ipp( f2) is the minimal power
product that is reducible both module f; and modulo f;. The algorithmic criterion
for Grébner bases is formulated in the following theorem, which forms the core of
the method (both for the construction of Grébner bases and for the applications):

Theorem 11 (Algorithmic Characterization of Grébner bases)(2],[3]:
Let F be a finite subset of K{z1,...,2,] and § an arbitrary normal form algo-
rithm. The following properties are equivalent:

(GB1) F is a Grébner basts.
(GB3) Forall fi, fa € F: S(F,SPol(f1, f2)) = 0p.

(G B3), indeed, is a decision algorithm for the property " F is a Grobner basis”:
one only has to consider the finitely many pairs fi, f3 of polynomials in F, compute
the corresponding S-polynomials and see whether they reduce to zero by application
of the normal form algorithm S. In addition, Theorem 11 is the basis for (a first
and primitive version of) an algorithm for computing a Grobner basis. For more
advanced versions we refer to [4] and [6].

Algorithm 2
input: F, a finite subset of K[2y,...,2,}.

output: G, a finite subset of K{z,...,z,] such that Idealg ,(F) = Idealg (G}
and G is a Grdbner basis.

G.=F
B={{fu,} | I1,[2€G, i# f}
while B # @ do
{fi, fo}:=apairin B
B = B\{{f1, f2}}
h = SPol{f1, f2)
k' := NormalForm{G,h)
ifh' # 0,
then
B=BU{{g.h}igeC}
G:=GU{hr'}
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The partial correctness of this algorithm, essentially, relies on Theorem 11. The
termination can be shown in two ways, see [3], [1].

Definition 12 A finite subset F' of K{z{,...,2.] is said to be a reduced Grébner
basis iff

F is a Grébner basis and
for all f € F: f is in normal form modulo F \ {f} end heoeff(f)=1. »

Theorem 12 (Uniqueness of reduced Grébner bases):

Let F and F' be finite subsets of K[z1,...,z,].

If Idealg n(F) = Idealg n(F') and F and F' are both reduced Grébner bases
then F = F',

Proof: see [5).

Let G B be the function that associates with every finite subset F of Klz1,..., 2z
a finite subset G of K[zy,...,z,] such that Idealy .(F) = Idealg »(G) and G is a
reduced Grobner basis.

The main result, which summarizes the basic algorithmic knowledge about
Grébner bases, is the following theorem:

Theorem 13 GB is an algorithmic function that satisfies for all finite subsets FF
of K[zy,...,za):

(SGB1) Idealg »(F) = Idealg o(GB(F)),
(5GB2) if Idealy n(F) = Idealy n(F') then GB(F) = GB(F'),
(SGB3) GB(F) is a reduced Grobner basis.

Proof: see {3].

3.3 Application: Solvability and Exact Solution of Sys-
tems of Algebraic Equations

In this section it is shown how the algorithm for constructing Grébner bases may
be used for the exact solution of systems of algebraic equations and questions about
the solvability of such systems. The significance of Grébner bases for problems in
this category stems from the fact that, for Grébner bases, the explicit construction
of all the elimination ideals is extremely simple.
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Theorem 14 Let G be a Grébner basis in K{z,...,2,]. Then
Idealg o(G)N K [21,...,2m] = Tdealg m(G N Kiz1,...,2m)).
Proof: see [14].

This theorem shows that the m-th elimination ideal of G is generated by just
those polynomials in G that are elements of K{zy,...,2m].

The following two theorems are criterions that allow to decide whether the set
of all solutions of a system of algebraic equations is empty, finite, or infinite.

Theorem 15 Let F be a finite subset of K{z1,...,2zn]. Then
V{Ideal(F))=0 iff 1€ GB(F).

Proof: see [6].

Theorem 16 Let F be a finite subset of K[zy,...,zn]. Then
V{Ideal(F)) is finite
iff
for every m : there exists a polynomial f in GB(F) such that lpp(f) € K|zm].
Proof: see [6].
Therefore, we can decide whether V{(Ideal(F)) is empty, non-empty and finite,

or infinite for a finite set ¥ C Klz1,...,2z.} by computing GB(F) and applying
Theorem 15 and Theorem 186,

Example 6 Given Fy, I, F3 C @z, y], where

Fo= {2fy-y+2?-1,
gy + ¢ -1,
2y’ + 3y +y + 2},
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F o= {ey’—yi+z-1,
2%+ 22,
yz - y}:

Fy = {ey’ -y’ —z+1,
IyZ - Y,

2~ 2% —z 41}

We want to solve Problem 1 for each of these sets. First of all, we have to compute
their reduced Grébner bases:

GB(F) = {z+1,

v+ 2},
GB(F,) = {1},
GB(F3) = {z?-1,

ey —y—z+ 1}

The variaty of the ideal generated by F; is non-empty and finite, because
G B(Fy) does not contain the polynomial 1 and z and y appear as leading power
products in GB(Fy).

As the polynomial 1 is an element of GB(F;), the system Fy is unsolvable.

The polynomials in F3 have infinitely many common zeros, because no power
product of the form y" ocurrs among the leading power products. e

Definition 13 Let G be the reduced Grébner basis of a zero-dimensional ideal in

Klz1,...,zn).
Let Gm1,- -+, Gmcar, be the polynomials in G that belong to K[zq,...,T,] but
not to K[¢1,...,Zm—1]. We suppose the order chosen in such a way that

r < s tmplies Ipp(Gm ) € lpp(Gm,,) for all r,s € {1,...,carm}. o

Based on Theorem 14 the following algorithm gives a solution to Problem 2 (see
(6], Method 6.10):
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Algorithm 3

input: F, a finite subset of K{z1,...,z,) such that I is a zero-dimensional ideal in
Kizy,..., 2], where I := Idealg .(F).

output: X, a finite subset of K™ such that X, = V().
G:=GB(F)

Comment: The polynomials in G, then, have their variables "separated”
in the precise sense of Theorem 14 (G is "triangularized”). G con-
tains exactly one polynomial of K{z;] (actually, it is the polynomial in
Idealg n(G) N K[z,] with smallest degree). According to our definition
we denote it by Gy .

The successive elimination can, then, be carried out by the following
process;

Xii={clce K" and Gy 1(c) =0, }
forri=1ton-1do
X.,..§.1 ==
forallbe X, do
H:={Grp14b)|s€{1,...,carps1}}
g:= greatest common divisor of the polynomials in H

Xopr = Xop U{(b,¢) | c€ K and ¢(0,,¢) = 0, }

Note that for ¢ € R’[rrﬂ],
Q(Gr: c) = 0p
iff

there exists an @ € K" with g(a,c) = 0,
iff

g(a,c) = 0, for every a € K".

Example 7 We consider F' C @{z, y], where

F = {rsmmz+w—1,
ey —y—gz +z,
yzw—mz}.

F already is a reduced Grobner basis, As 1 is not in F and z® and y? appear as
leading power products in F, the system ¥ is solvable and has finitely many solutions.
We compute these solutions by using Algorithm 3.

We set
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G:=F.
According to our definition we denote

2:3—2:2+a:—1by G}_,l,
zy —y—2®+z by Gy, and
y2 — 22 b}’ Gg,z.

Now we have to compute the zeros of the univariate polynomial G ;.
Xp= {(i):(_i)?(l)}'
We set

o= 1,
Xg = @,

choose the element (¢) of the set X, and perform the following operations:

for () do,
H:={iy~y+1+14,3°+1},
quy_z.s

X, = {(i,1)}.

The elements (-} and (1) of the set X, are continued in the same way and we finally
get a set Xy that contains all the solutions.

X2 i={(4,2), (=4, -4), (1,1), (1, - 1)},

Note that in this example none of the ¢ is 1, j.e. the corresponding partial
solution b € K" can be continued. In the next chapter we prove that this is always
possible.
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Chapter 4

Continuing Zeros of
Elimination Ideals

Let @ be a zero-dimensional primary ideal in K[z1,...,%,]. Our first goal in this
chapter is to prove the following result, which we will make use of in chapter 5:

For all b,c € V(Q,,_,) and for all f € K[z1,...,2):

deg(f(b), l) = deg(f(c),1).

A relatively easy consequence of this lemma 1s that

1) for every common zero (by,...,b01} of the polynomials in Q,, . there exisis
¥ ¥ LT
ac € K* Y sych that (b1,... 01,01, .., Cnts1) ts @ common zero of the
polyrnomials in Q.

By using Noether’s decomposition theorem we show that (1) holds for every zero-
dimensional ideal. A different proof of this result can be found in [7].

Lemma § Let @ be a primary ideal in K(zy,...,z,)].

Then Q.. is a primary ideal in K{zy,...,zm] and ,/Q/mm‘ e \/-Q/xm.

Proof: Let f,g € Klz1,...,2m] such that f-g € Q. and f ¢ Q.
Thus, f-ge @ and f ¢ Q. As @ is a primary ideal,

there exists an r € N, such that g" € @.
From g € K{z1,...,2m] it follows that
gr € Q/::m-

Thus, @z, is & primary ideal in Klz;,. .., z.m].

Let f e K[:cl,. . .,:L'n].
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f€ Qs
iff
there exists an r € Ny with f" € Q.
iff
f € Klzy,...,2m] and there exists an » € N, with f" € Qe
iff

f € Klzy,...,2;) and there exists an r € N, with f ¢ @

iff
Fe/Q fzm *
Lernma 6 Let P be a zero-dimensional prime ideal in K{z1,...,z,].
Then P, is a zero-dimensional prime ideal in K (T3, . 2m].

Proof: 1t can be shown by the same arguments as in Lemma 5 that Py, 1s a prime
ideal in K(zy,...,2m).

Let f € P, g € K21, 2], b € E™, and ¢ € K™ ™ such that (byc) is a
generic zero of P.

As fe Klzy,...,2m),

f(8) = f(b,c) = 0,.

Therefore, b € V(Fya, ).
We assume that gv_(-gj = 0p. Thus,

g(b,c) = 0,.
Hence, g is an element of P. From g € K[z1,...,z,.] we obtain
g€ P, .
Therefore, b is a generic zero of Py, and Py, is zero-dimensional. e
Lemma 7 Let f € K{zy,...,z,] and b K1,
Then f(b) = g, where

g: N* - K
i = 0 o (J1, - i1} # 011
3= fuetb)0n)  otherwise,
where k € N,y and (0p.1,k) = 7.
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Proof: Let i € Nn—HH1,

FO)(Omr,i) = S f(k,i) bk =
keNt-t

= T (b Onten) -8 = T ()(0n) = 9(00s,).
keN‘—-l
Let j € N'=1\ {0,_4}. L
T, 1) = 0 = 9(i, ).

Thus, -
f(B)=4g. o
Lemma 8 Let Q be a zero-dimensional primary ideal in Klzq,...,z,],
bye € V(Qa_,), and f € Kley,...,z,].
Then

deg(f(b),1) = deg(f(c),1).

Proof: From Theorem 3 and the fact that () is zero-dimensional we know that /Q
is a zero-dimensional prime ideal in K{z1,...,2n). By Lemma 6, f@,z[_l is a zero-
dimensional prime ideal in K[z1,...,2;.1]. From Lemma 5 we obtain

\/Zj/m—: =y Q/mlm['

Thus, by Theorem 2 and Theorem 3, b and ¢ are generic zeros of \/ @ /,,,_; .
We show that C(f(8)) = C(f(c)):

Let k € C(f(b)). By the definition of f(b), there exists a j € N* !+ such that
k= (0/-1,7). By Lemma 7,

F.5)(0)(0a) = F(8)(01-1,7) = F(b)(k) £ 0.
Thus,

fr.n(b) # 0
As b and ¢ are generic zeros of | /Q /2y, and fr 5y € Klzy,...,21.1], it follows that

f(..j)(c) # Op-

From C(fi. ;(¢)} € {0n} and Lemma 7 we obtain
Fle)(k) = (Fa(e)(0n) # 0.

Thus,
: C(f(B)) C C(f(c)).
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As we can show by the same arguments that

C(f(c)) € C(£(b)),

it follows that

C(f(8)) = C(f())-
Thus, by definition,

deg(F(B),1) = deg(f(c),1).

