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Chapter 1

Implicitization and Birational
Projection of Varieties

1.1 Introduction

The automatic conversion of parametrically defined varieties into their implicit form is
of fundamental importance in geometric modeling. The reason for this is that implicit
and parametric representations are appropriate for different classes of problems. For
instance, it is universally recognized that the parametric representation is best suited for
generating points along a variety, whereas the implicit representation is most convenient
for determining whether a given point lies on a specific variety. It is also well-known
that the problem of intersecting two varieties is greatly simplified if one variety can be
expressed implicitly and the other parametrically. /

' {
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For some time the implicitization problem has been deemediunsolvable in the CAD poiphmad oy

literature ([?] or [?]). In 1984 the problem has been solved for rational parametric curves
in 2D and rational parametric surfaces in 3D by using resultants (see {?]). Resolvents have
J;f :; ) been applied to-find the implicit representation of rational parametric cubic curves in
e 3D ([?]). Arnon and Sederberg used Grébner bases for the implicitization of polynomial
parametric varieties of dimension n — 1 in n-dimensional space ({?]). In 1987 Buchberger
generalized their method to the case of polynomial parametric varieties of arbitrary
dimension ([?]).
In this paper we deal with the most general case and use Grébner bases for the implici-
tization of varieties of arbitrary dimension given by rational parametrizations.

)

One way to solve this problem is the following: Instead of working with varieties in the
affine space given by rational parametrizations we consider varieties in the projective
space given by parametrizations consisting of homogenous polynomials and proceed as
described in [?]. Unfortunately, the introduction of the two homogenizing variables
makes the computation of the Grébner bases much more costly (see computing times in
Subsection 4.6).

Given the rational parametrization

g B T TP I gy T 1= ey,

q1 n
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where p1,...,0n,¢1,...,¢s are polynomials in ¢,...,%m, over a field X, our second gen-
eral implicitization algorithm computes the squarefree form ¢ of the polynomial ¢ - -+ g,,.
Then the implicit representation of the given variety can be found by computing

GB({pl L1 41y 3Pt Ty — Qp, Q0 T 1})ﬂff[$1,...,$n],

where z is a new variable and G B is the Gr6bner basis with respect to the lexical ordering
withzy < ... <z, <y <. o<y < 2

Implicitization of varjeties in 3D-space is of particular importance for geometric model-
ing. We have developed algorithms that solve this special problem without introducing
additional variables. In this paper the main result concerning the implicitization of va-
rieties in 3D-space is the following: The implicit form of a curve or surface given by the
rational parametrization

_ B P2 .. D3
=y Ig iz=m T3 1= —,

g1 g2 q3

r: .

where the p’s and ¢’s are univariate polynomials in 3, or bivariate polynomials in y1,¥2
over a field K, can always be found by computing

GB({q1 21— p1, g2+ 22— p2, 3+ 23 — p3}) N K[z, 29, 23],

where G B is the Grobner basis with respect to the lexical ordering with 27 < 25 < 23 <
Y1 < Y2, if for every 4,7 € {1,2,3}, i # 7

Pi»¥i, Pj, ¢; have no common zeros. ,,l ;

Since we can always assume that p; and ¢; are relatively prime (¢ = 1,2,3), the above
condition is always satisfied, if the p's and ¢’s are univariate. Therefore, the above
result leads immediately to an implicitization algorithm for arbitrary rational parametric
curves.

Furthermore, we present an algorithm for the implicitization of arbitrary rational para-
metric surfaces and prove its termination and correctness.

We have implemented each of the algorithms presented in this paper in Maple. It turned
out that in almost every example the implicitization algorithm that works in the projec-
tive space was the slowest algorithm. Furthermore, in 3D-space the general implicitiza-
tion algorithms were much slower than the algorithms designed for this special problem.

It is well-known that not every implicitly given variety can be represented by a rational
paramefrization. But, as a consequence of the Theorem of the Primitive Element, every
irreducible d-dimensional variety V' in n-dimensional space is - after a suitable linear
transformation of coordinates - birationally projectable onto an irreducible d-dimensional
variety V' in d+ 1-dimensional space. At least n—d polynomials are required to represent
V implicitly, whereas ¥V’ can be represented by one irreducible polynomial. Because of
this fact many problems arising in geometric modeling can be solved more easily if V
is given by this irreducible polynomial and the rational map from V' to V (see [?]).
Furthermore, the rational map can be considered as a rational parametrization of a
d + 1-dimensional variety containing V.
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Recently in several papers ([?}, [?], [?]) this data structure has been proposed to represent
curves in 3D-space. Each of the algorithms presented in these papers is restricted to space
curves given as the intersection of two surfaces. In this paper we are concerned with the
following more general problem.

Given: an irreducible variety V', represented by finitely many polynomials fi,...,fr
in n variables over a field K of characteristic zero. (In fact we will demand that the
polynomials generate a prime ideal). Let d be the dimension of V.

Find: an irreducible polynomial g in d+1 variables over K such that after a suitable linear
transformation of coordinates the variety V' is birationally projectable on the variety V'
given by the polynomial g. Furthermore, we compute the rational map from V' to V.,

We present an algorithm based on the computation of Grébner bases ([?], [?], [?]) for
solving this problem and prove its termination and correctness. This algorithm con-
sists of three parts. In the first part the dimension d of the variety V and a subset
{iy,...,:,} of the set of variables {z1,...,z,} is computed such that fi,..., f, generate
a zero-dimensional prime ideal in K (2, ... ,%:,)[Zigyyy -« -+ %in), where {zi,, 1,00, @0, ) 1=
{z1,...,2a} ~ {zi,,...,7i,}. In the second part the variety of this zero-dimensional
prime ideal is birationally projected on a zero-dimensional variety in one-dimensional
space by using an algorithm that solves the birational projection problem stated above
for arbitrary zero-dimensional irreducible varieties. In the third part we show how the
above problem can be solved for the variety V in Klz;,...,z,]) given by fi,..., frif it is
solved for the variety of the ideal in K(zs,,...,2i,)[Zisy, .-, %i,] generated by the same
polyromials fi,..., fr.

In Section 2 and 3 we give some definitions and state a few well-known theorems and
properties of Grobner bases that we need for proving the correctness of our conversion
algorithms. In Subsection 4.1 a more formal specification of the implicitization prob-
lem is given. In Subsection 4.2 Buchberger’s implicitization algorithm for polynomial
parametric varieties is reviewed. In Subsection 4.3 and*4.4 we present our general im-
plicitization algorithms and prove their correctness. In Subsection 4.5 we deal with the
implicitization of curves and surfaces in 3D-space. Again, all the proofs of correctness of
the algorithms presented in this subsection are given. In Subsection 4.6 some examples
are computed and the computing times of the different algorithms are compared. In
Subsection 5.1 the birational projection problem is stated more formally. In Subsection
5.2, 5.3, and 5.4 the algorithm that solves this problem is presented together with the
proof of its correctness.

