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Abstract

In this paper Grébner bases are used for cornputing the implicit representatione
of varieties given by ralicnal parametrizations. Two algorithmns for the impliciti-
zation of varieties of arbitrary dimension are presented and their termination and
correctness are proved. Furthermore, algorithms that are particularly suited for the
implicitization of curves and surfaces in 3D-gpace are given. Each of the algerithms
presented in this paper has been implemented in the computer algebra system Maple.
Several examples are computed and the computing times of the different algorithms
are given.

1 Introduction

The automatic conversion of parametrically defined varieties into their implicit form is
of fundamental importance in geometric modeling. The reason for this is that implicit
and parametric representatlions are appropriate for different classes of problems. For
instance, it is vniversally recognized that the parametric representation is best suited for
generating points along a variety, whereas the implicit representation is most convenient
for determining whether a given point lies on a specific variety. It is also well-known
that the problem of intersecting two varieties is greatly simplified if one variety can be
expressed implicitly and the other parametrically.

For some time the implicitization problem has been deemed unsolvable in the CAD liter-
ature ({[FP81] or [Tim77}]). In 1984 the problem has been solved for rational parametric
curves in 2D and rational parametric surfaces in 3D by using resultants (see [SAG84]).
Resolvents have been applied to find the implicit representation of rational parametric
cubic curves in 3D ([Gol85}). Arnon and Sederberg used Grébner bases for the implic-
itization of polynomial parametric varieties of dimension n — 1 in n-dimensional space
([AS84]). In 1987 Buchberger generalized their method to the case of polynomial para-
metric varieties of arbitrary dimension (|Buc87]).

In this paper we deal with the most general case and use Grobner bases for the implici-
tization of varieties of arbitrary dimension giver by rational parametrizations.

One way to solve this problem is the following: Instead of working with varieties in the
affine space given by rational parametrizations we consider varieties in the projective
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Bpace given by parametrizations consisting of homogenous polynomials and proceed as
described in [Buc87}. Unfortunately the introduction of the two homogenizing variables
makes the computation of the Grébner bases much more costly (see computing times in -
section 6).

Given the rational parametrization

M Pn
Ty 1= Tn 1= —,

q1 In
where p1,...,9n,q1,.. ., 0, are polynomials in ¥;,..., ¥m, otr second general impliciti-
zation algorithm computes the squarefree form g of the polynomial ¢, <+ ¢,. Then the
implicit representation of the given variety can be found by computing

GB({pl'ml"“91)"'51711"’311‘“@7:,(}'2'— 1})ﬂf{[$1,...,ﬂ!n],

where z is a new variable and G B is the Grébner basis with respect to the lexical ordering
with2; <. <z, <y <= Y < 2

Implicitization of varieties in 3D-space is of particular importance for geometric modeling.
Recently we have developed algorithms based on Grébner bases computations that solve
this special problem without introducing additional variables ((Kal90]}. In this paper we
present these algorithms without correctness proofs.

We have implemented each of the algorithms presented in this paper in Maple, It turned
out that in almost every example the implicitization algorithm that works in the projec-
tive space was the slowest algorithm, Furthermore, in 3D-space the general implicitiza-
tion algorithms were much slower than the algorithms designed for this special problem.
In section 2 and 3 we state the problem we are concerned with and a few properties of
Grobner bases that we need for proving the correctness of our implicitization algorithms.
In section 4 we present the general implicitization algorithms and prove their correctness.
In section & we deal with implicitization of curves and surfaces in 3D-space. In section
6 some examples are computed and the computing times of the different algorithms are
compared. '

2 The Problem

Throughout the paper let & be a field and & the algebraic closure of X
Let J be an ideal and gy, ..., 4, polynomials in Klwy,...,2a]. V(J) denotes the variety
of J, i.e. the set

{ae KE™| f(a) = 0 for every f ¢ J}.

Instead of V(Ideal({gy,...,9,})) we will ofter write V({g,....q: ).
Let L be a field with X C L. Then (a1,...,a,) € LM is & generic point of J if for every

fe Koy, .. .z,
f & Jif and only if flag,. . an) = 0.

It is well-know that an ideal is prime if and only if it has a generic point with coordinates
in & universal domain (see for instance [vdW67)).