Definition 14 Let J be an ideal in K{z1,...,2], b E__I_g[“l, f.g € Jand g &
K(b}[zi]. We can choose an h € K[z1,..., ;] such that h{b) = ¢. As, by Lemma 1,

F(8) + 9(8) = (f + g)(b) and - £(b) = h(b) - f(b) = (A - f)(b),

the set

{R(b) | R e T}

is an ideal in K (b)[z;]. We denote it by J(b).
Obviously, K(b)(zi] is isomorphic to the univariate polynomial ring over K (b).
Therefore, K(b)[2,] is a principal ideal domain. Thus, there exists a uniquely deter-

mined polynomial g in J(b) such that

J(b) is generated by {q} and hcoeff(g) = 1.

We denote it by ged(J,5). o

Lemma 9 Let{fi,...,f;} be a finite subset of Kizy,...,2;] and b € K71,
Then

QCd({m:af—r(T)}) = .qu(J’b)f
where J = Idealg (({f1,..., f+}).

Proof: Let g € J.
As there exist hy,..., A, € K{zy,...,2/] such that

g:hl'fl“i'“---“{'hr‘fr,

g(b) = ha(b) - f1(b) + ... + ho(B) - £ (B).

Thus,

{f1(d), ..., f+(b}} generates m

Therefore,

ged(J,b) divides ged({fi{b), ..., £,(b)}) and vice versa.
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From

hcoef f(ged(J,6)) = 1 = heoef f(ged({ f1(b),- .., - (b)}))

we obtain

ged({f1(6),-.., £(6)}) = ged(J,B). o

Now we have made all the preparations that are needed for proving that zeros
of elimination ideals of zero-dimensional primary ideals can be continued.

Lemma 10 Let Q be a zero-dimensional primary ideal in Klzy, ..., 2,] and
bEV(Q/21_])' _
Then there exists a c € K™ such that (b,c} € V(Q).

Proof: Let ¥ € K1=1, ¢/ € K™=+1 gych that {(¢',c") € V(Q).
Obviously,
b e VI(Q /2, )

We choose h € Q;, such that h(b) = ged(Q /,, ). By Lemma 2,

(01, ) = h(E, @) = 0,.
Let us assume that deg(h(?'),!) = 0.
As h(b') € K(V)[a],

deg(h({b'), m) = 0 for every m.

Thus, :.’7:(_3’"5 is a constant polynomial and

h(b') = A(E')((0r-1,¢)) = Op.
On the other hand,
deg(0p,m) = 1 for every m

and therefore

0p # h(b').
Contradiction.

Hence, by Lemma 8§,
deg(h(b),1) = deg(h{b'), 1) # 0.

Thus, there exists a ¢ € K™~ such that A(b}(0;_q,c) = Op. From h € Klzy,..., 3]
and from Lemma 2 we obtain .

h(bl, .. .,biwl,cl) = Op'
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By the definition of ged(Q,,,, b),
(bl, cevybi_g, CI) € V-(Q/m)

¥ ! = n, the proof is finished.
Otherwise, we can choose a ¢; € K with

(bh e ‘tbl-—lacla CZ) € V(Q/m;+;)'
Proceeding in this way, we get (¢1,...,cn141) € Kn=1+1 with
(b1, .-y bi1,e1,-0 s Cngn1) € V(Q)

after n — { + 1 steps. »

It remains to show that the restriction to primary ideals is not necessary. We
will do this in Theorem 17. In the proof of the theorem the following lemma is
required:

Lemma 11 Let I be an ideal in K(zy,...,z,) end I = Q1N ...N @, a primary
decomposition of I.
Then Ije, = Qi N...N @+ /2, 15 @ primary decomposition of I, .

Proof: Let f € K[z1,...,z4].
fel,

iff

feTand fe Klzy,...,zm]
iff

feQ,forevery s {1,...,r} and f € K[z1,...,2:m]
iff
f€Q,,, forevery s e {1,...,r}

iff

f €@z, N 0 Qrpy .

By Lemma 5, @,  is a primary ideal for every s € {1,...,7}. o

Theorem 17 Let I be a zero-dimensional ideal in K(z1,...,2,] and b € V(I/z;,,l)-
Then there ezists a ¢ € K™™'+ such that (b,c) € V(I).
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Proof: Let I = QN ...N @, be a primary decomposition of I.
By Lemma 11,

I/”I—i = Ql/-":t—l ﬂ .. ﬂ Q"'/?ﬂr—l

is a primary decomposition of I/z,_,- Hence, there exists an s € {1,...,r} with

be V(Qsa,)

As @, is a zero-dimensional primary ideal, we can apply Lemma 10 and obtain that
there exists a ¢ € K"*t1 such that

(b,¢) € V(Q.).

Thus,
(b,e)ye V(). o

At the end of the previous chapter we have asserted that every partial solution
{b1,...,b,) computed by Algorithm 3 can be continued. Now we are in the position
to verify this assertion:

By Theorem 14, {by,...,5,) is an element of the r-th elimination ideal. From
‘Theorem 17 we know that in this case there exists a (¢1,...,¢n—r) in E™" such that
{(b1,...,br €1,...,Cnp) is & zero of the given system.
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Chapter 5

Algorithms for Solving Systems
of Algebraic Equations

In Algorithm 3 a subalgorithm is required that computes the greatest common divisor
of a finite set of univariate "intermediate” polynomials over an extension field of X
In the first section of this chapter we prove a theorem that leads to an improved
version of Algorithm 3. Namely, it turns out that the greatest common divisor of
the univariate "intermediate” polynomials is one of the polynomials. In our method,
as an auxiliary operation, a test for zero in an extension field of K is needed. We
present this algorithm in section 2. In section 3 and section 4 further algorithms for
solving Problem 2 are given.

5.1 Some Properties of Reduced Grobner Bases of Zero-
Dimensional Ideals

Definition 15 Let I be a zero-dimensional ideal in K[zi,...,2,), G the reduced
Grobner basis in Klz1, ..., 24 such that Idealg o(G) = I, and b € V(I,,, ,).
Then min;, denotes the minirmum of the set

{rlre{l,...,car} and Ic(G1,)(B) # 0, }. «

Is min, always well-defined, or in other words, is the set
irlre{l,...,can} and lc(Gi,)(b) # 0y }.

always non-empty?
By Theorem 9, Theorem 15, and Theorem 16, there exists a non-constant poly-
nomial f in G such that

Ipp(f) € Klz].

Hence, there exists a

Fe{jl7e N*\{0n} and jp = O forr e {1,...,0~ 1,14+ 1,...,n}}
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such that
Ipp(f)(j) = 1.

From
le(f) = feiy, where (01-1,3") = 4,
fn(0n) = F(0s,5) = coef£(£,Ipp(f)) = heoefF(f) = 1, and
frn(i)=0forallie N™\ {0}
we obtain

le(f}=1.
As G is reduced and Ipp(f) € K|[z{],
deg(g, ) < deg(f,1) for all g € G\ {f}
and f € K[z1,. ..,z

Therefore,
f = Gl,car( .

Hence,
IC(GZ,CGT[) = 1

and car; is always an element of

{r|re{l,...,car} and le(G),)}(b) # 0, }.

Theorem 20, which we prove at the end of this section, says that if G is a reduced
Grébner basis of a zero-dimensional ideal in K[z, ..., Z,] and b is an element of K!~1
such that b is a zero of

Gy € Klzi],

Gz,l & K[ﬁgl, m?]l
GZ cara € K[Zl,mgl,

Gl—ll & K{zla"'smf-l]’

H

Giteari., € Klzi,... 241,
then there exists a d and an element of
{Gi1,- s Grean} € K21, 2,
namely G} min,, such that
4+ Giymin, (8) = ged({C1a(B), - - Grcar(0)})

For proving this we first show a stronger result for reduced Grobner bases of zero-
dimensional primary ideals:
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Theorem 18 Let @ be @ zero-dimensional primary ideal in K(z1,...,2,) and G the
reduced Grobner basis in K[z, ..., z,) such that Idealg o(G) = Q. Then

Gl,l(b) == Gl,carl—-l(b) B Op (51}
Jorallb € V(Qz,_,).

Proof:
We first show that (5.1) holds for some b & V(Q /e )

We assume, to the contrary, that

for every b € V(Q/a,_,)
there exists an r € {1,...,car; — 1} with G, ,(b) # 0,. {5.2)

In this proof we denote (G N K|z1,.. o))\ {Greer, } bY F.
Let fi, f2 € F.
From the fact that

deg(fs,1) = deg(lpp(f:), 1) (s =1,2)
and the definition of the S-polynomial we obtain
deg(SPol(f1, f2),1) < max{deg(f1,1}, deg(f2,1)} < deg(Glcarys 1).
Thus, S Pol{ f;, f2) reduces to zero modulo F. By Theorem 11,
F is a Grobner basis. {5.3)

Obviously,
F is reduced. (5.4)

Let (e1,...,¢1) € V(Idealg {F)}). Then
fler, .., e121) = 0y for every f e G N Kiz1,..., 2]

So, by Theorem 14,
(e15-0re1-1) € V(Qpay_, )

From assumption (5.2} we know that there exists an r € {1,...,car, ~ 1} with

Gg',.(cl, [N Cl—l) # Op.

Thus, there exist only finitely many a € £ such that

GI»"’(CIQ‘ S} C[—l)({)[_;, a) = Op'
Therefore, by Lemma 2,
{a l ac I_{} and ((CI, v 'JCI—I)}a) = -["(IdealK'l(F)) } is ﬁnlte
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By Theorem 17,
V{(Q/a,.,) is finite .

Hence,
V{(Idealg {F)) is finite. (5.5)

Thus, by (5.3), (5.4}, and (5.5), F is a reduced Grébner basis and V(Idealg i(F)}) is
finite.
On the other hand, there exists no polynomial f in G \ {Glcer, } such that

Ipp(f) € K[z

Hence, there exists no polynomial f in F such that

Ipp(f) € Klzil.

This is a contradiction to Theorern 16.

Thus, in contrast to assumption (5.2), there exists a b’ € V(@ ,,_, ) with
G1|1(b') = .= G[’C,z,.[_I(br) - Op.

By Lemma 8§,

Gl,i(b) oL = Gi,cm‘;—l(b) - OP
forall b € V(Qz,_,)-

Corollary 1 is an easy consequence of the previous theorem.

Corollary 1 Let  be a zero-dimensionsal primary ideal in K{z1,...,2nl.
Then there exists an f € Q, such that

9ed(Q /o ) = f(b) for allb € V(Qs,_,) and le(f) = 1.
Proof: Let G be the reduced Grébner basis in K[zq,..., z,] such that
Idealg ,(G) = Q.

We have proven that
lc(G[,m”) =1

Furthermore, by Theorem 14, Theorem 18, and Lemma 9,

gcd(Q/w!,b) = Gl,car:(b) forallbe IZ(Q/‘?‘_E). .
A generalization of Corollary 1 is the next theorem.
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Theorem 19 Let I be a zero-dimensional ideal in Klzy, . .. 12a) and be V(I ).
Then there ezists an f € Iz, such that

9cd(I}z,, ) = F(b) and Ie(F)(E) # 0,.

Before we give a proof of Theorem 19 we show the folowing two lemmas, which
are required in the proof of the theorem.

Lemma 12 Let f € K(zq,...,z,]\ K[21) and b € K71, where
7= max{m | deg(f,m) > 0}.
Then

1(F)(b) # Op iff deg(f,7) = deg(F(b),r).
Proof: Let i € N "t1 such that ¢, = deg(f,7) and i = ... = ,_,41. Thus,
le(f)= fe.q
From C(f :y(8)) C {0} and Lenuma 7 we obtain
f(.,i)(b) 3& Op
iff
Je.()(0:) # 0
iff

F(O)(0r-1.6) # 0
iff
(0r-1,8) € C(f(b)).

As deg(f{B),7) < deg(f,7),

(0--1,4) € C(f(b))
if
deg(f(8),r) = deg(f,7). o
Lemma 13 Let J be a zero-dimensionsal ideal in Klz,,...,zm] and
J = Q1 aO...N Q,.

a reduced primary decomposition of J. Then

V(@ )NV (Qu) =0 for s # 4.
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Proof: We assume that there exists a
beV(Q,)NV(Qy) for some s,s' € {1,...,7}.
As, by Theorem 3, V(Q,) = V(/@,) and V(Q.) = V(VT),
be V(VQ,)NV(V/Qy).