1.2 Definitions and Theorems

Throughout the paper let K be a field and K an algebraically closed field which has
infinite transcendence degree over X (a so-called universal domain).

The usefullness of universal domains is based on the following theorem (see [?], p.158).

Theorem 1 Let L be a finite extension field of K, i.e. there exist finitely many elements
@y,...,0m n L with K(ay,...,an) = L. Then

L is isomorphic to a subfield of K.
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Let F be a subset of K{zy,...,7,). Ideal(F) denotes the ideal generated by F in
Klzy,...,%,) and V(F') denotes the variety of F, i.e. the set

{a € K™ | f(a) = 0 for every f € F}.

Let I be an ideal in K[z1,...,%n). The radical of I is denoted by VI. The element a of
K™ is a generic point of I if for every f € K(zy,...,Zn}:

fel iff fla)=0.

Theorem 2 Let P be a proper ideal in K[z1,...,2,). Then
P is prime
if
P has a generic point in K™.
Proof: see {?], p.159 and p.160.

When ideal I is written as a finite intersection of primary ideals in K{z1,...,%ys], say

I=gin...nQ,,

we call this a primary decomposition of I. A primary decomposition such that +/@7y,...,
V@ are distinct and I cannot be expressed as an intersection of a proper subset of the
primary ideals {@Qy,..., @~} is said to be reduced.

Theorem 3 (Lasker-Noether Decomposttion Theorem).
For every ideal I in K[z1,...,zy] there exists a reduced primary decomposition of I.

Proof: see [?], p.136.

Theorem 4 Let I = Q1N ...NQ, = Ry N...0 R, be reduced primary decompositions

of I. Then
r=sand {VQ1,...,vV@r} = {VEi,...,V&}.

Proof: see {?], p.137.

Theorem 5 Let I = Q1 0...1NQ, be a reduced primary decompositions of I and P a
prime ideal in Ki{zq,...,z,]. Then
Icpep

iff
there exists ant € {1,...,r} with /Q; C P.
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Proof: see (7], p.139.

Let @1 N...NQ, be a reduced primary decomposition of I and let : € {1,...,r}. We
call Q; an embedded primary component of I if there exists a § € {1,...,7}, 1 # J with

V@ € /e

Otherwise, @Q); is called an isolated primary component of I. If the prime ideal P is an
element of the uniquely determined set {/Q1,...,/@> } then we say that P is associated
with I.

In ([?], p.161) the following definition of the dimension of an ideal is given:

Let P be a prime ideal in Kiz1,...,2,] and {ai,...,an} a generic point of P, The
dimension of P is the transcendence degree of the extension field K(ay,...,a,) over
K. (The dimension is independent of the choice of a particular generic point.) The
dimension of the proper ideal I, abbreviated dim(I), is the maximal dimension of its
associated prime ideals.
A different but equivalent definition of the dimension of an ideal can be found in ([?],
p.38):
Let {41,...,14} be a subset of {1,...,n}. The set {z;,,...,2:,} is said to be independent
modulo I if

INnKlziy,...,zi] = {0}

The dimension of the proper ideal I is the maximal number of elements in any set of
variables independent modulo I.

The ideal I is called unmized d-dimensional if each of its associated prime ideals is of
dimension d. The varieties of unmixed 1-dimensional ideals are called curves, the varieties
of unmixed 2-dimensional ideals are called surfaces, and the varieties of unmixed (n—1)-
dimensional ideals are called hypersurfaces.

Theorem 6 Let I be an ideal in K[z1,...,2,]. Then
dim(I)=n— 1 and I is generated by a single polynomial
iff
I is unmized (n — 1)-dimensional.

Proof: see [?], p.179.

Theorem 7 (Primidealkettensatz of Krull).
Let the ideal I in K[zy,...,z,] be generated by {g1,...,0:} C K[z1,...,2,] and let P’
be a prime ideal in K(zy,...,z,] such that

ICP and ICPCP impliesP =P
for every prime ideal P in K|zy,...,zy]. Then

dim(P') > n - k.
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Proof: see [?], p.142.

Theorem 8 Let P and P’ be prime ideals in K[z1,...,2,] with P C P'. Then
1. the dimension of P’ is less equal the dimension of P,

2. if P and P’ have the same dimension then P = P’.
Proof: see [?], p.163.

At the end of this section we will show the following easy lemma that we will use in some
of the proofs in Section 4.

Lemma 1 Let b be an element of the algebraic closure of K, p an irreducible polynomial
in K[z9] with p(b) = 0 and f a polynomial in K[z1,...,2,] with f(b,z2,...,2,) = 0.
Then

p divides f.

Proof: Let the subset {by,...,b,} of K be algebraically independent over K and let
P be the prime ideal in K[z1,...,%a] with (b,ba,...,b;) as a generic point. As the
transcendence degree of K{b,bg,...,b,)1s n — 1,

dim(P) =n — 1.

Since P is prime and therefore unmixed (n — 1)-dimensional we obtain from Theorem 6
that P is generated by a single polynomial. As p € P and p is irreducible,

p generates P.
From f(b,b2,...,b,) = 0 we obtain f € P. Therefore,

p divides f. o

1.3 Grobner Bases

Each of the conversion algorithms presented in this chapter is based on the computation
of Grobner bases. In 1965 the method of Grébner bases has been introduced by B.
Buchberger in his Ph.D. thesis (see [?] or [?]). This method, as its central objective,
solves the simplification problem for polynomial ideals and, on this basis, gives easy
solutions to a large number of other algorithmic problems. During the last years Grobner
bases have become one of the most popular methods in computer algebra.

In this paper we will not give a definition of Grébner bases. We will only state a few

properties which we need in the sequel. For a complete reference of the Grobner bases
method see (?] or [?].

