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Quelques applications des Bézoutiens en Géométrie
Algébrique Effective

Résumé : Dans ce rapport, nous étudions quelques problémes de géométrie algébrique
effective, liés & la théorie des résidus algébriques. Nous montrons comment une approche
matricielle basée sur les Bézoutiens, nous permet de proposer de nouveaux algorithmes et de
nouvelles bornes sur les polynémes intervenants dans ces problémes. Plus précisément, nous
nous penchons sur le calcul de relations de dépendance algébrique entre n + 1 polyndémes
en n variables et montrons comment en déduire le calcul du résidu de n polynémes en n
variables. Nous considérons ensuite des applications de cette méthode au test de propreté
d’une application polynomiale, au calcul de son exposant de Lojasiewicz et & l'inversion
explicite d’application polynomiale. Nous montrons également comment les matrices de
Bézoutiens nous permettent de calculer un multiple non-trivial du résultant sur une variété
algébrique irréductible quelconque (quand celui-ci existe), et de décomposer toute variété
algébrique en composantes irréductibles.

Mots-clés : matrice Bézoutienne, résidu algébrique, exposant de Lojasiewicz, équations
polynomiales, résultant.
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1 Introduction

In this report, we study some classical problems occurring in effective algebraic geometry, like
finding algebraic relations between n + 1 polynomials in n variables, computing the residue
of a zero-dimensional affine complete intersection, testing the properness of a polynomial
map, and inverting a polynomial map. These questions can be handled, at least in theory, by
elimination methods through Grébner computations, but sometimes with an unpredictable
explosion in the complexity of the computation. Our approach emphasizes on the structure of
these computations. It is based on matrix formulations and, more specifically on Bezoutian
matrices. This tool has many applications in several areas such as commutative algebra,
complex analysis, or complexity theory (see [38], [27], [5], [7], [26], [20]). Here, we exploit
a basic but fundamental property, which yields the multiplication map by the polynomial
fo, modulo the n elements fi,..., f,, from the Bezoutian matrix of fy,..., f,. We show
how this is sufficient to handle the preceding list of problems and we derive new algorithms
for solving them effectively. In particular, we compute the residue 7, which describes
completely the structure of the quotient ring A = R/(f1,..., fn) (see [38], [27], [4], [16]).
Thus, in the case of zero-dimensional affine complete intersections, this approach yields a
new algorithm for constructing the quotient A, and consequently for solving polynomial
systems. Examples (computed in maple) illustrate the different techniques. An advantage
of our approach is to provide explicit formulations for the objects that we are computing.
Therefore, their computational structure can be handled more carefully in order to devise
more efficient algorithms, and enable us, for instance, to deduce new bounds on the degree
and height of the polynomials involved in these computations.
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4 Mohamed Elkadi , Bernard Mourrain

Let us now describe the connections between the different sections of this paper. After
stating the first basic properties of Bezoutians in section 2, we use them in section 3 to

compute algebraic relations between n+1 polynomials fq, ..., f, in n variables. The relations
obtained for fy = z; are used in section 4 through the generalized transformation law [7], to
compute the residue 7 of the polynomial map f = (fi,..., fn). In section 5, we investigate

the problem of testing the properness of a polynomial map f and give an algorithm for
computing its Lojasiewicz exponent, by analyzing the algebraic relations between z; and
fiyooosfn (for i = 1,...,n). We propose an algorithm for testing the invertibility of a
polynomial map and for computing its inverse, also based on Bezoutian computations. In
the next section, we relate Bezoutians and resultants over an irreducible variety. Finally, we
show how a maximal minor of the Bezoutian matrix gives us a rational representation of the
isolated points of a variety and use it to obtain a geometric decomposition of this variety.
This new algorithm is illustrated by examples.

Here are some general notations that will be used hereafter. Let K be a field, not
necessarily of characteristic 0. In some sections we will need to work over C. This will be
made more precise. Let R = K[z] = K[z, ..., z,] be the ring of polynomials in the variables
Z1,...,%n, with coefficients in K, R its dual (the set of linear maps from R to K).

The height of a = § € Q (p and q are relatively prime) is h(a) = max(|p|,|q|). The
height of a polynomial P =3 aq2® € Q[z] is h(P) = max, h(aq).

Let f1,...,fn be polynomials in R. The ideal generated by these n elements will be
denoted by I, the quotient R/I by A and the class in A of an element p € R by p. We
assume in the following that A is a finite vector space, of dimension D, which means that
fis..., fn is a complete intersection. We will denote by A the dual space of A, which we
will identify with the vector space I+ = {A € R: A(g) = 0,V¥g € I}. This dual space A has
an R-module structure: for any a,b € R and any A € A, we have (a-A)(D) = A(abd).

2 Basic properties of Bezoutians

In this section, we recall the construction of Bezoutian matrices, that we will use hereafter.
We will also give some bounds on the size of these matrices and on the height of their
coefficients.