As +/Q, and /@, are zero-dimensional, b is a generic zero of /@, and /@,
Let f € K[z1,...,zm]|. From

feva,

fevqo

we obtain

V3, = /35

!
s=3,

Hence,

because we assumed the primary decomposition to be reduced. e

Proof of Theorem 18:

Let Q1,...,Q, be zero-dimensional primary ideals in K[z;,...,z,] such that
Iray = Qi N...0 @r /s, 1s a reduced primary decomposition of I/, .
We can show by the same arguments as in Lemma 11 that

I/wr—x = Ql/zl—i n...n Q"/ﬂ-‘t—x'

Thus,
V(Zje ) = V(Q1yp_ U UV (@rya, )

Without loss of generality, we assume that the primary ideals Q;,...,Q, are
ordered in such a way that there exists an s & {1,...,r} with

b€ V(Q1jz_y )y -0 EV(Qayp_ 10 ¢ V(Q‘H/z;ﬁ;)’ b E V(@ e, )
We define by € Q1/,, N ... N Gy, such that

he(b) = ged(Quyz, N .. .0 Qeyyy,b) and le(hy) = 1 for every t € {1,...,s}.
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By Corollary 1, there exists an f € Q1/,, with

le(f) =1 and f(b) = ged(Q1/z;, b)-

Set hy := f.
We assume that ¢ € {1,...,5— 1} and that A, is already defined.
Let fe Qi . such that

le(f}=1and f(b) = Q’Cd(QtH/m»b)-

Set hg_l.} = ht . f
From

gcd(Qg/m n...N Qt"‘l/-‘ﬂl’b) € (Ql,";-:; fio..n Qg/z‘)(b) and

9ed(Q1/q, N N Qet1/0,,8) € Qei1/4,(0)

we obtain

he(b) divides ged(Q@1/,, N ... 00 Qt.,_;/m,b) and
?(—bj divides QCd(QI/a:, N...N QH_}/Z!,b).

Assume that there exists a ¢ € K (b){z;] such that deg(g,!) > 0 and g divides

he(b) and f(b).
Let c € K'suchthat ¢y = ... =¢_; = 0 and E("Ej = 0p. Thus,

W(C) = 7(3"5(6) = Op.

From the fact that a(b) divides every element of (@ijz, M- .NQyyp, )(b) and that
F{(b) divides every element of Q¢ /e,(b) and from Lemma 2 we obtain

(bl, .. .,51-1,61) = V(Qljm; n...Nn Qﬂjr;) n V(Q£+1/:,)-

As
V{Q1j ) U. . UV (Qtyy,) = (@1, NN @y,
we have a contradiction to Lemma 13.
Therefore, hy(b) and f(b) are relatively prime. Thus,

}lt+1(b) divides gcd(QUmr n...n Qs-}-l/m, b)

As hy1(0) € (Quyg, N -+ Q41 )(b) and le(hyqq) = 1, it follows

hea1(8) = ged(Qrype 0. N Qeyayyy, B
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We define ¢ € K(o1,..., 2] such that there exists an e with

e q(b) = ged(1;,,,b) and deg{q,1) = deg(q(b),1).

We choose a p; € Q¢,,_, forevery t € {s +1,...,r} such that

pi(b) # Op.

This is always possible, because b ¢ V(Qtjg,_ ) forallte {s+1,...,7}.
Set g:=psr1- ... pr- by
Obviously, g € I,,. As

a(b) = Pos1(b) ... pr(B) 'ng(Ql/m, n...n Qa/:cpb):

(pﬂ+1(b) T p,.(b))(]) = 0 for all JENT\ {On}s and ps+1(b) T 'p,-(b) # Op,

we know that

q(b) divides ged(Q@1/,, N ... 0 Qs/x,;b)'

From le(h,) = 1 and Lemma 12 we obtain

deg(gq,l) = deg(h,,1) = deg(h,(b),1) = deg(q(b), ).
As Iy, is asubset of @1/, N.. . N Qy/p,,
gcd(Ql/_.q NN Qesays b) divides ged(Iy,,, b).

Thus, L
g(b) divides ged(1;g,,b) and g € Iyg,.

Hence, there exists an e such that

e 9(8) = ged(Zjap,b).
Altogether,

e g(b) = ged(I;y,, b) and deg(e - ¢,!) = deg(e - q(b),1).

Ase.-g€ Klzq,...,2]\ Klz1,...,2;_1], we can apply Lernma 12 and obtain

le(e - q)(b) # Op. @

By means of Theorem 19 it is relatively easy to prove one of the main results of
this paper:
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Theorem 20 Let [ be a zero-dimensional ideal in K[zy,...,2,], G the reduced
Grébner basis in K{z1,...,%,] such that Idealg o(G} =1, and b€ V(I  }.
Then there ezists a d such that

d Gl min, (8) = ged{{G11(b), ..., Glear, {0)}).

Proof: Let ¢ € Iy, such that

ged(lyz;b) = q(b) and le(g)(b) # 0.

We know that L
g(b) = 0, for all g € G N Klzy,...,21_1),
q(_bj # 0p, and
g reduces to zero modulo G.

Thus, there exists an f € G N Kley,...,2;}\ K[eq,...,z1-1] such that

f(b) # 0p and deg(f,1) < deg(q,1).

Therefore, by Lemma 12,

deg(f(5),1) < deg(f,1) < deg(g,1) = deg(q(b),1).

As ¢(b) divides f(b), there exists an e such that

e- f(b) = ged(I/,b).

From Lemma 12 and

deg{f(b), 1) = deg(q(b},1) = deg(q, 1} 2 deg(f,1).
we obtain
le(f)(b) # Op.
Thus,

deg(Glminy (), 1) < deg{(Grmin,, 1) < deg(f, 1) = deg(f(8),1).

On the other hand, f(b) divides Gy nin,(b). Hence, there exists a d such that
d - Gliming (b) = ged({/z,, b).
From Lemma 9 and from Theorem 14,

d- Gl,minﬁ(b) = QCd({Gl,l(b)w FICIR Gi,car;(b)})' ¢
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5.2 An Improved Version of Algorithm 3

In this section we give a first near-at-hand application of Theorem 20.

First of all, let us write down Algorithm 3 again.

Algorithm 3

input: F, a finite subset of K{z;,..., z,] such that [ is a zero-dimensional ideal in
Klzy,...,2p), where I := Idealy o(F).

output: X, afinite subset of K™ such that X, = V(I).

G:=GB(F)
Ny {C ; c€ K1 and Gl’l(C) = Gp}
forr:=1ton~1do
Xep1:=0
forallbe X, do
H:= {Gr-H,s(b) I s €& {1,...,car,+1}}
q:= ged(H) B
Xep1:= A1 U{{byc){c € K* and ¢(0y,c) = 0, }

For continuing a partial solution b € K7 it is necessary to compute

H = { Gr+1,5(b) | s € {1, . -,CGT'-,-+1} },
g:=ged(H),

and to find the zeros of g. From Theorem 20 we know that there exists a d such
that
d - Grii,min, (b) = ged(H).

Therefore, we replace the instructions

Hi={Gri1.b)|s€{1,...,cars1}}
g := ged(H)

in Algorithm 3 by the instruction
q:i= Gr-é—l,min;,(b)

and obtain the following algorithm:
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Algorithm 4

input: F, a finite subset of K[z1,...,2,] such that [ is a zero-dimensional ideal in
K(zq,...,2,}, where I := Idealg .(F).

output: X, a finite subset of K™ such that X,, = V().

G := GB(F)
X1 ={cice K and G11(¢) = 0, }
forr:=1ton—1do
Xrpr =10
forallbe X, do
= Gri1,min, () _
Xrp1 =X U {(b,c)| c € K and ¢(0,,¢) = 0, }

Note that for computing miny, where b € V(I;, _ ), one has to check only
whether

1e(Gra)(b) = 0y,
le(Gr,2)(0)

0p,

till the first s is found such that

1e(Gra)(b) # O,

Example 8 By using Algorithm 4 we compute the common zeros of the polynomials
in the set [ that we have defined in Example 7.
Again we set

G = F,

denote
2 —2'+r—1by Gi,,

gy —y—z> 4z by G314, and
yz — 2% by G2,2,
and compute
Xy 1= {(3), (=), (U}
We set
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and choose (i) € X;.
for (%) do.

Now it is not necessary to form a set of univariate polynomials over an extension
field of @ and to compute the greatest common divisor of the polynomials in this
set. We compute miny;) instead. In this case,

mingy = 1,
because if we replace = by ¢ in ¢ - 1, which is the leading coefficent of G 1, we obtain
t— 1 # 0. Thus,
g=iy~y+1+4
As 1 is the only zero of q,-
Xa == {(i,9)}

The elements (~1) and (1) of the set X; are continued in the same way and we finally
obtain a set X5 that contains all the solutions.

Xg = {(iai):("'ia -, (1,1),(1, '”1)}'

Now we define two functions, called square free and normed, which are required
in the following algorithms.

Definition 16 Let f,hy,..., h, € K[z1,...,2,) such that

hy is irreducible in K{zi,...,2,),
heoef f(hy) = 1 for every t € {1,...,7},
and f=4d- H hit, where s1,...,5, € N,.
tefi,..r}

Then

squarefree(f) = d- H hs and
. te{1,...,r}

normed(f) = (1/hcoeff(f)) - f. »

Note that if K is a finite field or a field of characteristic zero and f is an element of
Klz1,...,2,) then squarefree(f) is an element of K{zi,...,2x).
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5.3 Decomposing a Polynomial before Computing its
Zeros

In Algorithm 3 and Algorithm 4 a partial solution is continued by computing the
zeros of the corresponding ¢. In this section we investigate the problem whether it
is possible to decompose such a ¢ by using properties of the structure of reduced
Grobner bases. If we succeed in finding non-constant polynomials fi,..., f, such
that

¢g=fi-...-faand s 2 2,

we can compute the zeros of ¢ by computing the zeros of the polynomials f1,..., fs.
As the degrees of fy,..., f, are smaller than the degree of g, this strategy might lead
to a speed-up.

In Algerithm 4 the polynomial ¢ that corresponds to a partial solution (b1,. .., b,)
has the form
Gr-{-l,minb(b)-

Let ¢ € K such that
Gri1,min, (b, ¢) = Op.

From the definition of min(, ;) we know that not only

Gr-i—l,mim,(b: C) = Dp

but also
Ie{Gryz1)(bye) = ... = Ie(Griazming -1 )(bs ) = Op.
Therefore,
deg(g,r+ 1) > 0,
where

g:= QCd({Gr+1,minb(b)s IC(Gr-f-Z.l)(b)y Ty [C(Gr+2,min(b_c}—1)(b)})'

If we are lucky and

deg(g, T+ 1) < deg(Gr+1,minb(b): T+ 1):

we have found two non-constant polynomials, namely g and G,;l';‘m,’(b)/ g, such
that

ar-f-i,minb(b) =4g- ((—;::mzm,(bj/g)
In this case we can compute the zeros of G,y min,(b) by computing the zeros of g
and Gr-}-l,minb(b)/g‘
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Example 9 We consider the reduced Grébner basis G of a zero-dimensional ideal
I'in Qlz,y, z], where

Gi1 = 28 -z2242-1,
Gz1 = zy-y—z’+z,
Gz,z = .‘lz - 2,

Gs1 = yz-—=z,

Gap = 22 4+ 2%z

Note that (1) is a partial solution of the first climination ideal and that mingy = 2.
As the greatest commeon divisor of G3,3(1, y) and the leading coefficient of G2 1(1, y, 2)
is y — 1, we divide G2 5(1,y) by ¥ — 1 and obtain y + 1. Thus, we have found a non-
trivial decomposition of Gzlm,-ﬂm(l, y). e

The following algorithin, which is based on this idea, forms the core of a method
for solving Problem 2, which we will present afterwards.

Algorithm 5

input: G, a reduced Grobner basis such that I is a zero-dimensional ideal,
where I := Idealg »(G) and n > 2,

b, an element of V(I ), where r € {1,...,n — 2}.
output: Xi,..., X, ,, finite subsets of K™+ such that
Xs={(b,e)| ce K*, (b,c) € V(I/mr“), and ming ) = s}

for every s € {1,...,car.42}.

f1 1= squarefree(G i1 min, (b))
for s :=1 to carays do

g = ng({fn [C(Gr+2,a)(b)})

9:=fs/q _
X,:={(bc)| ce K' and g{0,,¢c) = 0, }
for1:=¢

Proof of Correctness

First of all, we want to show that
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fs = ged({square free(Gri1 min,(b)), 1c(Gria1)(b),. .-, le(Grizs-1)(0)])

for every s € {1,...,carr52}.