Let ¥ be a finite subset of K[xy,...,2,]. Then GB{F), the reduced Grobner basis of
P with respect to the lexical ordering < of power products with z; < ... < £, has the
following properties:



1.4. IMPLICITIZATION OF RATIONAL PARAMETRIC VARIETIES 7

1. GB(F) is a finite subset of K{zy,...,2,),
2. Ideal(F)=Ideal(GB(F)),
3. for every t € {1,...,n}:
Ideal(GB{FY)N Klz1,...,2;] = Ideal(GB(F)n K{zq,...,2i]),
where the ideal on the right hand side is formed in K[zy,...,:],

4. Ideal(F'} is zero-dimensional iff

for every 1 € {1,...,n} there exists an f € GB(F) such that the leading power
product of f with respect to < is a power of z;,

5. for every f,g € GB(F), f # ¢

there does not exist a power product in f that is a multiple of the leading power
product of g,

6. for every f € GB(F'): the coefficient of the leading power product of f is 1.

1.4 Implicitization of Rational Parametric Varieties

Throughout the sectionlet py,..., 00 € Kyt .- s ¥m) and g1, .+, @n € Ky, ., ¥m]—{0}
such that
p; and ¢; are relatively prime  (i=1,...,n)

and let P be the prime ideal in K{z1,...,%n,] which has

p—l,...,gf-)eﬁ’“

q In
as generic point. (Because of Theorem 1 we can consider {y1,...,Ym} as subset of K
and therefore
CERIRY
' gn

as element of K.

1.4.1 The Implicitization Problem

Intuitively, the implicitization problem is the problem of finding a subset F of K[zy,...,2,)
such that the set represented parametrically by

i.e. the set

R.= {(gig;,,i:g;) |6 € K™ and qi{b) # 0 fori=1,...,n},
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is implicitly represented as the set of common zeros of F. As it has been pointed out in
{?] it is possible that there does not exist a subset F in K[z1,...,z,} with

V(F) =R,
because the parametrization is not “general enough” and therefore some points are miss-
ing in R,
Example 1 If
P1=2ys, p2=20y,  pa=yi-yi-l, a=g@=g=ligtyl
Then, for every (b1,b2) € K? with ¢1(b1,82) # 0

p1(b1,02) pa(by,ba) pa(by,b2)
q1(b1,82) 7 q2(b1, b2)" ga{by, b2)

is a zero of the polynomial
x% + sc% + m% -1

and for almost all elements (a1,a2,03) € V({22 +22+2%—1}) there exists a (b1,52) € K*

SuCh thE (b b ) 2((]1 ) ( 2)
pl 1, U2 p ‘)bz .FS 13
a ,af ;a‘3 ’ ’ b bZ '
( 1 2 ) (q] (b17b2) 92(51,3}2) QB( 1, )

But there does not exist a {(b1,b2) € K? such that

p1{b1,b2) pa(b1,b2) pa(by,bs)
q1{b1,b2)" qa(by, b2)” qa(by, b2)”’

although (0,1,0) € V({#¥ + 23 + 22 ~ 11). »

(0?1!0) = (

Hence, what we really want to find is a finite subset F of K[zy,...,2zx] such that V(F)
is the smallest variety containing R. .

Because of Theorem 1, {y1,...,¥m} can be considered as a subset of X and therefore

PL e
(q{1 qn)
can be considered as an element in R. Thus,
V{(F) must contain (Ei, ,233 . (1.1)
q1 gn

Let f be an element of K{zy,...,2n] such that

» Pn
JC N .3 gy
(ql Qn)

and let b € K™ with
gi(b) # 0 for every i € {1,...,n}.
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Obviously,

O R R

Therefore,

(EL....,I%y ¢ V(F) implies B C V(F).
q1 dn

Thus, V(P) contains R. As V(P) is the smallest variety that contains

PP

1 dn

it follows from (1.1) that V{P) is the smallest variety containing R.

Hence, we can state the implicitization problem in the following way.

Implicitization Problem:

Given: rational parametrization of a variety

where pi,....Pn € KU1, ¥m)s Q1>+ € K11y -, ym] — {0} and

pi and ¢; are relatively prime (¢ =1,...,n).
Find: implicit representation of this variety, i.e. polynomials g1,...,¢, in K{z1,...,24]
such that
V{{g1,--.19:}) = V(P),
where P is the prime ideal in K{zq,...,2,] with

Ei,...,g?-)el?“
q1 In

as generic point,

Example 2 For the rajional parametrization

242 _ 2uiy y3 —yf -1

T = — Ty = Ty =
T4+yi+yd 1+9f+92 L+l + v

the implicit representation

2 2 2
itz +z23-—1

of the unit sphere is a solution of the above problem. e
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1.4.2 Implicitization of Polynomial Parametric Varieties

If the given rational parametrization

is a polynomial parametrization, i.e.

o= Gn =1,

I

g1

then the implicit representation of this variety can be found very easily by cormputing

{91,..,9-} = GB({zy = p1,-- -, Zn — Pn}) N K[21, ..., 20,

where G I has to be computed using the lexical ordering determined by 24 < ... <z, <
Y1 < e < Y (see [7]).

Example 3 For the variety given by the polynomial representation
si=yi4ye, Ta=y+29 -1, 3=y, wa=vyi-1
this implicit representation

{ 427 — 42429 + 534 + 2 — 2% 4 225 — 235 + 23,
4x423 + 22420 + 24 + :1:% + 2x125 — 2Toxz — m%,
$4+1~$%+$3w2$4$1w$1 + zo21,
1-— 23"13 4+ B3 — 21 — 2oy + 229 —~ ngm% + dzoxy — 62123 + m% + 4:1:% + Qm? }
J('E’.‘L‘JC'S C';H].- - bo i

Q@ N TS IS § R
e L VI S AT

GB({z1~ (91 +v2), z2— (31 +205 — 1), 23— y1¥2, 24— (¥ — DN E[zy, v, 23, 4] »

can be found by computing the Grobner basis

d

If not all ¢’s are 1 then it seems reasonable to assume that the implicitization problem
can be solved by computing

{91, 0} == GB({g1 21 = 1, s Gn - Tn — Pu}) N K21, .. 2a].
Unfortunately, this is not true as the following example shows.
Example 4 We consider again the parametrization of the unit sphere

ty = 292 , 2y = 2y1y2 zs = Y3 — i — 1'
1+ 9 o+ y3 14+ 9%+ 93’ 1+ +v3

By computing

GB{(1 + 9] +93)e1 — 202, (147 + y2)22 = 2019, (L+ 9 +97)ws — (43 — 47 — 1)})

ﬂé}fxi,xg,mg]

we do not obtain an implicit representation of the unit sphere but the empty set. o
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1.4.3 Homogenization

One possibility to overcome this difficulty is by working in the projective space with
projective parametrizations:

Example 5 Instead of the parametrization

202 2y eyl

Ty = —— g Ty = g =
1+ y? + 2’ 1+ g8 +yd’ 1+ y? + y2

of the unit sphere in the affine space we consider the projective parametrization