In this paper we want to solve the following problem:



Implicitization Problem:
given: rational parametrization of a variety

where PlyooyPn € K[yll"')ym]) d1;-+19n € K{yln-“,ym] - {0} and

pi and ¢; are relatively prime (¢ =1,...,2).
find: jmplicit representation of this variety, i.e. polynomials g1,...,9, in K[21,...,24]
such that
V{{g1,. . 9:}) = V(P),
where P is the prime ideal in Kz, ..., z,] with

P
{'q-:s-")g_:)g K(yl}"':ym)

as generic point.

Example 1 If the rational parametrization

27, ey v —yi -1

& = —S— Zy = Py = Tt
SRR Ty T lvyi4 g

ts given then the implicit representation
el +al-1

of the unit sphere is a solution of the above problem.

3 The Method

Each of the implicitization algorithms presented in the following sections is based on
the computation of Grébner bases. In 1965 this method has been introduced by B.
Buchberger in his Ph.D. thesis (see [Buc65] or [Buc70}). The method of Grobner bases,
as its central objective, solves the simplification problem for polynomial ideals and, on
this basis, gives easy sclutions to a large number of other algorithmic problems. During
the last years Grobner bases have become one of the most popular methods in computer
algebra.

In this paper we will not give a definition of Grébrer bases. We will only state some
properties which we need for proving the correctness of cur implicitization algorithms.
For a complete reference of the Grébner bases method see [Buc85] or [Buc87).

Let 7 be a finite subset of K(zy,...,z,.]). Then GB(F), the Grobner basis of F with
respect to the lexical ordering of power products with z; < ... < &, has the following
properties:

1. GB(F) is a finite subset of K[xy,..., 2],



2. Tdeal(F) = Ideal(GB(F)}), (property of ideal equality)
3. forevery i € {1, ...,n}:
Ideal(GB(F);N K{zy, ... 2} = Ideal(GB(F)n Klzy,...,24),

where the ideal on the right hand side is formed in K[2q,..., ;).

(elimination property)

4 Implicitization of Rational Parametric Varieties

Throughout the paper let py,...,pn € K{n1, ..., ¥m]and g1, .-y qn € K31, -, ¥ — {0}
such that
pi and g; are relatively prime (i = 1,...,n)

and let P be the prime ideal in Kzs,...,x,} which has

i Pn
=y )€ Ky, o, Ym
(QE, ’Qn) (yl s ¥ )

ag generic point.

4.1 Implicitization of Polynomial Parametric Varieties
If the given rational parametrization

Py . Pn

Ty om = ... Ty =

3l n

is a polynomial parametrization, i.e
1= =gn =1,
then the implicit representation of this variety can be found very easily by computing
{91, 09} = GB{zy -1, zn — pa ) N K24,y 20l

where G B has to be computed using the lexical ordering determined by z; < ... < oy, <
Y1 < ... =< Y (see [Buc87)).

Example 2 If o variety is given by the polynomial representation
spEyty: BEn -1 ay=py wa=9- 1
then this implicit representation

{ 43 — degzy + B2y 4+ 2 - 23 + 225 — 22, + 23,
44ty + 20429 + €4 + @F + 2zy23 ~ 2oz — 2,
zq+ 1~ E? + 33 = 2z42; ~ 2y 4 Toly,
1- 22} 4+ bes — 21 ~ 22w + 22y — 22223 4 d2g0s - 6oy + 22 + 42k + 2z3 }

can be found by computing the Grébner basis

GB({e1 ~ (g1 +v2), 22— (1 +293 - 1), 23— 1192, o4 — (v - 1)})NK|[zy, 29,33, 4).



If not all ¢'s are 1 then it seems reasonable to assume that the implicitization problem
can be solved by computing

{glr'wgf} R GB({QE "B~ Piye- o 8n In “pn})nK[mll'-'nwn]'
Unfortunately, this is not true as the following example shows.
Example 3 We consider again the parametrization of the unit sphere

oy = 202 oy = — 2N¥2 = Y]
149§+ o2 1+ yf+ v} 149§ + yi

By computing
GBH{(I+uf +¥3)o1 - 202, (14 38 + ¥D)ze - 2miya, (1492 + v8)es ~ (32 ~ 9% — 1)})
NKlzy, z2,13)

we do not oblain an implicit representation of the unit sphere but the emply sef. e

4.2 Homogenization

One possibility to overcome this difficulty is by working in the projective space with
projective parametrizations:

Example 4 Instead of the parametrization

-~ 2y, __ 2nye _ -1
Ty = oy 2 T2 = 3 F] T3 = 3 2
T4y + s T+yi+y 1+ +u

of the unit sphere in the affine space we consider the projective parametrization
20 =Yg + Y5 + V3 z1 = %200 T2 = 2y1y2 23 =y - ¥ — 9§

of the projective unit sphere (z¢ and yo are homogenizing variables). Now we can proceed
as in the case of polynomial parametrizations and obtain

{ol +2f 42} -of) =

GB({zo - (4 +E’12 + 3/22), T1 - 2Y2%0, ®2 — 2V1%2, T3 - (yé’ - 3112 - yoz)})ﬂff[ﬁ?o,fcl,$2,$3]:
where GB has to be computed using the lezical ordering determined by 2o < z; < T3 <

3 < Yo <y < Y2
After dehomogenizing, i.e. substituting I for zq, we obtain the desired polynomial

:c?-f—z%ﬁ-m%ml. U

The general algorithm has the following form



projective.implicitization {in: py,.. PR Qls - Gns out: {1, .., 9. 3)
input: Pty oy Pn € K{'yla-'wym]: Q150+ 5¢n € Kiyla"'}ym}_ {0} and

pi and g; are relatively prime (i =1,...,n}.

output: {g1,...,9-}, a finite subset of K[z, .. oy Zn) such that

V({g‘ly Ve -:gr}) = V(P);

where P is the prime ideal in K[z;,...,2,) with

P n
(L e Ky m)
{51 In

at generic point,

poi=1
qo =1
g = least common rultiple of q1,...,¢n
8= maz(tdeg(p: - ¢/q1),. .., tdeg(py - q/gn), tdeg(g)), where tdeg denotes
the total degree of a polynomial
for i from 0 to n do
fi=pioqfa
hi =y fi(wi /90, -, ¥m/%0)
G = GB({zo~ hoy..., @0 — ha}) N Kz, ..., 0]
{gh-' ')9r} = {g(llwll"‘iwﬂ) ! g(mO)--‘;mn) € G}

where G H has to be computed using the lexical ordering determined by 2o < ... < @, <
Yo <« ov < Y

Since the termination of projective_implicitization is obvious we only have to show
its correctness.

Proof of correctness:
Let p1,...ipnyg1, ..., 00 satisfy the input specification, let P be the prime ideal in
Klzs,. .., o,) with

P
(QJ T qn)

as generic point and I the prime ideal in K[z, ...,2,) with
(hoy- s )

as generic point. Let f € Klay,...,2,) and f' € Kzo,®1,...,74) such that f' is ho-
mogenous and f'(1,z1,...,2,) = f. Then

fep i fEL By oo g B Iy 2
Q1 In 1 In



As ¢ # 0, f' is homogenous, pp = g = 1 and A, ¥, . ¥m) = Py - g/ g for every
ie {0,...,n} we know that
! 1,1ﬂ Pn =0
£ o ’qn}
if
Be 9 P1-g
f( qo ? gl prort qn
i
f’(ht)(la!h,---,ym),---,hn(l,yn---,ym))30-

From f'(ho(1, 91, .-, ¥m)y- s An{l, 91, . <1 ¥m)} = 01t follows that yo—1 divides the poly-
momiel fl(hﬂ(yO,y11 v '3ym)! v -,hn(‘yo,yi, i :ym)) in K[yOJyli v -;'ym]- As f'(hO: ‘o -shn)
is homogenous, f'(hg,...,hs) = 0. Hence,

f'(ho(l,yl,-~-,:Um),---,hn{l,yz,---,ym)) = 0

iff
Fho(¥or 91y - s ¥im)s oy hn(¥0y 12, . © ¥m)) =0
if
flel
Altogether,
feP i fel (1)
Let e € I and e,...,eq be homogenous polynomials such that for every i € {0,...,d}

tdegle;} =tand e =eg +...¢q.
Aseo(hoy. .- k), .. eq(Ro,. .., hn) are homogenous polynomials in Klyo, ... ym) of dif-
ferent total degrees it follows from e(hq, .. .y fiq) = 0 that
eilho, ..., hn) =0 (i=0,...,n)
From this fact and from (1) it follows that for every (a;,...,a,) € K™
(01,- - aa) €V(P) il (1,01,...,a0) € V(I).
From the result in section 4.1 we obtain that
(La1,...,an) € V(I) iff (I, ,ea) € V(G) iff (ay,...,6n) € V({g1,.-,9:1).