If s =1, (5.6) is obviously true.

Now we assume that s € {2,...,car,;2} and (5.6) is true for s ~ 1.
As fo = ged({fo=1,1c(Griz,e-1)(B)})

(5.6} is true for s.
Let s € {1,...,car,43} and c € K.
(byc} e X,
iff

g{0.,¢) = 0,, where

g = f,/q and

q = ng({fJ: EE(Gr+2,a)m})‘

As f, divides squarefree{G iy min, (b)),

squarefree(f,) = f.
Thus,

g(0r,¢) = 0p
iff

fa(orac) = D1;~ and Q(ONC) ?é OP'

By (5.6) and Lemma 2,

f+{0s,¢) = 0, and ¢(0,,c) # 0,

iff
Gr+1,mt‘ﬂb(b, C) = IC(Gf+2‘1)(b,C) =...= IC(G,_}_Q’SMI)(b, C) = Op’
and [e(Gri2,:)(b, ¢) # Op.
ift

(b,c)e {(b,a)|ac K, (b,a) € V(I/I,_“), and ming ) = s }.oe
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Example 10 We take the reduced Grébner bases G that we have already defined
in Example 9 and (1) as input for Algorithm 5.

If we replace ¢ by 1in z — 1, the leading coefficient of G5y, we obtain 1 —1 = (.
Thus,

mingy = 2.
As G5 is squarefree already,
fri=y* -1
We set
s:=1,

The polynomial y — 1 is the greatest common divisor of the polynomials % — 1 and
¥ ~ 1, the leading coefficient of G31(1,¥, 2).

g =y- 1}
gi=yt = 1/y-1=y+1,
Xyi= {(13‘_1)}:

f2 =Y 17

5:= 2,

The polynomial 1 is the greatest common divisor of the polynomials y — 1 and 1, the
leading coefficient of G32(1,y, ).

g:=1,
g:=y-1,
Ny = {(1!1)}:
f3 = 1.

Note that we have decomposed the polynomial Gg9(1,y) into its factors y — 1 and
v -+ 1 and that we have computed the zeros of G2 3(1,y) by computing the zeros of
y~landy+1. e

Slightly different versions of Algorithm 5 form the core of the following algo-
rithm, which solves Problem 2:
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Algorithm 6

input: F, a finite subset of K{zy,...,2,} such that I is a zero-dimensional ideal in
K(zy,...,2,), where I 1= Idealy o(F).

cutput: X,.;, a finite subset of K™ such that X,, = V(I).

G := GB(F)
f = squarefree(Gy 1)
for s :=1 to cary do
g := ged({f,lc(G2,)})

9:=flq i o
Xia:={clce K'and g(c)=0,}
f=gq

forri=1ton~-2do
for s ;=1 to carpya do
Xeg1,0 = 0
fort:=1 tocar.yqy do
forallbe X, do L
f = squarefree(G,y1,4(b))
for s:=1 to carp;y do

g = ged({f,1e(Gry2,4)(8)})

9:=flq _

Hepr,s:= Xpp1,s U{(b,c) | c € K and
g(oﬁc) = OP}

fi=q

Xn:=0
fort:=1 to car, do
forallbe X, 1, do
Xn =X, U{(bc)|c€ K and Gpy(b,c) = 0, }

Proof of Correctness

By the arguments that we have used for proving the correctness of Algorithm 5
we can show that the algorithm

f = squarefree(Gi ) ‘
for s :=1 to cary do

g := ged({f,1e(G2,,)})

9:=flq _ .
Xis:={c|lcec K'and g(c) = 0,}
fi=q

meets the specification
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input: G, a reduced Grobner basis such that I is a zero-dimensional ideal,

where I := Idealg .(G).

output: X, i,...,X; car,, finite subsets of K1 such that
Xi,={clce V(i) and min. = s}

for every s € {1,...,car}.

Now we prove that the second part of Algorithm 6, the algorithm

forr:=1ton-2do
for 3:=1 to carpsy do
Xr+1,a = 0
fort =1 tocarny, do
forallbe X, do
f := squarefree(G,1.4(0))
for s =1 to car, 9 do

g = ged({f,1c(Gria,)(0)})

g:=1F/q _

Kert,s = Xey1,U{(b,c)]ce K and
g(0p,c) = 0y }

fi=q

satisfies the specification

input: G, a reduced Grobner basis such that / is a zero-dimensional ideal,
where [ := Idealy ,(G), and

X131y ..y X1,cary, finite subsets of K1 such that
X1e={clceV{l,,)and min. = s}
for every s € {1,...,cars}.
output: X, 11,...,Xn_1car,, finite subsets of K™~! such that
Xn-10={cleceV(iy, ) and min, = s}

for every s € {1,...,car,}.

Let 7€ {1,...,n - 2}.

‘We assume that

50



Xes={cleceV(ly,) and min, = s}
for every s € {1,...,carrs1} and show that
Xey1o ={elece V(I )and min. =5}
for every s € {1,...,carr 2}

Let s € {1,...,car 42}
At the beginning of the loop

fort =1 to car,, do
forallbe X, do
f = squarefree(Gri14(0))
for s =1 to carryz do

= ged({£,1e(G12.)(0)})

g = f/g i ~
X"‘Hu’ = A, U { (bzc) { cE K! and g(ors C) = OP}
Fi=gq

Xri1,0 1s empty.

Let t € {1,...,carpq1}.
From the specification of Algorithm 5 we know that after the t-th pass of the
loop

Ketl,e = U U {(b’c) lce Rl’ (b,c) € V(I/-rr+1)’ and min(bnc} =s}
uG{l,...,t} be:{r.u

Thus, after termination

Xet1,e = U U {(b,c)ce K, (b,c) € V(I),,,), and ming . = $} =
uE{l,...,Ca!‘f+1}bEXr.u

={alaecV(i,,,,)and min, =s}.
It remains to show that the third part of Algorithm 6, the algorithm
Xo=1
fort =1 {o cary, do

forallbe X, 4, do
Xni=XaU{(bc)|ce K and Gny(b,c) =0p}

meets the specification
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input: G, a reduced Grébner basis such that I is a zero-dimensional ideal,
where I := Idealg (G).

Xn 11,y Xne1,car,, finite subsets of K™~! such that
Xn-1s={clceV{,, ) and min, = s}
for every s € {1,...,carp}.
ocutput: X, a finite subset of X™ such that

Xn = V().

Let t € {1,...,car,}. After the #-th pass of the for-loop

Xa= U U {)lce & and Gou(b,c)=0,}.
ue{l, it} beXn_1a

Asminy, = uforevery u € {1,...,t} and every b € X,,..; o, we can apply Theorem 20
and cobtain

U U {(b,c)lce B and Gpu(be)=0,} =
UG{I,...J} bexu—l‘u

= U U {(b,c)ice€ K and (b,e) € V(I)}.

ue{l,. i} X 1 0

Thus, after termination

Example 11 We consider F C @[z, y, 2], where

F o= {22-2?3+2-1,
ey —y -2’ +z,
y? —=?,
Yz — xz,
zz-i—a:zz}.

By using Algorithm 6 we compute all the solutions of the system F, which we have
already defined in Example 9.

F already is a reduced Grobner basis of a zero-dimensional ideal in Q[e,y, z].
We set

G:=F

and denote
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23— 2?4z~ 1by Gy,
cy —y— e’ +z by Gz,
Z'Jz - z? by Gz,
yz —zz by Ga1,
2% + 2%z by Gy .
As Gy is squarefree,
fi=a—zl4z-1.
We set
5= 1.

The polynomial z — 1 is the greatest common divisor of z° — z?+zr—landz -1,
the leading coefficient of Gy 1.

g:=z -~ 1,
gi=2—a?4+z-1/zc~1=2z2+1.

The zeros of g are ¢ and —1.
Xya= {(8), (-9},

fi=a-1,
5= 2.

The polynomial 1 is the greatest cornmon divisor of = ~ 1 and 1, the leading coef-
ficient of Gg 5.

g =1,
gi=z-1,
Xl,z = {(1)}’
f:=1.

Note that we have decomposed the polynomial z3 — 22 + = — 1 into its factors  ~ 1
and z? + 1 and that we have computed the zeros of z* ~ z? + ¢ — 1 by computing
the zeros of @ — 1 and 22 4 1. Now we set

ri=1,
§:=1,
KXo = 9,
5:= 12,
KNgp =9,
t:=1,

and choose (i} € X 1.
for (i} do.
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The polynomial that we obtain by replacing « by ¢ in G2,1 is squarefree already.

fi=idy—y+1+4,
g:=1,

The polynomial y — ¢ is the greatest common divisor of iy—-y+1+4+1iandy-1i,the
leading coefficient of G3,(%, ¥, z).

g =y -1,
gi=iy—~y+1l4+i/y—i=i-1.

As g has no zeros, X, ; remains empty.

Xz,: =0,
f =y -1,
&= 2.

The polynomial 1 is the greatest common divisor of y~i and 1, the leading coeflicient
of GS,Z(iv Y, z)‘

g:=1,

gi=y—t

Yoz = {0},
= 1.

Now we perform the same operations for (=) € X11 and (1) € X ; and obtain sets
XZ,I and JYz‘z.

Ao 0= {(1, -1}},
Xop = {(4,4), (~i, —1), (1, 1)}.

The set X,; U X2 contains all the zeros of the second elimination ideal. To get
the common zeros of the polynemials in ¥, we have to continue every element of
Kp1U X2 We set

JY;; = @,
t:=1,

and take (1, -1}, the only element of X ;.
for (1,-1) do.
As 0 is the only zero of G31(1,~1,2) := —22,
Az = {(1,~1,0)}.
Finally, this process yields a set X that contains all the solutions.

Xy = {(1,1,-1),(1,1,0),(1-1,0),(,4,0), (i,4,1), (—4, -1, 0), (i, =4, 1)}.
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The following theorem, which can also be found in [12], immediately leads to a
slightly different version of Algorithm 6.

Theorem 21 Let G be a reduced Grobner basis in Kizq,z3] such that Idealg 2(G)
is zero-dimensional. Then

1e(Gacar,) divides le(Grcary—1),
{e(Gacars—1) divides 1e(Gaeary—2),

le(Gaz) divides 1e(Ga,),and
IC(G21) divides G1]1.

Let us consider the first part of Algorithm 6:
G = GB(F)
[ = squarefree(G1 1)
for s:=1 to cars do

g:= QCd({ﬂ !C(Gz,s)})

9= f/q . o
Xi1s:={c|ce Kt and g(c) = 0, }
fi=q

During the first pass of the loop

ged{{squarefree(Gy1),1c{Gy1)})

is assigned to ¢. During the second pass of the loop

ged({squarefree(Gi1),lc(Ga,1),1c(G22)})

is assigned to g ...

As Theorem 21 shows that
ged{{squarefree(Gq1),1e{Gy1), ..., 1c(G24)}) = squarefree(le(Gy,))

for every s € {1,...,cars}, we replace the instruction

¢ := ged({f,1e(G2,0)})
by the instruction
g := squarefree(lc(Ga,))

and obtain a new version of Algorithm 6:
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Algorithm 6°
input: F, a finite subset of K{zj,...,z,] such that I is a zero-dimensional ideal in
Klzq,...,2,], where I := Idealy (F).
output: X,;, a finite subset of K™ such that X, = V(J).

G := GB(F)
[ = squarefree(G; ;)
for s := 1 to cary do
q = squarefree(lc(Gy ,))

9:=1Ff/q ) o
Xis={clece K and g(c) = 0,}
fi=q

forr:=1ton-2do
for s =1 to car,yy do
Xr-l-l,a =0
fort:=1 to carpyy do
forallbe X, do
[ 1= squarefree(G,y1,4(b))
fors:=1 to car.ys do

g = ged({f,1e(Gri2,0)(0)})

9:=1flq )

Xr-{“l,s = .X-,-.{_l,, U { (b, C) % cE I{igli
9(0s,c) = OP}

fi=q

Xp=0
fort:=1 to cary, do
forallbe X,y do
Xn = XaU{(b,c)lce K and Gn (b, c) = 0,}

Before we give a proof of Theorem 21 we show the following two lemmas, which
are required in the proof of the theorem.