To = Yo+ vl + v3, z1 = 2Y2%0, z3 = 2192, T3 =ys — i — y5

of the projective unit sphere (zg and yp are homogenizing variables). Now we can proceed
as in the case of polynomial parametrizations and obtain

2 2 2 2
i+ =z To — Tof =
{#1 + =3 + 23 — 5} 0
GB({zo— (yg + y? + y%), Ty — 2Y2Y0, T2 — 2Y1Y2, Ta— (y% - y% - ?Jg)}) N K{zo,21,22,73},
where G'B has to be computed using the lexical ordering determined by zg < 27 < 22 <

T3 < Yo = Y1 <X ¥z
After dehomogenizing, i.e. substituting 1 for zg, we obtain the desired polynomial

2 2 2

The general algorithm has the following form:
projective.implicitization (in: py,...,Pr,q1,-. -, qn; out: {g1,...,9:})
Input: p1,...,pn € K[y, s ¥m)s 10e0n € K[y1,...,9m] — {0} and

p; and g¢; are relatively prime (¢ =1,...,n).

Output: {gi,...,9}, a finite subset of K[z1,...,z,] such that

V({gla‘ s 791‘}) = V(P))
where P is the prime ideal in K[z1,...,%,] with

(B By e g
Q1 n

as generic point.
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poi=1
go =1
g := least common multiple of q1,...,¢n
s 1= maz(tdeg(pr - q/q1), ... tdeg{pn - ¢/ gn),tdeg(gq)), where tdeg denotes
the total degree of a polynomial
for i from 0 to n do
fi=pi-a/a
hiv=yg - fi(y1/vo,- - - > ¥m/%0)
G = GB({zo = ho,...,Zn — hn}) N K[20,...,2x]
{gla' .- sgr} = {9‘(1,371:- .. :mn) l g(mo, s ,wn) € G}

where B has to be computed using the lexical ordering determined by zp < ... < 2, <
Yo ~ e ym.

Since the termination of projective_implicitization is obvious we only have to show
its correctness.

Proof of correctness:
Let I be the prime ideal in K[zq,...,2,] with

(hoy.. . hn)

as generic point. Let f € K[zq,...,2,] and f' € K[zg,2y,...,25] such that f’ is ho-
mogenous and f'{1,21,...,2,) = f. Then

. by Pn . 174 P1 Dn
fer iff f(=,...,=~)=0 I [f(1,~=,...,~==)}=0.
(q1 ’qn) & tn
As ¢ # 0, f' is homogenous, po = g = 1 and h;(L,y1,...,¥m) = pi - ¢/q for every
i€ {0,...,n} we know that
LB By
7 4 )

k(3

iff
(P09 PL g Pa-g
=0
f( qo ? q1 ? 3 qn )
iff

fl(ho(]-?yla v aym)v v ahn(layla‘ .. 5ym)) = 0.
As hg,...,hy are homogenous polynomials of total degree s,
f'(ha,...,hy) is a homogenous polynomial in K{yo, %1, ., ¥m]- (1.2)

If f/Cho{l,21, o3 ¥m)se oy Bn(3, 91, -+, ¥m )} = O we obtain {from Lemma 1 that yo ~ 1

divides the polynomial f'(ho(¥o,¥1,--«s¥m)s---rhn{U0, U1, > ¥m)) in K(yo,91,- -, Ym]
and therefore, because of (1.2}, f'(ho,...,hn) = 0. Hence,

f’(hﬁ(layla e 1ym)'.~‘ "1h’n(1:y11“ -sym)) =0
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iff
F(holyo, v15 -+ 1 ¥m)se - s Pul¥os U1y - -1 Um)) = 0
iff
flel

Altogether,
feP iff flel. (1.3)

Let e be a non-zero polynomial in I and ey, . . ., €4 homogenous polynomials in K{zo, ..., 2]
such that for every i € {0,...,d}

tdeg(e;) =iand e=eg+...ep.

As eolho, ... hn),. .., €4(Ro,. .., hy) are homogenous polynomials in K [yg, ..., Yn] of dif-
ferent total degrees it follows from e(hg,...,h,)} = 0 that

eilhore .y ha) =0 (i=0,...,d)

and therefore
e €l (i=0,...,d).

By (1.3),
ei{l,z1,...,z,) € P (i=0,...,d).

Hence, for every (ay,...,a,) € V(P)
e{l,a1,...,an) = eq(1,01,...,az) + ... + eo{l,a1,...,an) =0

and therefore
(L, a1,...,0.) € V(I).

Let p € P, Then there exists a homogenous polynomial p’ in Klzg,...,z,] with
2Lz, 2n) = 2{T1, 00 T0).

By (1.3),
g el

Hence, for every (1,a1,...,a,) € V(I)
plar,...,a,) =0

and therefore
(a1,...,a,) € V(P).

Thus, we have proved that for every (ay,...,a,) € K™

(a1,...,an) € V(P) iff (L,a1,...,a0) € V(). (1.4)
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From the result stated in the previous subsection we obtain that
V(I)=V(GB({zq — hoy-++»Zn — hn})) 0 K[zo,. .., 20 = V(G).
Hence, for every {(ay,...,a,) € K"
(Liag,...,an) € V() if (La1,...,00) € V(G) Iff (a1,...,an) € V({g1,...,6-})-

Together with (1.4),
V(P)=V({g1,...,0r}). »

The complexity of Grobner bases computations heavily depends on the number of vari-
ables in the input polynomials and on the degrees of these polynomials. The homoge-
nization process tends to increase the degrees of the input polynomials. Furthermore, the
need for two additional homogenizing variables is another disadvantage of this method
(see computing times in Subsection 4.6).

The implicitization algorithm in the next subsection gets along with the introduction of
just one additional variable. This variable is used in a similar way as in the proof of
Hilbert’s Nullstellensatz given by A. Rabinowitsch {see for instance [?]).