Altogether,
V(P)=V({g1,....9:}). o

The complexity of Gribner bases computations heavily depends on the number of vari.
ables in the input polynomials and on the degrees of these polynomials. The homoge-
nization process tends to increase the degrees of the input polynomials. Furthermore, the
need for two additional homogenizing variables is another disadvantage of this method
(see computing times in section 6).

The implicitization algorithm in the next subsection gets along with the introduction of
just one additional variable, This variable is used in a similar way as in the proof of
Hilbert’s Nullstellensatz given by A. Rabinowitsch {see for instance [vdW87]).
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4.3 The Rabinowitsch Trick

Example 5 The implicit representation of the unit sphere given by the rational para-
metrization

22 _ 2uw Iy k.

Ty = Ty = 3=
1+ 9f + 94 1+ 97 + 93 L+ 9! + v

can be obtained by computing

{zf 4+ 2d +af - 1} = GBU(L+¥] +98)2 = 1, (1493 + )21 - 2,
(1 + v+ 98)z2 - 2w, (1492 + ¥z ~ (48 - ¢ - 1)}) 0 Koy, 29, 24],
where 2 is @ new variable and GB has to be computed uging the lezical ordering deter-
mined by @1 < 23 < T3 <y <y < 2.

This strategy always works:

Theorem 1 Let g be the squarefree form of the polynomial g; -+ g, and let

{9119} = GB{g 2~ Ligs 21~ p1,. Gn - Bn = pa}) N K21, 2],
where z is a new variable and GB has to be computed using the lezical ordering deter-
mined by 21 < ... <8y <Y1 < ... < Ym < 2. Then

{n,....0+} generates P.

Proofi Let [ be theidealin Kfzy,..., 20,1, ..., Ym, z] that is generated by {g- 2 - 1,4, -
1~ P1y.+0,qn " Ty — Pn}. Obviously,

B p 1
(qis“'sqn)yl:"'lym;q)

is a zero of . From the fact that
b1 FPn
(91 T g )
is a generic point of P it follows that every element of I N K(z,...,2z,} is an element of

P. Hence,
{91,.--,§r}§P. (2)

Let f be an element of P. It is well-known that there exists & non-negative integer 8,
and a polynomial Ay in Kizi, ., Zn, 91, .., ¥m] such that

Q;i 'f_(ql'zi “‘P])‘hl € K{“"-:Zs"-:mﬂ;yl;'-'sym]'

Thus, there exist non-negative integers s;,..., s, and polynomials ky,..., &, with
N n n
Fe=(]g) £~ YAgimi—p) hi € Ky, ooy ). (3)
1=1 =1



From the fact that

P1

(a)"'s%’yla'“;ym)
is & common zero of the polynomials f, qy-2;-py, . . s GnZn-Pn € K(C1y 0y Zny Y1y ooy Ym)
it follows that ” P ,

(av-wi:yh"'»ym)

is a zero of f As f(:‘ K[?]h---aym}r
f is the polynomial 0.
Together with (3},

(qu‘)'f = i:(%‘ i = i) by

Therefore, the set

n
M:={ge¢Ky,...,ym} ~ {0} |g - f € I and sguarefree(g) divides H g}
i=1
is not empty. Let § be an element of M with minimal tofal degree.
Assumption: The total degree of § is greater than 0.
Obviously,

IS TN S
sedign T Gy e W= s !

Asg-felandg - z—-1¢€l,

g
T € I'
ged(q, §) /

Obviously,

- n
g ..
square free -} divides 3
quaref (gcd(q,y)) H‘h
Therefore, i
g
—e— € M.
ged(g, 3)

As ged(q,§) is not 1,

g
ged(q,3)

This is & contradiction to the definition of .

the total degree of is smaller than the total degree of 7.

Hence, there exists a polynomial in M that is a constant. By definition of M,
fel

and therefore
PCINnK(zy,... )

Thus, by the elimination property of Grébner bases,
P ¢ Ideal({g1,...,9:}).