Lemma 14 Let f,g € K(zy,...,2m] \ {0p}.
Then deg(f - g,m) = deg(f,m) + deg(g,m).
Proof: Let i,7 € N™ such that Ipp(f)(i) = 1 and Ipp(g)(j) = 1. Then
Ipp(f - g)(i+3) = (pp(f) - Ipp(g)) (i + ) = (Iop(£)(2)) - (Ipp(9}(5)) = 1.
Therefore,
deg(f-g,m)=deg(lpp(f g),m) = (i + j)m = im + jm =
deg(Ipp(f),m) + deg(lpp(g), m) = deg(f, m} + deg(g,m}.
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Lemma 15 Let f, g be non-constant polynomials in K[2y,...,2,] and r > s, where

r = max{m|deg{f,m)>0},
s = max{m|deg(g,m)>0}
Then
(1) r > s implies le(f - g) = le(f) - g,
(2) r = g implies le(f - g) = le(f) - le(g),

(3) r=ws, deg(f,r)=deg(g,s), and le(f) + lc(g) # 0, implies
le(f + g) = le(f) + le(g) and deg(f + g,7) = deg(f, 7).

Proof: Let k € N*"*! such that
ky =deg(f,r), ka= ... = kpps1 = 0

and &' € N7 *t1 guch that

k; = deg(g,.s), krz =T k;‘&—d-!—l = 0.
Thus,
le(f) = f( 0 and lce(g) = 9wy
Case v > s
Then
r = max{m| deg(f-g,m}>0}.
By Lemma 14,
: deg(f - g,7) = deg(f,r).
Therefore,

le(f-9)=(f 9w
Let i € N™71, Then
Ic(.f ‘ g)(iaon—r+1) = (f ) g)(z,k)

As g € Klz1,..., 2,01,

(f g)zk zf.h Jonr+1)_

Ci+it=i

Z f( k)(]) n— r+1) g(] On- r+1 z Ic(f) .7, n-—r+1) (jf;on-«ré-l)ﬂ

Ji'=i F+i'=i

= (le(f) - 9)(Z Onmra)-
Let j € N™*"+1\ {0p—r41}. From

le(f)-g€ Kle1,...,zr—1] and le(f - g) € K{z1,.. ., Tro1)
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it follows
(fe(f) - 9)(i,7)} = 0 = (le(f - 9))(4,5)-
Thus,
le(f-gy=1Ic{f)-g.

Case r=s:
From
f'g € K[ml,- . '?zr]\K[mlv"‘vmrﬂ-l] and deg(f-g,r)z deg(f,r}+ deQ(g:r)

we obtain
le{f-9)=A(f *g)(. k"), Where o=k + k.

Let i € N1, Then
le(f g)(i,0nmrin) = (F- )i, 6" = D F(3,k)-9(i", k) =

PRSI

S 1e(£)(d, Onrn) - Le(9)(5", Onmrin) = (e(£) - 1e(9))(4, Orrmrar)-

3=
Let ] = Nn“r+1 \ {On_,.+1}. From

(Te(f) - 1e(g))(3,7) = O = (Ie(f - 9))(5,4)

we obtain

le(f-g) = le(f)-le(g)

Now we assume that r = s, deg(f,r) = deg(g,s), and le(f) + lc(g) # Op.
Therefore,

le(f) = frpy and le(g) = g p)
Let ¢ € N™~1 such that (lc(f) + {e(g)){4,0n-rt1) # 0. Then

(f + g)i, k) = f(5, k) + g(i, k) =

= Le(F)(Z, Onerg1) + 1e(g)(4, Onrpr) = (Ic(f) + 1e(g)) (¢, Onryr) # 0.
Thus,

r < max{m | deg(f+g,m) > 0} and deg(f + g,7) > ks = deg(f, 7).
On the other hand, _
f+g€ Koy, ..o and deg(f +g,7) < max({deg(f, ), deg(g,r)}) = deg(f, ).
Therefore,
r = max{m | deg(f + g,m) > 0} and deg(f + g,7) = deg(f,7).

Hence,

le(f+g)={f+a)w = fir+ 90k =lce(f)+iclg) o
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Now we prove Theorem 21.

Proof of Theorem 21:

We assume that there exists an r € {1,...,cary — 1} such that {¢(Gy 1) does
not divide le(Ga,r).

Let h:= SPol(Gyry1,Go,y). As
deg(Ipp(Ga,y), 2) < deg{ipp(Ga,ry1),2) and

deg(lpp(Ga,), 1) > deg(lpp(Gaps1), 1),

there exist v, w and d such that
h:w'GZ,r-l-l “d'ﬂ'Gz,n

w € K(z1], and v € K[az].

By Lemma 15,

lc(w . Gglr+1) = u- [C(Gg),.‘,I) and

le(d - v-Goy) = le(d v) le(Ger) = d - le(Gap)-

Therefore,

{e{Gary1) divides le(w - Gprqq) and

le{Gart1) does not divide le{d-v- Gap ).
Thus,
le(w - Gapgr) # le(d-v-Gap).

As

deg(w ‘ G?,r-‘}-l} 2) - deg(d Tu G.’Z,r} 2) # 0,
we can apply Lemma 15 and obtain
deg{G3zrs1,2) = deg(w - Gy ry1,2) = deg(h,2) and

le(h) =le{w Gars1) ~lc(d- v Gap).

Therefore,
{e(Ggry1) does not divide le(h).

Let A" denote the polynomial that we obtain by reducing £ to normal form modulo
{Gari1}. As deg(h,2) = deg{Gari1,2), there exists a g € K[z;] such that

h’ =h -~ q‘GZ,r+1-

Thus,
0 # deg(h,2) = deg(G2r11,2) = deg(g- Grr41,2)-
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Furthermore,
le(h) = le(q - Gar41) # Op,

because

le(g-Gory1) = 0 1e(Gopi1)
and le(Gy,r41) does not divide {c(h).
Therefore, by Lemma 15,
deg(ipp(h'), 2) = deg(h',2) = deg(q-Gar41,2) = deg(G2,11,2) = deg(Ipp(Gar41),2).

From the fact that &' is in normal form modulo {G3,4.} it follows that

deg(lpp(h'), 1) < deg(lpp(Gar41), 1)

As k' is reducible to zero, there exists an f € G with

deg(Ipp(f), s) < deg(lpp(h'}, s} (s =1,2).

Therefore,
deg(lpp(f),s) < deg(Ipp(Gagpsr)s) (s =1,2)

Hence, G is not reduced. Contradiction.
Therefore,

1e(Garq1) divides le(Gp,) forall r € {1,...,cary ~ 1}.
We can show by the same arguments that

G1,1 divides Ic(Ga1). »

5.4 Avoiding the Computation of Zeros of Polynomials
with Coefficients in an Extension Field of K

Each of the algorithms that we have presented so far in this chapter requires a

subalgorithm that computes the zeros of a univariate polynomial over an extension

field of K. In this section we concentrate on the question how this time-consurming
subalgorithm can be avoided.

Example 12 We consider G := {G11,G2,1,G22} C Q[z,y], where

G111 = zs—w2+m~1,
Ga1 = 2ly+y+oi41,
Gap = v+ cy? — y2 - zy.
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G is the reduced Grobner basis of a zero-dimensional ideal. If we solve the system
G by using Algorithm 4 we have to compute the zeros 1, —4,1 of Gy first. In the
next step the zeros of each of the polynomials

Gaa(i,y) = ¥ +iy" ~y* ~ 1y,
Gaa(~i,y) = ¥ —ig’ 9> +iy,
G2,1(1,y) = 2y 4 2

have to be computed, because
mingy = min(_;) = 2 and ming;) = 1.

Therefore, a subalgorithm is required that finds the zeros of a univariate polynomial
over an extension fleld of Q.

We want to show that there exists an alternative method to continue (Z) and
(—1) without using this subalgorithm. Instead of solving the equation

Gzlz(i,y) = 0
and the equation
Gza(—t,y)=0

we solve the equation
h(y} = 0, where

h = normed{squarefree(Gs2(i,¥)  Gaa(—1,4))).

As
h=y' -y’ +94° -,

h is an element of Q[y]. Therefore, a subalgorithm is required that finds the zeros of
a univariate polynomial over §.
The solutions of

h(y) =0

are 1,0,7 and —i. We know from the definition of h that every zero of Gaa(%,¥)
or Gz (—1,y)} is a zero of h. Hence, we only have to check for every element b of
{1,0,4, —1, } whether b satisfies

Gapa(i, by =0 or Gaa(~i,b) =10

to obtain the zeros of Gzs(i,y) or Ga2(~%,y). In this example 1,0, -7 are the
solutions of

Gap(t,y) =0

and 1,0, 17 are the solutions of

Gag(-1,y)=0.
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Now the question arises which polynomials shall be multiplied together in gen-
eral to obtain a polynomial whose coefficients are in XK. The answer is given in
Theorem 22.

Before we present this theorem we define the so-called minimal polynomials,
which are needed in the proof.

Definition 17 Let J be an ideal in K{zy,...,z,] and 7 € {1,...,m}.
As Klz,] is a principal ideal domain, there exists a uniquely determined poly-
nomial ¢ € K[z,] such that

the ideal generated by {¢} in K{z.]is J N K|z,] and hcoeff(g) = 1.
This polynomial is called minimal polynomial of J in z,, abbreviated minpol(J, ).

Theorem 22 Let G be the reduced Grébner basts of a zero-dimensional ideal I in
Klz1,...,2,) and J a zero-dimensional ideal in K[z, ...,%.1] such that

V(J)C V(I/m,_;)-

Furthermore, we assume that the field K is a finite field or a field of characteristic
zero.

Then

normed(squarefree( || Gimin, (b)) € K[xi).
beV(J)

Proof: In this proof we denote

normed(square freef H Gl imin, (6)))
beV{J)

by g. Let
J’ = IdealK,;(F U { Gl,m'inb | be V(J) })’

where F is a finite subset of K[z;,...,s.1] such that Idealg . 1(F) = J.
We want to show that for all c € K':

9(01—1,5) = OP
iff
.h(of"lwc) = 0P1

where h = square free(minpol(J’,1)).

Let ¢ € K! such that g(0i—1,¢) = 0p. Thus, there exists a b € V{J) with
Gl min,y(b,c) = 0,. By Theorem 20,
(b,c) € V(J).

Hence,
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h{(0-1,¢)} = h(b,c) = 0,.
Now let ¢ € K1 such that A(0;..1,¢) = 0p. As
V(J’) g { (bl, cogbio,d) b e V(J) and G[,m"nb(bl, conybreg, d) = 0p },
V{J') is finite.

Therefore, we can show by the same arguments that we used for proving Theorem 17
that there exists a & € K'~! such that (b,¢) € V(J'). Thus,

b€ V(J) and Gpmim(b,0) = 0,.

Hence,
g(01.1,¢) = Op.
Altogether,
m = 0p
iff

Efm =10
for all ¢ € K!. Besides,
h = square free(h), g = squarefree(g),
heoef f(h) = 1, and heoeff(g) = 1.

Therefore,
h=g.
As K is a finite field or a field of characteristic zero and minpol(J', 1) € K[z,
he I{[:Cg}.
Thus,
geE Klzy]. o

Definition 18 Let G be a reduced Grobner basis in K[z1,...,z,] such that the
ideal I generated by G is zero-dirnensional.

We want to investigate for which subset M of V(I ;) there exists an ideal J
in K(zq,...,2.1) such that V(J) = Af.

Let r € {1,...,n — 1}. The set
{i|ie N" and i, < car,s; foralls e {1,...,r}}

is denoted by Tup..
Let i € Tup,. The set

{b1be V() and ming, . =i foralls e {i,...,r}}
is denoted by CZ;. o
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Example 13 Let G := {G11,G1,1,G22, Ga1,Ga2} C @[z, y, 2], where

G = 2P —e?tr—1,
Gyn = zy—y-2z’+ta,
Gao = yz - 32;
Gz = yz-zz,
Gz = 2*+ 2%z

G is the reduced Grébner basis of a zero-dimensional ideal I in @[z, y, 2. According
to the above definition,

Tupr = {(1),(2)},
Tup, = {{1,1),(1,2),(2,1),(2,2)}.
From
Vi{lje,) = {(1),(9),(-9)},
min() = min_y = 1, and ming;) = 2
we obtain
CZyy = {(3),(~1)},
CZ(Z} =y {(1)}
From
V(I/:l:z) = {(1,1),(1, -1),(4,4),(~4, ~1)},
min(ll_i) = 1, and min(lll) = min(,-,,-) = min(_,-l_i) = 2
we obtain
CZ(l,l) = @,
CZ(l.z} = {(:,1),(—1,-1)},
CZ(znl) i {(1’ _1)}:

CZ{z,g) = {(1,1)} L

Theorem 23 Let G be a reduced Grébner basts in Kzy, ..., z,] such that the ideal I
generated by G in K[z1,...,z,) is zero-dimensional, r € {1,...,n-1}, and i € Tup,.
Then there exists an tdeal J in K(zy,...,z,] such that

V(J) = CZ;
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Proof: If CZ; = § then
CZ;=0=V(K[z1,...,2.]).