1.4.4 The Rabinowitsch Trick

Example 6 The implicit representation of the unit sphere given by the rational para-
metrization

292 21192 a1

Ty = el g = , Ty = =—L =
VTR Tl 2 P T+ +v

can be obtained by computing

{ef+2d +of - 1) =GB+ 4 + 932~ 1, (1+uf +43)71 - 292,
1+ v+ 9d)ze —2pye, U+ yi+yd)za—(¥i-vi-1}n éﬁl,ﬁzaﬁal,
£

where z is a new variable and G'B has to be computed using the lexical ordering deter-
mined by 1 <23 <23 <y1 <y2 <z

This strategy always works:

Theorem 9 Let q be the squarefree form of the polynomial ¢; - - - ¢, and let

{91,--s0} =GB{qg- 2= 1,1 - 21 — P14y 1Gn " T — Pu}) N K[T1,.. ., Zn),

where z is a new variable and GB has to be computed using the lexical ordering deter-
mined by zy < ... < 2y <Y1 < ... < Ym < 2. Then

{g1,--.,9-} generates P.
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Proof: Let I be the ideal in K[z1,...,%n, Y1, .-, ¥m, #) that is generated by {g-z—1,¢1-
T1 — PlyeveyGn* Tn — Pn}. Obviously,

D1 Pn 1
ey Yis s Yms =
(QI In q)
is a zero of I. From the fact that
P P
( patRRR qn)
is a generic point of P it follows that every element of I 1 K[z1,...,2,]) is an element of
P. Hence,
{91,.- .0} C P. (1.5)

Let f be an element of P. It is well-known that there exists a non-negative integer s;
and a polynomial h; in K[z1,...,%n, ¥15...,¥m] such that

@' f~ (g2 —~p1)-h1 € K22, %0, Y1y -y Ul

Thus, there exist non-negative integers sy,...,s, and polynomials hy,...,h, with

1 n
Fe=(QI &) F=d (qi-zi—p)-hi € Ky, ..., pm]. (1.6)
fm==1 =1
From the fact that Pi P
(E:;? 7'9731y13"'7ym)
is a common zero of the polynomials f, g1 21~p1, ... ,G@nTn—0n € K[Z1, .-y Zn, Yiy- -+ »Ym)
it follows that . P
1
“(;;)"',q_:ayla"'?ym)

isazeroof f. As f € K[y1,...,¥m),
f is the polynomial 0.
Together with (1.6), . .
(I‘E ') f= Z;(qz"ﬂ:impi)'hi- (1.7)

Therefore, the set

n
Mi={g€ K[y,...,ym] — {0} | ¢+ f € I and squarefree(g) divides H gi}

1=1
is not empty. Let § be an element of M with minimal toial degree.

Assumption: The total degree of § is greater than 0.
Obviously,

g

g g _ )
frrm(gles S @ 2= )= —gles )

ged(,5) ged(q,9)
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Asg-felTandg-z—~1¢€1,

I
gcd(q,g) SE
Obviously,
squarefree( ( )) divides H gi.
=1
Therefore, _
g
— € M,
gcd(q,7)

As ged(g,§) is not 1,

gcd( g)
This is a contradiction to the definition of g.
Hence, there exists a polynomial in M that is a constant. By definition of M,

fel

the total degree of is stnaller than the total degree of g.

and therefore
PCINK[z1,...,55]

Thus, by Property 2 and 3 in Section 3,
P C Ideal({g1,.-.,9-})-

Together with (1.5),
{g1,-..,9-} generates P. o

1.4.5 Implicitization of Rational Parametric Curves and Surfaces in
3D-Space

Implicitization of varieties in 3D-space, i.e. varieties that are subsets of {3, is of particu-
lar importance for geometric modeling. Therefore we have tried fo construct algorithms
that solve this special problem considerably faster than the general implicitization algo-
rithms described in the previous subsections.

Throughout this subsection let us assume that n = 3 and m = 2, i.e. that a rational

parametrization

b2 P2 b3
Iy = —y Tg = —, Ty = —
q1 qq g3

is given, where P1sP2:P3 € K[y1,y2] and Q1,942,493 € I{[ylayQ] - {0} and Pi and q: are
relatively prime (¢ = 1,2,3). Furthermore, let

I:=Ideal({q1 - x1—p1, @2 22— P2, g3 23 — pa}) in K21, 22,23, 91, %2],
and let ¢1,...,Q, be primary ideals in K[z, 22,23, ¥, y2] such that
Qin...Nn¢g,

is a reduced primary decomposition of I.
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Theorem 10 There ezists an i € {1,...,r} such that Q; is prime and has

1“—1y1:y2) Effs

(2L 2 s
a1 g2’ g

as generic point. Furthermore, for every j € {1,...,7} - {i}:

Q; N K1, v2) # {0}

In the proof of this theorem we will use the following notation:

For a given ideal J in K{21, 22, 23,31, y2] the ideal in K{y1,y2)[z1,22,23] generated by
J is denoted by J*.

The proof is based on Theorem 11 which can be found in ([?], p.47 and p.92) in a more
general form.

Theorem 11 Let J be an ideal in K{zy,z0,23,11,¥2) with J N Ky, y2} = {0} and
Ry,..., Ry be primary ideals in K[zy, 22,23, 41, y2] with

J=Ry0...NRy
ordered in such a way that there exists anl € {1,...,k} with
RN Kly,ya] ={0} fori=1,...,0 and R:NKly, ] #{0} fori=1+1,...,k.
Then
1. J*= R¥n...NRF and R¥ is primary for every i € {1,...,1},
2. if J is primary then J* N K{21, 22,23, ¥1,¥2) = J,

3. if J is a prime ideal of dimension 2 then J* is a zero-dimensional prime ideal.

Proof of Theorem 10: Let
M:={ie{l,...,r} | QinK[y,y2) = {0}}
As I* is generated by {q1 -1 — p1, g2 =2 — p2, g3 - 23— D3},
I* is a zero-dimensional prime ideal and I N K[y;,y2] = {0}.

Thus,
M # 8.

Furthermore, it follows from Theorem 11.1 that

ieM
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As I* is prime there exists an 1 € M with

I =Qr. (1.8)
If there exists another element § in M with 7 # ¢ then

QY C Q3.

From Theorem 11.2 we obtain
Q: G Q.

This is a contradiction that to the fact that Q1 N ...NQ, is a reduced primary decom-
position. Therefore, for every j € {1,...,7} — {i}

Q; N K[y, 2] # {0}.
Let R be the prime ideal in K[zq,29, 23,91, 2] with

P2 Ps ”
&7_9'—39'1)1!2) € Ifs
q1 92 g3

as generic point. By Theorem 11.3,
R* is a zero-dimensional prime ideal.
From I C R we obtain I* C B* and therefore, by Theorem 8 and (1.8),
R =I*=Qr.

By Theorem 11.2,
Qi _ R L ]

For the rest of the subsection let us assume that Q4 is the prime ideal with

b1 Pz P3 ir5
R €K
((Iz q2 g3 y1,92)

as generic point and that ¢q,...,@Q, are ordered in such a way that there exists a
v € {1,...,7} such that

@1y...,€y are isolated primary components and

Gut1,. .-, Qr are embedded primary components.