Together with (2),
{91y ., 9} generates P. o

(4)



5 Implicitization of Rational Parametric Curves and Sur-
faces in 3D-Space

Implicitization of varieties in 3D-space, i.e, varieties that are subsets of & 3, is of particu-

lar importance for geometric modeling. Therefore we have tried to construct algorithma

that solve this special problem considerably faster than the general implicitization algo-

rithms described in the previous sections.
Throughout this section let us assume that a rational parametrization

2 3
3:1:2‘1- mgm-p— a’,‘:;:g‘-

4 gz g2

is given, where p1,p2,p3 € Kltn,92) and 41,92,93 € Kly1, %) ~ {0} and p; and ¢ are
relatively prime (¢ = 1,2,3).

Definition: Let (b5,b;) € K% We denote the number of elements in the set
{i € {LZ:B} l pi(blx 62) = Q:‘(bx,bz) = 0}

by zero(by, b,).

Example 8 We consider again the parametrization of the unit sphere

R oy = 212 O ot
1+ yf+ 93 1+ 97 + 2 14 9f +43

Then for (0,0}, (7,0) € @, where  denotes the algebraic closure of @

zero(0,0) =0 and zero(,0)=3. o

Theorem 2 Let
{95, 50} = GB({qr 21 - p1, @2 72 — 1, g3-23 - Pa}) N K|z, 3,23},

where GB has to be computed using the lezical ordering determined by 21 < 29 < 23 <
Y1 < y3. Then the following holds:

If for all (by,b2) € K*:
zero(by, bz) < 2

then

V{{91,-,0:}) = V(P).

Proof: see Theorem 4 in [Kal90].
Thus, if for every (4, 7) € {{1,2),(1,3),(2,3)}

Pi, ¢, P4, g5 have no common zeros

10



then, by the above theorem, we can obtain the implicit form of the variety given by

1 2 2
mlzg-— 3223... m3:p—

q g2 ' ga

by computing
{91, .90} = GB({gr - 21 — Py, q2- 22 ~ P2, g3+ 23 ~ Pa}) N K1, 24, 23]
In particular, this algorithm can be applied if

P1yP2: P, 01, 42,93 € K[?h] Or Py P2, P3,41,42,93 € K[yg].

(Note that p; and g; are relatively prime for 4 € {1,2,3}.)
Unfortunately this easy algorithm does not work for arbitrary rational parametrizations

(see Example 3). In fact, it is stated in the following theorem that

GB({qr @1~ p1, 2 22— pa, gz 23— pa}) N K1, 29, 23] = 0

if there exists a (b;,85) € K2 with zero(by,b;) = 3.

Theorem 3 Let I be the ideal in K{zy,23,23,91, 7] generated by g1 - 21 — p1, g3 - 23 —

P2, 9323 —~ pa. Then
I'N Kz, e, 23) = {0}

iff
there exists a (by,by) € K? with zero(by, by) = 3.
Proof: see Theorem 3 in [Kal80].

"The implicit representation of surfaces given by arbitrary rational parametrizations can
be found by using the following algorithm. This algorithm decides whether the variety
given by the parametric representation

T3
1 92 a3
is a surface, i.e. whether the transcendence degree of
P1 P2 s
K('—! T '_)
9 42 g3
(over K) is 2. In this case it computes an implicit representation of the surface.

Definition: Let A, g be polynomials in K(zy, 29,73, 1] such that g has no non-trivial
factor in K{y1] and there exists a polyromial p in K|y with h = g p. Then

h/m =g

11



imp]iCit“surface {ll’i P1yP2, P3, @1, 42, g3 oud: g)
inputs p1,p2,p3 € K(y1,0), 91,92,¢3 € K[y, v2] — {0} such that

i and g; are relatively prime (4= 1,2,3),

output: g € Klzy, 2,, 23] such that if the trenscendence degree of
K(EL P2 B3y
@1 9 g3
is 2 then
9 ¢ K and V{{g}) = V(P),

where P is the prime ideal in Klz1, 22, 23] with the generic point

P P2 P3
g1 g2’ g’
and
g=1
otherwise.

for every (4,7) € {(1,2),(1,3),(2,3)} do

Gig) = GB({fi, f;}) 0 Kley, 22,23, 11}

F('-'..f) = {h/m I h G G(,“j)}
G = GB{Fy U Fasy U sy U {f, fa, fs}) 0 Kz, 20, 23)
9 = ged(G)

where G B has to be computed using the lexical ordering determined by 2y < 2y < 23 <
in < ya.