So let us assume that CZ; is not empty. _

Let I;,, =@y N...NQ, be a reduced primary decomposition of I,,. Without
loss of generality, we assume that the primary ideals Q;, ..., Q, are ordered in such
a way that there exists an s’ € {1,...,s} with

V(QI) NnCz; # @a o -?T‘Z(QJ') ncz; '_/’é @’

V{Qe1)NCZ:;=0,...,V(Q,)NnCZ = 0.

Obviously,
CZ; ¢ V(Ql)U ...UV(Qs’) =V{@in...nQp).

Let ce V(@1N...NnQy).

Then there exists a t € {1,...,s'} such that ¢ € V(@Q,). We choose
e V(Q)nCZ.

Let u € {1,...,7}

As (e1,...,¢y) and (c},...,c,) are generic zeros of Qt/ays

flers e} =0p

for all f € K{ey,...,z,]. Hence,

Ie(Guirw)(er, - vy cu) = le(Guprw)(el, . .. el) = 0p

forall v’ € {1,...,ming oy~ 1}. From

IC(Gu+1,min{c; CL))(CE, Ty C:;) # OP

.....

we obtain
IC(GU+1lmin(ci ....-ctd)(cl? AR | Cu) # Op'
Thus,
MiN ey, o) = min(c; _____ ¢) = tu
Therefore,
ce 7.
Altogether,

CZi=V(QiN...0Qy).
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Let re {l,...,n—1}, i € Tup,, and G a reduced Grébner basis such that the
ideal I generated by G in K[z, ..., z,] is zero-dimensional.
From Theorem 22 and Theorem 23 we know that

normed(square free( H Gr41i.(5)))
beCZ;

is an element of K[z,41]. Therefore, we can compute the set
ZWT{:’.;,...,:'.-,I) = {(bi C) i be CZ(i;,.._,i,-): ce Ri, and (b,C) € V(I/mr.q.i)}

by the following procedure, which requires a subalgorithm for finding the zeros of a
univariate polynomial over K and not over an extension field of X.

fCZ4,, =10
then
hi=1, where 1 € Klzy,...,2y)
else
h:= normed(squarefree(h'}), where

h’ = H Gr-}-l,i,(b)

Cong;,, i,y i={c|ce€ K and A(0,,¢) = 0, }
ZWTG, ey = {(B,e) | b e CZy,, . i € Con(ih..-.ir){fnd
Gr+1,ir(b} C) = Gp }

If » < n—1 we can obtain CZiy in ) - +CZiy, iy car,yz) iDL the following

way:

Sty

fort:=1 to car,4y do
CZiy,ivty = {b b€ ZWTy, i gy and 1e(Gryz,.)(b) # 0p }
ZW Ty irtr1) = EW T )\ C ity

The sets CZ(l),...,C'Z{m,z) can be computed by a procedure that we have
already used in Algorithm 6

f = squarefree(G, 1)
for s:=1 to cars do
g := squarefree(le(Gy,,))

g9:=f/q R _
CZy={clce K and g(c) = 0,}
f=q

Altogether, we obtain the following algorithm:
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Algorithm 7

input: F, a finite subset of K[z1,...,z,] such that I is a zero-dimensional ideal in
K(zq,...,25}, where [ := Idealg o(F).

output: X, a finite subset of K™ such that X = V(I).
X =@
G = GB(F)
[ = squarefree(G1,1)
for s:=1 to cary do
g := square free({c(Gy,))

g:=1f/q ) -
CZyy={clce K' and g(e) = 0,}
fi=q

forr:=1ton—1do
for all (i1,...,4,) € Tup, do
fCZy,,. i) =0
then
k=1, where 1 € K{z1,...,%pn)
else
h := normed{squarefree(h’)), where

po= I Goa(®)

Cong, iy ={clce K*' and R{0,,c) = 0,}
ZWTy ey = {(be) [0 € CZpy iy c € Congg, iy
and Gf‘i'l,l'r(b, C) = Op}

fr=n-1
then

X=X UZWTy,, i)
else

fort:=1 to car,,q do
CZ(stesivt) = {01 b € ZW Ty, iy ) 804
le(Grygi)(b) # 0p}

JI

Example 14 Given F' C Qlz,y, z], where
F o= {z'-2*+ 2% -1,
z—1,
iy 4y e+ 1,
v’ 4oy’ ~y' - a2y,

—ziy — gy -z - :r;z},
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We want to find all the solutions of this system by means of Algorithm 7.

We set
-IY = @,
G = GB(F).

The reduced Grébner basis G of the ideal generated by F'is the set {Gy1,G21,G2.2,Ga1ls
where

G = 2¥-2+z-1,
G2y = Zly+y+z+1,
Gza = y* 42y’ ~ ¢ -2y,
Gz = z-1.

As G4 is squarefree,
f=2-z24+2-1.
We set
s = 1,

The polynomial z? + 1 is the squarefree form of the leading coefficient of Gas.
Therefore,

g::z2+l,

gi=2 -2t b -1/e?+1 =21,
CZay = {(1)},

f=z2+1,

§:= 2,

The polynomial 1 is the squarefree form of the leading coefficient of G2,2. Therefore,

g =1,

= z? 4 i,
Clyzy = {(2), (-9},
fi=1

Now we set
ri=1

and choose (2) € T'up;.
for (2) do.

As CZ(g) = {(i), (i)},
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h := normed(square free((y® + iy? — y* — iy} (y° - iy* - y* 4+ 4y))) =
=y~ +’ -y,

Conyayy = {(1), (0}, (1), (~i)},

ZI’VT(Z,I) = {(7'x 1): (ia O)a (3’ _‘i): (_ia 1)1, 0)(_7:: 7‘)}

Note that we have found the zeros of the polynomials Gj3(—1,y) and G »{i,y) in
Q(i)ly] by computing the set of zeros Congyy of y* ~y* 4+ 3% —y € Q[y) and by testing
whether an element of Congyy is a zero of Gz 2(Z, y) or Gy a(—1,y).

As v # 2, we set

ti== 1.
As there is only one polynomial in G N Q[z,y, 2]\ @[z, 7],
CZ(:;‘}) = ZT":VT(Z,]_).

CZ(Z,l) = -{(i, 1)1 ("':!0)1 (is “i)a ("“?:1 1}(_?:: O)(_ir i)};
ZWT(zlg) = @

Now we take (1}, the other element of T'up;, continue as before, and obtain

CZ(1,1) = {(L, -1}

The set CZ(; 5y U CZ(5 1y contains all the zeros of the second elimination ideal. To
continue each of these zeros, we set

=12

and choose {1,1) € Tupa.
for (1,1) do.

As C'Z(1,1) ={(1,-1)},

h = normed(squarefree({z - 1)) = z - 1,

C"3’71(1,3;) = {(1)},
ZWT{l,l,l) = {(1, —1,1)}.

Asr =2
X :={(1,-1,1)}

We do the same for (2,1), the other element of T'upz, and we finally obtain a set X
that contains all the solutions.

X o= {(1,-1,1), (6,1, 1), (,0,1), (4, =i, 1), (=6, 1,1)(=4,0,1)(=4,4,1)}.

It is a near-at-hand problem for future research to decide whether it is possible
to design an algorithm which is based on the results given in this section and on the
decomposition idea of the previous section.
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Chapter 6

Computing the Associated
Ideals

In section 3 of this chapter it is shown how the Problems 2-4 can be solved by means
of an algorithm that meets the following specification:

input: G, a reduced Grobner basis such that I is a zero-dimensional ideal,
where [ = Idealg ,(G).

output: X, such that X, = {{(f1’,.. ., fa')s-- o (A7, .., fa)} and {£*,..., fn"}
is the reduced Grébner basis of a prime ideal P, that is associated with I for
every s € {1,...,7}. Furthermore, if P’ is a prime ideal associated with I then
there exists an s € {1,...,7} such that {f1",..., f."} is the reduced Grobner
basis of P'.

This algorithm is given in section 2. Its correctness is mainly based on the following
theorem.

6.1 A Structure Theorem for Reduced Grobner Bases
of Zero-Dimensional Prime Ideals

Theorem 24 The set G C Klry,...,2,] is o reduced Grébner basis of a zero-
dimensional prime ideal in K(z1,..., 2]
if
G satisfies the following three conditions:
1. For every m there exists just one polynomial f,, € G that belongs to K[z1,.. .,z
but not to K(zy,...,zm_1).

2. Letbe K'-1 with

fl(bl) el fl_l(b1,...,b;_1) = Op.

Then fi(bi,...,b-1) 1s trreducible in K (b)[z;]. Furthermore, fi is irreducible
in K{z:].

70



3. le(fm) = 1 and fr is in normal form modulo G \ {f.} for every m.

Proof: Let G be the reduced Grobner basis of a zero-dimensional prime ideal in
Klzs,...,zn). From Theorem 16 and the fact that G is reduced we know that there
exists just one polynomial f; in G N K[z;]. Obviously, f; is irreducible.

By Theorem 16, there exist polynomials Gy1,. .., Glcer, in G which belong to
Kz1,...,2] but not to K[z,...,z1_3].

Let us assume that car; is greater than 1.

¥rom Theorem 18 we obtain

Gi1(b) = 0, for all b € V(Idealg o(G)N K[z1,...,211]).

Thus,
1e(Gi1)(b) = 0p for all b € V(Idealy o(G) N K|z, . . G ®-1))-

As, by Lemma 8,
Tdealg n(G) N K(z1,...,2;_1) is a zero-dimensional prime ideal in Klzey,.. ., 20.1],

it follows from Theorem 2 that

every b € Idealg o(G) N K[z1,...,21_4]
is a generic zero of Idealg n(GY N K(z1,...,21_4].

Thus,
le{G1) € Tdealg n(GYN K2q,..., 214}

Let hi,ha € G0 K[ml,...,m__l].
As SPol(hy, hy) reduces to zero modulo G and SPol(hy, hy) € Kizy,...,21.1],

S Pol(h1, hy) reduces to zero modulo G N K{zy,...,7;_4).

Therefore,
GnN K[z,...,2-1} is a reduced Grébner basis.

By Theorem 14,
GN K{z1,...,21-1] is the reduced Grobner basis of Idealxo(G) N Kle1,. .., z1_1].

Hence,
le{Gy,1) reduces to zero modulo G N Kizq, ...,z (]
Therefore,
G141 is reducible modulo G.
Contradiction.

Thus, condition 1 is satisfied.
Now let b € K- with

f}(bl) == f[_l(bi,...,b[_i) = Op-
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We assume that fi(by,...,b.1) is reducible in K(b)[z,).
Therefore, we can choose a ¢ € K(zy,...,z;] such that g(by,...,4.1) is an

irreducible factor of };(bl, coabiZg). L
Let b’ € K such that (0;-1,5) is a zero of g(b). Then, by Lemma 2,

(b,') is an element of the variety of Idealg J{{f1,..., f1}).
As Idealg ({f1,..., fi}) is a zero-dimensional prime ideal in K[z, .. o 2],
(b,b'} is a generic zero of Tdealg  {{f1,-.., fi})-

Thus,
g€ Idealx,l({fl, v i)

On the other hand,
g does not reduce to zero modulo {f,,..., fi},

although {fi,..., fi} is a Grébner basis of Idealy ({fi,..., fi}).
Contradiction.

Thus, condition 2 is satisfied.

By Theorem 186,
le(fn) = 1 for all m.

Obviously, fr, is in normal form modulo G \ {fm}.

Now we want to show the other direciion
and assume that (7 satisfies the conditions 1-3.