Obviously,
V() =V(P)U...UV(R), (1.9}

where F; is the radical of @; fori=1,...,r.
Furthermore, the following result holds
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Theorem 12 Let j be an element of {1,...,v}. Then the dimension of P; is greater
equal 2.

Proof: Let R be a prime ideal in K21, 22, 23,¥1, ¥2)-
By Theorem 5,
ICR

iff
there exists a § € {1,...,7} with P; C R.

Hence,
forevery j € {1,...,v}: I CRC P;implies R = F;.

As ideal T is generated by {q1 - z1 — p1, @2 T2 — P2, @3- T3 — p3} we obtain the desired
result from Krull’'s Primidealkettensatz. o

Definition: Let (by,5;) € K% We denote the number of elements in the set
{i € {1,2,3} | pi(b1,b2) = qi(b1,02) = 0}
by zero(by,by).

Example 7 We consider again the parametrization

21 2y _y—yi-1

Ty = el Ty = PO Ly = S
1492 + 92 1493+ 42 1+ yi+ y2

of the unit sphere. Then for (0,0), (,0) € &%
7y
zero(0,0) =0 and zero(:,0)=3. =

Theorem 13 Letj € {2,...,v} and let (a1,az, as,b1,b2) be the generic zero of the prime
ideal P; in K{21,22,%3,91,¥2). Then

by and by are in the algebraic closure of K and dim(P;) < zero(by,by).

Proof: First of all, we know from Theorem 10 that the transcendence degree of X (b1, b2)
is smaller than 2.

Let us assume that the transcendence degree of K'(by,b7) is 1.

Let ¢ € {1,2,3}. By Theorem 6, every one-dimensional prime ideal in K{yi,yo] is
generated by a single non-constant polynomial. Since p; and g; are relatively prime
it follows that no one-dimensional prime ideal is a superideal of Ideal({p:,q:}), where
Ideal({p;,q:}) is considered as an ideal in K[y, y2]. Thus,

dim(Ideal({p;, ¢:})) = 0.

Hence,
(b1,b2) is no common zero of p; and g;.
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As g; - z; — p; is an element of F;,

a; is algebraically dependent on {by,b5}.

Thaus,

dim(P;) = 1.
This is a contradiction to Theorem 12.
Therefore,

by and by are in the algebraic closure of K.

If (b1,b2) is no common zero of p; and ¢; then
a; is algebraically dependent on {b;,b2}.

Thus, the transcendence degree of K(ay, ag, a3, b1,b2) is less equal zero(by,b2). Therefore,
by van der Waerden’s definition of dimension,

dim(P;) < zero(by,ba).

In Example 4 we have shown that
GB({gr-z1—p1, @2 T2 —p2, @3- 23 — p3}) N K[zy,29,23] = 0
if we use the parametrization of the unique sphere defined by
pri=2,  p2i=2Y2, Perm Y- ¥ -1, quimgoimgsi= 14yi g

In Example 7 we have considered the same parametrization and we have found out that
there exists an element (by,b;) in @* with

zero(by,by) = 3.

In the following theorem it is stated that these two facts are equivalent.

Theorem 14
I'nK{zy,2q,23] = {0}
: 7
there exists a (by,by) € K* with zero(by,by) = 3.

Proof: (=:) If
In I([R);,IEQ,E;-;] = {0}

then there exists a j € {2,...,7} with

Q_.,.' n I{[$1,$2,$3] = {G}



1.4. IMPLICITIZATION OF RATIONAL PARAMETRIC VARIETIES

Hence,
Pj n I{[xl,xg,m3] = {0}

Then, by definition of v, there exists a k € {2,...,v} with
P n Klzy,2z9,23) = {0}
Therefore, Grobner’s definition of dimension,
dim(Pg) > 3.
By Theorem 13 and the definition of zero,
zero(by, b)) = 3,

where (a1, a3, a3, b1,by) is the generic point of Fj.

(<«=:) Let (b1,b2) € K? such that
zero(by, by) = 3.

The element
(z1,22,23,b1,b)

21

of K® is a common zero of g1 - &1 — Py, Gz - £3 ~ P2, g3« £3 — p3 and therefore a zero of

every polynomial in J. Hence,

In K[ml,:cg,a:?,] = {O} L

Theorem 15
V(I) £ V(R)
implies
that there exists a (by,by) € K* with zero(by, by) > 2.
Proof: If

V{I) # V(h)

then, by (1.9),
v > 2.

Let (a1, a2, as, b1, b2) be the generic point of P;.
By Theorem 12 and Theorem 13,

zero(by,by) > 2. e

Note that
P1 n I({:El,iﬂg,il,‘g] =P
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and that, by Property 2 and 3 in Section 3,
GB({g:1 21 —~p1, 2 22~ P2, @3° %3~ p3}) N K[z, 22, 23] Is a basis of 1N K[21,22,23],

where G B has to be computed using the lexical ordering determined by z1 < %z < 23 <
y1 < y2. Hence, if for every {b1,8;) € K? zero(b;,b) < 2 then, by Theorem 15,

V(P)=V(PiNK[z1,22,23)) = V(I N K[z1,22,23]) =

V(GB({q1 - %1~ p1, 2 %2 = P2, @3 33 — p3}) N K[z1, 32, 23]).
Therefore, if for every (4,7) € {(1,2),(1,3),(2,3)}

Pi,¢i, Pj, ¢; have no common zeros

then we can obtain the implicit form of the variety given by

1 P2 73
T ==, T = =, Ty = =

@1 92 g3
by computing

{g91,.--19m} = GB({g1- 21 — p1, G2° 22~ P2y Q3 T3~ Pa}) N K21, 22, 23]
In particular, this algorithm can be applied if

P1,P2, D3, 41, 02,43 € K{yi] or p1,p2,p3, @1, 02, @3 € K[pa).

(Note that p; and g; are relatively prime for ¢ € {1,2,3}.)

As we have seen this simple algorithm does not work for arbitrary rational parametriza-
tions (see Example 4 or Theorem 14). The implicit representation of surfaces given by
arbitrary rational parametrizations can be found by using an algorithm which we will
present in the sequel. This algorithm decides whether the variety given by the rational
parametric representation

3! P2 3
ml = T 3]2 = —_, xs = e

@1 g2 q3
is a surface, i.e. whether the transcendence degree of

P1 P2 P3
KL 2 S
(Q1 Qz’qs)

{over K') is 2. In this case it computes an implicit representation of the surface.