Example 7 Again we consider the unit sphere given by

2y2 . 2yiy -y

Ty = ———p—rg Ty = I3 = .
1+ yf + o2 14+ yi 4y Yyl v

Using implicit.surface we oblain

Gy 1= {22 + yizs — zim - yio ),

Fapzy = {-za 4 a1;},

Gz = {ef 4 2ady] - vf — L4 yfa? + 23 + piel),

Fagy o= {zfy] + 23 - 1423},

Grag) = {=23 - 2ufad + 4§ + vf - piald ~ ylal - yla?},

Fagy = {yfed + o — o] 4 yiad},

G = {e} + 22+ 2% -1},

g:= 2} 4+ 2d + 23 — 1, the implicit representation of the unil sphere. o

The termination of the algorithm is obvious, the proof of correctness can be found in
[Kal90]. '

12



6 Examples and Computing Times

We have implemented the algorithms presented in the previous sections in Maple 4.3.
All the computations have been done on an Apollo 4500,

Example 1: (Zylinder)

Parametric Representation:

1- 9§ 2y, _
ml“l+y% m2“1+y§ T3 =W
Implicit Representation:
~14 23+ 2}
Example 2: {Sphere)
Parametric Representation.
oy  2pw _w-u-1
2 T P I 2= T2 Ty=E IR LE
Ty Y2 +y Y ¥t
Implicit Representation:
asf + :s% -+ mg -1
Example 3:
Parametric Representation:
2 _ .2 2.2
- - 1
m:yi Y2 £q = Vi~V T3 =
Y2 N Vi — ¥
Implicit Representation:
-1 — T2 + T221T3
Example 4:
Parameiric Representation.
w2yt -1 _Bntl B
Zy = T Ty = 3= —
Yo~ -2 (7] Y192

Implicit Representation:

—1 + 228zdzy + dadzl + 28udey — 3zfedey + 10232fs, -
8alzicy + 4ogrd + Swondey + 1203ade; + 2y - 23ede, — 10z32i+
Bzazy ~ 10zdzizy — Swrozamy -zl — oz + 102323 — 8zzziay~

6zicd - bzizd + Sejelier — 23 + 2ziz; + 20% + 23]

Example b:

13



FParametric Representation:

1 - — 3 - 3
2y = — g, = BT U gy = BTV e = BB + ¥
¥3 ¥3 LE] Y3

Implicit Representation:

1+ 6zqzizs - 222530 + 1523 - 6242222 — 6y + 2et - 2z42% 4 1503
6oz? + 6232 - o} + 2 ~ 625 + aladey - ziz? - 2zizi4

zie] + 2efedzs + o8 — 2003 - 2z42] + 225 + 20923

Example 8:

Parametric Representation:

¥2 1
= e ;,"3:

2
Ty =Y -9
W Vi— 2 ?

T1 = e T2

Implicit Representation:

1—zeziz3 + zazy + ml:l:§ - mgmlxg,
T23 — $§1‘1 ~ TaT1%3 + 2204,

212§ - 2232123 — 25 + ale 2}

Example 7:
Pargmetric Representation:
1 1 Ya =¥ 2
= o Tz = vz T3 = Tq = e T5 =Y
Y3 i -~ ¥ vs '
Implicit Representation:

1

—@s + aizd - 2wz + olol,

"l+$1+(€4

Computing times
We have compared the computing times of the algorithm proj_-implicitization based on
homogenization. {subsection 4.2), the algorithm based on the Rabinowitsch trick (subsec-
tion 4.3) and the algorithm implicit_surface that computes the implicit representation
of a surface in 3D-space (section 5). As the varieties in Example 5, 6 and 7 are not in
3D-space implicit_surface cannot be used. The computing times are given in millisec-
onds.

Example proj_implicitization Rabinowitsch implicit _surface

1 18817 5184 7217
2 30683 273899 22233
3 > 10006066 1063300 26633
4 > 10000000 > 100060000 276716
5 522617 59617 — =
B > 10000600 16434 - = —-
7 > 10000000 25450 - = -

14



Because of Theorem 2 the implicit form of the variety in Example 1 and the variety in
Example 4 can be found by computing

GB{{g1 z1-p1, g2+ 22 ~ P2, g3+ 23 = pa}) N K21, 23, 2a).

‘The computation of the implicit representation in Example 1 {Example 4} took 3217
(565850) milliseconds.
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