First of all, we prove that G is o reduced Grébner basis.
Let r,s€ {1,...,n} withr < 5. Then

SPol(fe, fr) = lpp(fs) - fs — 1 - lpp(fs) - fr.
Therefore, we can write SPol{f,, f,) in the following form:
SPol(fs fr) = (= fx + lop(f+)) - lop(£2) + (f+ - tpp(£.)) - lpp( £,).

Note that
deg{fs — Ipp(fs),s) < deg(lpp(fs), s).

Hence, S Pol(f,, f.} reduces to a polynomial g modulo { f,} with deg(g,s) < deg(fs, s).
Thus,

g={=F +1pp(£:))  lop(fs) + (f. = lpp(£,)) - top(f) + (fe = op(£2)) - £, =
fr ) (fs - Ipp(fs))-

Obviously, g reduces to zero modulo {f,}. Therefore, G is a reduced Grébner basis.
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Let P denote Jdealg n({f1,..-, fa}) and P’ be a prime ideal in K{z;,...,zn]
with P C P'.
By Theorem 9, Theorem 15, and Theorem 16,

P is zero-dimensional.
Thus,
} o . .
P’ is zero-dimensional,

As {f],..., f.}, the reduced Grébner basis of P’ satisfles the conditions 1-3, we can
demand that
i € K[za,...,2m] \ K[z1,- .-, Zm.1] for all m.
Now let us assume that {m| fn # fi, } is not empty.
Let s:=min{m | fu # fi. }

As fi € P,
f1 reduces to zero modulo {f}}.
Furthermore,
f1 and f{ are irreducible in K[z,] and

le(f1) = Lo( ) = 1.
Thus,

fi=flands> 1.
Obviously,

Idealgc,o—1({f1,.- > fom1}) = Tdealg ger{{fi,- .- feui })-

We denote this ideal by J. Because of f, € P’ there exist g;,...,9, € K[®1,...,T4)
with

fs:gl'f£+"'+gs‘f;'
Let b€ KXK'~} with f{(by) = ... = fl_1(b1,..-,bs=1) = Op. Then

fﬂ(bl;' . -)bs—l) = ga(blx‘ . ':bs—l) ’ f:(bli b '765—-1)-

From the irreducibility of f,{by,...,b,~1) and from the fact that le{f,) = le(f]) =1
we obtain

gu(bs, o bee1) = 1.
Thus,

Fo(byy oo iybyo1) = f1(b1, ..y bymn).
Let i ¢ N*~**} By Lemma 7,

Fo(y(B)(0n) = Fo(B)(0sr,8) = fi(B)(0s=1, 1) = Fi( 5)(B}(0n)-

From C(fs(.(6)) € {0n} and C(f1.,5(8)) G {0} we obtain

fo.iy(8) = f;(.,i)(b)'
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As b is a generic zero of J,

fo(i) — f.:(_,i) € J.
Therefore,

Foiy =0 fa iy

As f, and f, are reduced modulo {f1,..., fi1},
fo(.iy and f;(.,i) are in normal form modulo {f1,..., fs-1}.

Thus,

fsiy = faipy
Let j € N*~1. Then

fa(jvi) = fa(.,:’)(jyon—a+1) = f:{_,g)(j; On—a-l-l) = f;(]: i)'
Therefore,
fa= f;

Contradiction.
Thus,

{fiv. o oy =4{Ff,...,f.} and
{f1,..-, fn} is the reduced Gribner basis of P'. e

6.2 An Algorithm for Computing the Associated Ide-
als

Before we are able to present the algorithm we have to do a few preparations.

Example 15 Let

e —m2y+:cy+z:,
g = 2?41,

and J the ideal in (J[z] generated by {g}. Obviously, {g} is the reduced Grébner
basis of J. Let us consider f as a univariate polynomial in y. We write it in the
form .

(2% 4 2)y + 2.

If we replace (—z? +z) by (—2? +2); and z by {(2), where {~=z? 4+ z)s (respectively
(z)s) denotes the congruence class of —z% + = (respectively x) modulo J, we obtain
the polynomial

f= (-2t )y oy 4 ()

in Qle] [y)
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By the Characterisation Theorem of Grébner Bases, every congruence class C
in Qlz} /7 contains an element ¢ such that ¢ is the normal form of p modulo {g}

for every p € C. In this example = + 1 is the normal form of every polynomial in
(=2? 4+ z}; and z is the normal form of every polynomial in (z)s. If we replace
(-2 + z); by 2 + 1 and (z)s by  in ¥, we get the polynomial

(P9 =y yte
in @z, y]. Note that

f# (Y.

We will prove that this cannot happen if f is reduced modulo {g}. On the other
hand, if h € Q[z]/J[y] then

b= (V)M

holds in any case. o

Now we give a formal definition of A™Y and f4/.

Definition 19 Letr € {1,...,n~1}, g € K[z1,...,,], and G the reduced Grébner
basis of an ideal J in Kzq,...,z,].
The congruence class of g modulo J (i.e. the set

{¢' |9 € Klz1,...,2.) and g = 9h

is denoted by {g),.
Let fe Klzy,..., 2]
The polynomial f1Y ¢ K{e,,. ,.,z,}/J{zz,H,...,mn] is defined as follows:

Yoo N o K[a:l,...,a:,.]/
i (O if (j1,...,7:) # 0,
R (Y otherwise,
where k € N™77 such that (0,, k) = j.
Let C € Klz,,.. .,z,]/J.

The Characterisation Theorem for Grébner Bases shows that there exists a
polynomial ¢ in C such that ¢ is the normal form of p modulo G for all p € C. This
polynomial is called the representant of C, abbreviated rep(C).

Let h € K[:cl,...,a:,.]/J[:z:,.H,_..,a:n].

The polynomial A ¢ K{z;,.. ., &) is defined as follows:
RY . N o K

i e Tep(h(oﬂk’))(k:oﬂ—f)}
where k € N™ and &' € N™ " such that (k, k') = j. «
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Lemma 16 Let 7 € {1,...,n — 1}, G the reduced Grébner basis of an ideal J in
Kizi,...,2:], f€ K[21,...,2n), and h € K[ml,...,z,]/J{m,+1,...,:r:n]. Then

(1) h=(™)",
(2) if fis reduced modulo G then f:(f”)”.
Proof: Let i€ N™ and j € N™-T,
If i # 0, then
(R)H (6, 5) = (0p)s = h(3,5),
because h € K[:cl,...,m,.]/‘][n:,,ﬂ,.,.,mn].
If i = 0, then y
(R (3,5) = (R ip)a-
Let k€ N” and k' € N7\ {0, }.

From
h”(',j}(k, k') = 0 = rep(h{0,, )}k, k') and
W17 5k, Oner) = AV (k, §) = rep(h(0;, 7)) (K, 0n-,)
we obtain
RV sy = rep(h{0,, 7).
Thus,

(hw(.,j))J = (rep(h(0,,7)))s.
As (rep(CYiy=Cforall C € K[ml,...,:c,,]/J,
(rep{h(Cr, 7)) g = R(0-,7) = B{3,7).
Therefore, (1) is proven.

Let ie N" and j e N™"".

(FI(5,5) = rep(£19(0n, 5))E, Oner) = rep({fi. 117, Onr).

As f is in normal form modulo G,

rep({f.nho) = f.h)

Thus,
rep({f(.))7)(& 0nr) = f )i Onr) = f(i, 7). o
Let 7 € {1,...,n ~ 1}, P a zero-dimensional prime ideal in K{z,,...,2,], and
be V(P )
As there exists an isomorphism h from K[zy,.. .,m,.]/P [2r41y--.,2n) to

Ty

K (b)@rt1,. .., 20 with h(f1Fr=0) = F(B) for every f € K|z1,...,T,], we can Testate
the Structure Theorem of the previous section.
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Theorem 25 The set G ¢ Klzi,...,2n] is a reduced Grobner basis of a zero-
dimensional prime ideal in K(z1,...,2,]

i

G satisfies the following three conditions:
1. For every m there exists just one polynomial f, € G that belongs to Kizy, ..., Zm)
but not to K{z1,...,2m-1].
2. The polynomial f;udml*“-‘-l({f‘""JH}) is irreductble in
Klzq,...,21-1)
" tdeati g a({ fry -y 1))

irreducible in K{z,].

{zi] for every . Furthermore, fi is

8. le(fm) =1 and fm ts in normal form modulo G \ {fm} for every m.

The correctness of Algorithm 8 mainly relies on this result, for which a different
proof can be found in [10}.

Algorithm 8

input: G, a reduced Grobner basis such that I is a zero-dimensional ideal, where
I := Idealy »(G).

output: X,, such that X, = {(fi, ., fal)y-- o, (A7 ., fa7)} and {fi*,..., fa"}
is the reduced Grébner basis of a prime ideal P, that is associated with I for

every s € {1,...,r}. Furthermore, if P’ is a prime ideal associated with I then
there exists an s € {1,...,7} such that {fi®,..., fa’} is the reduced Grobner
basis of P’.

Xy :={(f)| f is an irreducible factor of G1; in K|z1] and le(f) =1}
forr:=1ton—-14do

Xr+1 Ve @
forall (fy,...,fr) € X; do
mingy,, .. 1) = min{s|s € {1,.. .ycarpy1} and le{Gry1,,) does

not reduce to zero module {fi,..., fr}}
ho= Grivming, 1

.....

IFg, oy ={f1fisan irreducible factor of A* in
K[ml,...,r,}/J[m,+1] and le(f) = 1},
where J 1= Idealg ({f1,..., f+r})-

‘Y?'-H ::Xi--l-l{}{(fls'--:fr:fTJ)!fEIF{fl ..... f,.)}

Proof of Correctness
We want to show for every m that

(1) for every (fi,..., fm) € Xm:

{fi, .., fm} is the reduced Grébner basis of a zero-dimensional prime tdeal in
Kley,...,2m]) that 1is associated with L "
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2) for every prime ideal P' in K(z1,...,%,,) that is associated with I,,_:
p [zm

there ezists an element (f1,..., fm) in Xy, such that {f1,..., fm} is the reduced
Grébuner basis of P/,

If m =1 then (1} and (2) are obviously satisfied.
We assume that m < n and (1) and (2) holds for m.

Let (fi,..., fm+1) € Xmy1 and f € IF(4,,. fm) such that f7 = f11, where
J = Idealg m({f1,..., fm}) and T4, . fm) 15 defined as in Algorithm 8.
As f is irreducible in Klz;,.. .,zm]/J[me],

fras1 € K[zly---:mm-l-l]\K{xi,---ymm]- (6.1)
By Lemma 16,
f = fm-!-llJ-
Thus,
fmaat? is irreducible in Kz, .. .,a:m]/J[zmH]. (6.2)

Nezt, we want to prove that

!C(fm-i-l) = 1.
Let B € N such that

fory = le(f).

From
max{r|r e {l,...,n} and deg(f,7) >0} =m+ 1=
= max{r| 7€ {l,...,n} and deg(fmsr,r) > 0}
and
deg(f,m+ 1) = deg(frms1,m + 1)
we obtain
fm+3(.,k) = le(fmar)-

Let 1 € N™.

As le(fma1) € Kz, ..., 2m), rep((le(f1)(0,)) € Klz1,...,2m], and
(lc(fm+1))(i> Onmm) = fm+1(.,k)(i70n—m) = fm+1(i= k) = fTJ(iak) =

= 7ep(f(0m, k))(Z, Onm) = rep( £ 1)(0n))(i, 0nm) = rep((Le(£))(0n))(Z, Onm).

it follows that

L= rep((1)1) = rep((lc(£))(0n)) = le( frmt1)- (6:3)
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As fragr = fN:
fm+1 s reduced modulo {f1,..., fm}. (6.4)

Thus, by (6.1), (6.2), (6.3), (6.4), and Theorem 25, {f1,..., fm+1} is the reduced
Grobner basis of a zero-dimensional prime ideal P in K{z1,..., @m+1])-

Now we want to prove that P is associated with I;, ..

As Iy ., is zero-dimensional, it suffices to show that

I/-‘rmﬂ - ‘P

Let b e V(P/zm).
As bis a generic zero of the prime ideal Py, ,

f(b) = 0, iff f reduces to zero modulo {fy,..., fm}
forall f € K[ey,...,2m]. Thus,
mt'TIb = min(fl'_._,fm},

where min(g ¢y is defined as in Algorithm 8.
Let g € {)zpy,-
By Theorem 290,
hiFrem divides gifrom

where h 1= Gm+1.minm RY
As frnsyiem divides h1¥em | there exist q1,q2 € K{z1,...,Zms1) such that

g=q1 fmy1 + g and g2 € Py, .