Definition: Let %,g be non-zero polynomials in K[z1,%3,23,y:] such that g has no
non-trivial factor in K[y;] and there exists a polynomial p in K[y} with h = ¢g-p. Then

h/y1 =g.
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implicit_surface (in: py, p2, D3, ¢1, ¢2, ¢3; out: g)
Input: p1,p2,p3 € Ky1,92), @1,92,93 € K{y1,32] — {0} and

pi and ¢ are relatively prime (i = 1,2,3).

Output: g € K[zy,z,,z3) such that if the transcendence degree of

r(& P2 P
q1 92 g3
is 2 then
g ¢ K and V({g}) = V(P),

where P is the prime ideal in K[zy,2,23] with the generic point

PL P2 Ps
o @ 43 ’
and
g=1
otherwise.

for every (33.7) € {(15 2)7 (11 3)3 (21 3)} do

Gy = GB({gi - zi — pi, ¢ - zj — p;}) 0 K[y, 29,33, 31]

Flog) = {hpy [ R € Giijy}
G = GB(FuU Faa U FesV{a 21 ~p1, @222 — P2, g3 23— pa}) 0 Kz1, 20, 23)
g = ged(G)

where G B has to be computed using the lexical ordering determined by 21 < z9 < z3 <
n <y

Example 8 Again we consider the unit sphere given by

2y 2y172 vi—yi—1

T = ——— Ty = , T3 = Tz
Pl g2 R RSP T lvyi gl

Using implicit_surface we obtain

G(1,2) = {2+ y12$2 - 1y - yi’mx},

Fagy = {~z2 + 2y},

Guy) = {1 + 22308 ~ v} - L+ yfal + 2 + 9fad},

Faay = {2y + 2% - 1+ 23},

Gias) = {—2§ — 27z] + of + o7 — vied — yiad — viad},

Frogy o= {viad + 23 — 4§ + yiei},

G = {z% 4 2} + 22 - 1},

g = 33 4 2% + 22 — 1, the implicit representation of the unit sphere. =
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As termination of the algorithm is obvious it remains to prove its correctness.

Lemma 2 Let h € Klzy,23,23], R an ideal in K(zy,z2,23) with dim(R) < 2 and
J = Ideal({h})NR. Let{f1,...,fr} be a basis of R and {g1,...,41} a basis of J. Then

1, g(:d(f}.»“';fk) =1,
2. ged{grs.. . q1) = h.

Proof:

a) If ged(f1,..., fe)} # 1 then, by Gribner’s definition of dimension, the superideal of R
generated by ged(f1,-.., fr) has dimension 2. Another consequence of Grébner’s defini-
tion of dimension is that the dimension of a superideal of R is less equal the dimension
of R. Therefore, we have obtained a contradiction to the fact that the dimension of R is
less than 2.

b) As {g1,...,ar} C Ideal({R),
h divides ged(gs, ..., q1)-
Let us assume that there exists a p € K[z, %2, 23] — K with
ged(g1,-..,q1) = h-p.
As ged(f1,..., fr) = 1 there exists an f € R that is not divisible by p. Hence,
h-feJ and h-pdoes not divide h - f.
This is a contradiction to ged(g1,...,q) =h-p. »

Proof of correctness:

Let (1,7) € {(1,2),(1,3),(2,3)}. If
Ideal({g: - @i — pi, g - %5 — pi}) 0 K21, 22,23, 31] = {0}
then, by Grébner’s definition of dimension,
dim(Ideal({g; - zi — pi, g - 25 ~ p;})) = 4.

We obtain from van der Waerden’s definition of dimension that there exists an associated
prime ideal of Ideal({qg; - z; — pi, ¢;-z; —p;}) that has dimension 4. By Theorem 6, this
prime ideal is generated by a single polynomial. This polynomial is not a constant and
divides ¢; - z; — p; and g; - z; — p;. Hence,

ged(gi - @i — pi, g5 - pj) # 1.
The polynomial ged{g; - z; — pi, g; - z; — p;) is an element of K[y, y2] — K. Therefore,

ged(q; - z; — pi, q; - zj ~ p;) divides p; and ged(gi - =i — pi, ¢; - ©; — p;) divides ¢;.
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This is a contradiction to the fact that p; and ¢; are relatively prime. Hence,
Ideal({g; - zi — pi, ¢; - 2; — p;}) N K21, 22,23, 1] # {0}
and therefore
GB({qgi-zi —pi, g5 2; — p; 1) N K|z, 22,23, 41] € {0} and Fun € {0}. (1.10)
Let f € F{; ;). Then there exists a non-zero p € Kly] with
f-peGB({g i ~pi, g zj ~p;}) N K[21,22,23,1]

and therefore

f-pe P
As Py is prime and Py n K[y] = {0},
f e .
Thas,
g & Py
and therefore
f g Pl;

where
I:= Ideal(F{y 5y U Fiy gy U Fiagy U{a1 - 21 — 1, g2+ %2 — P2, @3- %3 — pa}).
Let P be a prime ideal in K[z1, 22, 23,41, ¥2] with
ICP and P #£P

and let (ay, az,a3,b1,b3) be a generic point of P.
Assumption: dim(P) > 1.
Then, by Theorem 8,

P g P.

As I ¢ P we know from Theorem 5 that there exists an ¢ € {2,...,v} with
P C P

By Theorem 13, there exist non-zero polynomials in P; N K[y;) and P; N Ky, and
therefore
b1 and by are in the algebraic closure of K.

As dim(P) > 1 it follows from van der Waerden’s definition of dimension that there exist
7k € {1,2,3} such that j # k and

{a;,a;} is algebraically independent over K.
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From (1.10) we know that there exists a non-zero polynomial

flz5,26,91) € Fjip)-

As f(z;,7k,71) has no non-trivial factor in K[yq] it follows from Lemma 1 that

f(xj:a:k:bl) i‘é 0.

This is a contradiction to the fact that {a;, ar} is algebraically independent over K.