Thus,
gePl
It remains to show that (2) holds for m + 1.
Let P’ be a prime ideal in K{zy,...,2m41] associated with I, .

By Theorem 25, the reduced Grébner basis of P! consists of m 4 1 polynomials
fi1s---, fms1 such that

fs € K[e1,...,z)\ K[z1,...,2,_1) for every s € {1,...,m+ 1},
By Lemma 6, P;mm is a prime ideal in K[2y,...,zm,}. As P'is associated with I/, |,

Pn’

fe is associated with /,; . Thus,

(fh' . -)fm) € -Xm;

becanse {f1,..., fm} is the reduced Grobner basis of Pl

79



Let- h = Gm+1,miﬂ(j wonrFm )’

As he IdealK,m-{-l(Tfh ey Fmt1 D),
fm+1lpfr*'" divides h+Fiem .
By Theorem 25,

melP/'zm is irreducible in K|z, .. .,a:m]/P' ([Zm+1)

/'3m.

and le( fmy1) = L
Therefore,

¢

e frgat iem) = 1.

Thus,
Pf
frgn Frem € IE .. 4m) and

p TP’zm .
(fl)"'afma(fm-{-ll /”"‘) / )e-}\m-ﬂ-

As fry1 is reduced modulo {fi,..., fin}, by Lemma 16,

1P P
Fraat = (frngr’ 7om) o e

Example 16 We take the reduced Grobner basis G := {G);,G2.1,G22} C Qe, 9],
where

Gy = e 2% — 22 4 2,
Gy = zy-—-y-—2z +a,
Gap = ¥y -2y’ +y-=

as input for Algorithm 8.
The polynomials 2? — 2 and ¢ — 1 are the normed and irreducible factors of

22— 22 -2z 4 2.
X1 = {(z% -~ 2),(z ~ 1)}.
We set

ri=1,
Arg = @,

and choose (z2 - 2) € X;.
for (z? - 2) do.

As z — 1, the leading coefficient of G,1, does not reduce to zero modulo {z? -~ 2},
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ming_g =1,
hi=zy—y—22+z

The polynomial (1} -y + {(—z)s is the only normed and irreducible factor of the
polynomial (z — 1}y -y + (~z® + z)s, where J is the ideal in Q[z] generated by
{2? - 2}.

TFga gy = {{1)a-y + {(~z)s}.

As 1 is the representant of (1); and —z is the representant of {—z),
Xoi= {22 -2,y - z)}.

Now we take (z — 1), the other element of X;.
for (z ~ 1) do.

As z — 1, the leading coefficient of the polynomial Gy, reduces to zero modulo
{z -1},

min(e_1) = 2,
hi=y® —zy?+y—z.

The polynomials y + {~z); and y* + (1) are the normed and irreducible factors of
¥+ (—2)s y* + y+ (~z)s, where J is the ideal in Q{z] generated by {z ~ 1}.

IFpoyy = {y+ (~z)5,¥" + (1)s}.
As ~1 is the representant of (-2}, and I is the representant of {1}z,

Xo={(2*~-2,y—o).(z-1,y~1),(z - L,y + 1)}.

Thus,
{z? -2,y - z},
{w - Ly- 1}’
{x - 1:y2 + 1}

are the reduced Grobner bases of the prime ideals Py, £, P; that are associated with
the ideal generated by G. »
6.3 Applications

Why are we interested in the associated ideals Py, ..., P, of a given zero-dimensional
ideal 17
One reason is that, by Theorem 3,

V(I) = V(P)U...UV(P).

Thus, we can solve Problem 2 in the following way:
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Given: F, a finite subset of K[zy,...,2,] such that I is zero-dimensional, where

I:=Idealg ,(F).
Find: V{I).

Method:
We compute G := GB(F).

Instead of solving the system G, we compute Gy, ..., G,, the reduced Grébner

bases of the ideals Pj,..., P, that are associated with [,

By solving the systems G1,...,G. we obtain the solutions of the system F.

This method derives advantage from the fact that, in general, it is much easier

to solve the systems Gy,...,G, than to solve the system G.

Example 17 We consider the reduced Grébmer basis G := {G,,G24,G22} C

@iz, y] again, where

Gi1 = 28—z~ 2042,
Gztl = zy—y—mz—'{—m!
Gaz = ¥ -ey’ 4y -g,

which we have already used in the previous example. We have shown that

{z:l_ 2,y—3},
{$— 1:9“ 1})
fo-1,92+1}

are the reduced Grobner bases of the ideals that are associated with the ideal gen-

erated by G. Intuitively, it seems to be easier to solve each of the systems

22 -2 = 0 -1 = 0 z—-1 = 0
y—z = 0 y—1 = 0 y?4+1 = 0

than to solve the system

¥

22 —2? -2z 42
:cy—y—mz%«m =
V¥ -ey'ty-z =

D oo

Theorem 26 immediately leads to another application of Algorithm 8.

Theorem 26 Let [ be a zero-dimensional ideal in Kizy,...,zn) and Py, ..

prime tdeals that are associated with I. Then

Vi=PNn...nP.
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Proof: Let f € K{zy,...,z,).

By Hilbert’s Nullstellensatz,
fevi
iff

f(b) =0p for all b€ V(I).
By Thearem 3,
V(I)=V(P)U...UV(P}).
Thus,

f(b) =0, for all b e V(I).
iff

f(8Y =0, forall b€ V(P)U...UV(P).

Let s e {1,...,7} and b € V(P,).
As b is a generic zero of P,

f(b) = 0, implies f € P,.

Therefore,

f(b) = 0p forallb e V(P)U...UV(P,)
iff

fEP1ﬂ...ﬂP,-. ]

Thus, we can solve Problem 3 in the following way:

Given: g, a polynomial in K[zy,...,z,), and
F, a finite subset of Kiz1,...,xn] such that I is zero-dimensional, where
I:= Idealyg o(F).

Decide: whether

g(b) = 0, for all b € V(I),

or in other words, whether

gE\/f.

Method:

We compute G := GB(F).
By using Algorithm 8 we compute Gy, ..., G,, the reduced Grobner bases of the
ideals Py,..., P, that are associated with Idealg ,(G). :
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We reduce g to its normal forms g, modulo G, for every s € {1,...,7}.
The polynomial g is an element of V7
iff

gs = 0p forevery s€ {1,...,r}.

Example 18 We consider the reduced Grébner basis G := {G11,6G21,G22} C
Qiz,y] and f,g € Q[z,y], where

f o= —2zy+2y+ et - 28,
g = ¥-zy-y+o,
G111 = 2:3—:1:2-~2:t:+2,
Gy1 = zy—y-z?+z,
Gzp = y3—-zy2+y—:c.
We have shown that
{32__2’y_:c}}
{:ﬂ'—l,y—'l},
{z-1,7°+1}

are the reduced Grobner bases of the ideals that are associated with the ideal gener-
ated by G. As f reduces to zero modulo each of these Grébner bases, f is an element
of the radical of the ideal generated by G.

On the contrary, ~2y is the normal form of ¢ modulo {z -1,y +1}. Therefore,
g is not in the radical of the ideal generated by G. e

Problem 3 can also be solved by adapting Rabinowitsch’s method of proving
Hilbert’s Nullstellensatz.

Finally, we want to mention a last application.

It is well-known that there exist algorithms that satisfy the following specifica-
tion (see, for example, [13]):

input: F,G1,...,G,, finite subsets of K{z;,...,z,] such that Idealy ,(F) is zero-
dimensional and Idealk o(G1),...,Idealy o(G,) are the prime ideals that are
associated with Jdealy ,(F).

output: Hy,..., H,, finite subsets of K{z,...,z,] such that
Tdealg o(F) = Idealg o(H1) ... .0 I1dealg o(H.)

is a reduced primary decomposition of Idealy .{ F).
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Thus, we can solve Problem 4 in the following way:

Given: F, a finite subset of K{zy,..., 2, such that I is zero-dimensional, where
I:= Idealg n(F).
Find: H,,..., H,, finite subsets of K|z1,..., %) such that
I = Idealg n{H1)N .. .NIdealg n(H,)

is a reduced primary decomposition of I.

Method:

We compute G := GB(F).

By means of Algorithm 8 we compute G4,...,G,, the reduced Grobner bases
of the ideals Py,..., P, that are associated with Idealg ,(G).

We use the sets F,Gq,...,G, as input for an algorithm that meets the above
specification and obtain finite subsets Hy,..., H, of K|z1,...,z,] such that

I = Idealg n(Hy) N ... Idealg n( H,)

is a reduced primary decomposition of I.
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Index

Lizy,...,zn) 7

) 7
75 8
Lizeyy.ooyzr,] 10
J/w. 10

=y 10

deg(f,m) 10
foy 1

le(g) 11

Idealy m(F) 11
V() 11

Vo 12

K(zy,...,en) 16
< 16

coef f(f,v) 16
pp(f) 17
heoeff(fy 17
g=p h 17

g —hdy 17
SPol(fi,f2) 19
GB(F) 21

_G_l,é} vy Gn,carn 23
T(b) 29

ged{(J,b}) 29

minb 33
squarefree(f) 44
normed(f) 44
minpol(J,r) 62

Tup, 63
Cz; 63
{g}0 75
fi.f 75
rep(C) 75
LA 6
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coefficient 16
leading, 11
congruent 10
congruence class 75
decomposition
primary, 12
reduced, 12
degree 10
elimination ideal 10
Grobner basis 19
reduced, 21
head-coefficient 17
ideal
generated by a set,
primary, 11
prime, 11
zero-dimensional,
zero-dimensional,
normal form 18
ordering

11

11
13

purely lexicographical,

polynomial
minimal, 62
normed, 44
squarefree, 44

polynomial ring 7, 10

power product 16
leading, 17
radical 12
reduce 17
reducible 17
representant 75
S-polynomial 19
variety 11
Zero
generic, 11



Bibliography

(1]

[2]

3]
[4]
[5]

(6]

7]
(8]
(8]
[10]

f11]
[12]

(13]

G. M. Bergman: The Diamond Lemma for Ring Theory, Advances in Math.,
vol. 29, 178-218 (1978)

B. Buchberger: FEin Algorithmus zum Auffinden der Basiselemente des Rest-
klassenringes nach einem nulldimensionalen Polynomideal, Ph.D.Thesis, Univ.
Innsbruck (Austria) (1965)

B. Buchberger: Ein algorithmisches Kriterium fir die Losbarkeit eines alge-
braischen Gleichungssystems, Aequationes Math. 4/3, 374-383 (1970)

B. Buchberger: A Theoretical Basis for the Reduction of Polynomials to Canon-
ical Form, ACM SIGSAM Bull. 10/3, 19-29 (1976)

B. Buchberger: Some Properties of Grébner Bases for Polynomial Ideals, ACM
SIGSAM Bull. 10/4, 19-24 (1976)

B. Buchberger: Grébner Bases: An Algorithmic Method in Polynomial Ideal
Theory, in Recent Trends in Multidimensional Systems Theory, N.X. Bose (ed.),
D. Reidel Publ. Comp. 184-232 (1985)

W. Grobner:  Moderne algebraische Geometrie, Springer-Verlag, Wien-
Innsbruck, (1949)

G. Hermann: Die Frage der endlich vielen Schritte in der Theorie der Polyno-
mideale, Math. Ann. 95, 736-788 (1926)

H. Hironaka: Resolution of Singularities of an Algebraic Variety over a Field of
Characteristic Zero: 1, 11, Ann. Math. 79, 109-326 {1964)

A. Kandri-Rody: Effective Methods in the Theory of Polynomial Ideals, Ph.D.
Thesis, Rensselaer Polytechnic Institute, Troy, New York (1984)

S. Lang: Algebra, 2nd ed., Addison-Wesley (1984)

D. Lazard: Ideal Bases and Primary Decomposition: Case of Two Variables,
J. of Symbolic Computation 1, 261-270 (1985)

R. Schrader: Zur konstruktiven Idealtheorie, Diploma Thesis, Univ. Karlsruhe
(FRG) (1976)

87



[14] W. Trinks: Uber B. Buchbergers Verfahren, Systeme algebraischer Gleichungen
zu [ésen, J. of Number Theory 10/4, 475-488 (1978)

[15] B.L. van der Waerden: Algebra II, Springer-Verlag (1967)

88