Thus, Py is the only prime ideal that is a superideal of I and has a dimension greater
than 1. Hence, I can be written in the form

QNE,

where Q is a primary ideal with /@ = P; and R is an ideal in K[z1,22,23,%1,¥2] with
dim(R) < 2. Therefore,

InKlz1,29,23) = (@ N K71, 22,23)) N (RN K[z1,22,73)) (1.11)
and, by Grébuner’s definition of dimension,
dim(R 0 Kz, 29, 23]) < 2. (1.12)
It follows from Property 2 and 3 in Section 3 that
G is a basis of TN K[z1,22,23). (1.13)

Cuase:
the transcendence degree of X (&, &, E) is 2.
@t 92 g3
Obviously, @ N K|zy,z3,23) is a primary ideal and P is the radical of Q N K21, 22, 23,
because P = Py N K[z, 22,z3}. Therefore, in this case the dimension of @ N K[z, 22, 23]

is 2. Thus, by Theorem 6, there exists a p € K[z, z2, 3] with
Ideal{{p}) = Q@ N K[zy,22,23)
Because of this, (1.11), (1.12), and (1.13) we can apply Lemma 2.2 and obtain

ged(G) = p.
Thus,
V{{ged(G)}) = V(Q N K[z, zq, z3]) = V(P).
Case:
the transcendence degree of K(&, P_z, @) is less than 2.
g1 42 43

In this case dim(Q N K[z1, 52, x3]) is less than 2 and therefore we obtain from (1.11) and
(1.12) that
dim(I N K(z1,z2,23)) < 2.

By (1.13) and Lemma 2.1,
ged(G) = 1. o
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1.4.6 Examples and Computing Times

We have implemented the algorithms presented in the previous sections in Maple 4.3.
All the computations have been done on an Apollo 4500.

Example 1: (Cylinder)

Pargmetric Representation:

193 2y2
= —7 Ty = T3 = Y-
1= 7 n y%’ 1+ y%’ "
Implicit Representation:
~14 22 + 2t

Example 2: (Sphere)

Parametric Representation:

oy = 2y, 2y = 24192 25 = Y5 — i — 1
1+ + 9’ L+yf+93 1+yi+y;
Implicit Representation:
x% + x% + .’E% -1
Example 3:
Parameiric Representation:
2.2 2 .2
yi - e 1
T = : y23 L2 = 4 3"2, &3 = .
Y2 W ¥ — Y2
Implicit Representation:
—%31 — T9 + Toli1T3.
Example 4:
Parametric Representation:
2+ 2y7 — 1 Iya +1 1
2 = Y Y1 , oy = il , - '
Y2 —y1— 2 31 Y192

Implicit Representation:

—1+ 22828y + 42323 + 283z — 3z3zizy ++ 102223z —
8z3zdz) + 4292l + Jzozdzy + 1222232 + oy — zizizy —~ 102223+
52329 — 1023231 — Sagaser — 2dad — 23a) + 102323 — 82q023x, —

6zizd — 5zdzd + 5adala; — 22 4 2232y 4 228 4 2523

Example 5:
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Pargmetric Representation:

1 3 — W1 3 — Y2 Y3 — Va1 + 95
gp=—, =Y . mg=RTH o BT RATH
Us Y3 Y3 Y3

Implicit Representation:

14 6242229 — 2032379 + 1525 — 6243322 - 639 + 227 — 2242% + 1528~
6922 4 62227 — 2§ + 2} Gmé% + zzdey — 232 — 2x§3mg’+
22zt + 20223ny + 28 — 2023 — 2242 + 2323 -+ 27025,

Example 6:
Parametric Representation:
U2 1

1 = Y1Y2, Tg = -, I3 = )
h Y1—12

$43'£/§—y1-

Implicit Representation:

1 — 222123 + T34 + T1235 ~ T2T123,
T1T3 — w%m — ToT1%3 + Toly,
2123 ~ 2292123 — z9 + 2izy2l.

Example 7;

Parameiric Representation:

N _ 1 _¥s— W
Ty = ==y Ty = Y1¥Y2, T3 = ’ Tgy=
Ys - Y2 Ys

Implicit Representation:

x5+ 2322 — 22kw0a5 + 7iad,
~1+4+ z + 4.

Computing times

We have compared the computing times of the algorithm proj_implicitization based on
homogenization (Subsection 4.3), the algorithm based on the Rabinowitsch trick (Subsec-
tion 4.4) and the algorithm implicit_surface that computes the implicit representation
of a surface in 3D-space (Subsection 4.5). As the varieties in Example 5, 6 and 7 are
not in 3D-space implicit_surface cannot be used. The computing times are given in
milliseconds.

Ezample projimplicitization Rabinowitsch implicit_surface

1 18817 5184 7217
2 30683 273899 22233
3 > 10000000 1063300 26633
4 > 100060000 > 10000000 276716
5 522617 59617 e
6 > 10000000 16434 - -
7 > 10000000 25450 -— ——
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Because of Theorem 15 the implicit form of the variety in Example I and the variety in
Example 4 can be found by computing

GB({Q’l Ty —P1y @2 %2 — P2y, g3 T3 —-Ps}) n K[$1,$2,~’63]-

The computation of the implicit representation in Exa.mple 1 (Example 4) took 3217
(565850} milliseconds.

1.5 Yirational Projections of Irreducible Vaxji'éties

1.5.1 The “Problem

Throughout the sectlon let us assume that K is a field of characferistic 0.

Let P be a prime 1dea1 in X{z1,...,2,] with generic point (‘_al, ...,an) and R a prime
ideal in K[21,-..,%m]" with generic point (b1,...,bm). The varieties V(P) and V(R) are
said to be bimtz’onally equivalent if :

(a1, 0n) = K(b1ye s, bm).

In this case there exist 111,...,}"),13 € K(x1,y...,2n) afziél Wiyer oy Wn € K{Z1,...,2m) such
that for every i € {1,...,m} a,nd""every je{l,...;n}

b; = vi(ay,.. ,an) and aj = w;(b1y ..., bm).

The functions (vy,...,v,) and (wq,.. wm) mduce a one-to-one correspondence between
“almost all” points of these varieties. If S

n > m and v; = ;-{f&; every 1 € {1,...,m}

then we say that V(P) is bimtionalt’y brojectc;'ble on V(R).

In this section we will show how the following problem can be solved by using Grébner
bases: :

Birational Projection Prob]em

Given: {f1,...,/r} C K[21,{..,2,) such that the 1dea1 P generated by {fi,..., fr} is
prime. Let d be the dimension of P.

Find: g € K[z1,...,2441) 'such that after a suitable hnear transformation of coordinates

V{{fi,.... fr]) is blra,tmna.lly projectable on V({g}),
(wiyen. wn) € K(wl, L %d+1)", the inverse map.

1.5.2 Computatlon of a Maximal Set of Independent Varlables Modulo
an Ideal’ ,

Based on Grébuer’s definition of dimension and on Property 2 and 3“76.1." Grébner bases
stated in Section 3 an algorithm dim can be constructed {see [?], [?], [?}) that satisfies
the following specification.

dimf (in: {f1,...,f-}; out: {iy,...,4g})