Definition 2.1 The Bezoutian Oy, .. 5. of fo,..., fn in R (or simply Oy, if f1,..., fn are
fized) is the polynomial in Kz1,..., 20,1, ..., &) = Kz, ¢] defined by

fo(z)  01(fo)(z,8) -+ On(fo)(2,8)
Ofy o fu(Z1seyzn, &1, En)= : : : : ,
where
fj(€17~~~7€i—17zi7~'~7zn)_fj(glw~~7€i7zi+17~~~7zn)
zi =& '

0:(f)(2,€) :=

INRIA



Some applications of Bezoutians in Effective Algebraic Geometry 5

Let
®f0Z§ Z)\ﬂz 6’8 AQ/GEK
a,B

be the decomposition of the Bezoutian in K[z,£]. We order the monomials that appear in
Oy,. The matriz By, ... 1, = (Aa,8)a,p (or simply By, ) is the Bezoutian matriz of fo,..., fn.

Remark 2.2 —E. Bézout proposed a construction of the resultant of two polynomials fy, f1
in one variable based on Oy, r, (see [6]). This explains the terminology used here.

Remark 2.3 — The determinant in definition 2.1 is invariant if we substitute, in the first
column ¢ for z.

Definition 2.4 Let v = (v;)ien, W = (w;)jen be two bases of the K-vector space R, and let

9f026 Zl/w’l)z )7 I/ijGK,

be the decomposition of the Bezoutian in these bases. We denote by [© f]v,.w = (Vij)ien jen
the coefficient matriz of ©y, in the bases v and w.

Remark 2.5 —The matrix [O,]v,w is exactly the matrix of the K-linear map

fo R - R
A = OF( Zl/” (w;)vi(2)

in the dual basis (w;);en of R and the basis (v;)ien of R.
Similarly, we deﬁnejhe map ©F : A — OF (A) =3, vy Av;)w;(z). The matrix of
this map in the bases (9;),en and (w;)ien is the transposed of [© f,]v,w-

The matrix [©f]v,w has only a finite number of non-vanishing entries. Hereafter, [O ]y w
will denote this finite matrix.

The following lemma shows that the Bezoutian matrices By, for all fy € R, admit a
diagonal decomposition in a common basis. It will be used extensively in the following
sections.

Let I = (f1,..., f.) and Iy be the intersection of primary components of I corresponding
to isolated points of the variety V(I) defined by I. We have I = Iy N J and Ay = R/I of
finite dimension D.

Lemma 2.6 Let Ay = R/Iy be the quotient algebra associated with the isolated points of
V(fi,.--,fn), and let D be its dimension over K. There exists two bases v = (v;)ien and

RR n° 3572



6 Mohamed Elkadi , Bernard Mourrain

w = (w;)ien of R such that (V1,...,Tp), (W1,...,Wp) are bases of Ay, vi,w; € Iy fori > D,
and for any fo in R the matriz [O]v.w s of the form

V1T ... UD UD+1 - -
w1
Mfo 0
wp (1)
Wp+1
0 Ly,
where My, is the matriz of multiplication by f, in the basis (V1,...,0p) of Ao.

Proof. Let us assume that K is algebraically closed and let Vo(I) = {(i,...,Ca} be the set
of isolated roots of f; =--- = f, = 0. According to the structure theorem of artinian rings
(see eg. [41][chap. 4], [32]), we have Ay = A¢, @ -+~ & A¢, where A¢; = R, /I R, mg,
is the maximal ideal defining (; and Rm(; is the localization at m¢;.

We identify the dual .20 of Ap with IOL.

Let us consider the two vector subspaces E = 9§(ﬁ0) and F = 9}‘(.20) of R. From
dimK(.Zl\o) = D, we deduce that E and F are of dimension < D. According to [27], [38],
as A¢, are local complete intersections defined by fi,..., fa, @T and @f are isomorphisms
between ,Zl\gi and A¢,, and thus between Ay = @leﬁgi and Ay = &L | Ae,.

Therefore, the image of ﬁo by ©% and Of are at least of dimension D. Consequently,
dim E = dim F = D and FE is isomorphic as a vector space to Ajp, so that we have R = E@ I
and by symmetry R = F @ I.

From this, we deduce that ©, isin EQF @I ®1, foritisin EQFGSERIy®Ih@FHIy®1,
and ©5(I) = E, 0(I;) = F.

Let us fix now fy in R. It is clear from the definition 2.1 and the remark 2.3 that
O4,(2,8)—fo(£)O1(%,&) is in the ideal of K[z, £] generated by f1(§), ..., fn(§). Consequently,

0%, (Ao) = (fo(£)01)" (Ao) = % (fo - Ao) C ©5(Ag) = E.

The same argument shows that ©% (/Ato) C F, and therefore that O € E® F & Iy ® I.
Let v = (v;)ien and w = (w;);en be two bases of R such that (vi,...,vp) is a basis of
E, (wi,...,wp) abasis of F and v; € Iy , w; € Iy for i > D. As we have the decomposition
O € EQF @Iy ® Iy, [O©f]v,w has a block-diagonal form.
Let us denote by Cy, = (¢i;(fo))i<i,j<p the upper-left block in this decomposition and
by My, = (mij)1<i j<p the matrix of multiplication by fy in the basis (T1,...,7p) of Ap.
We deduce from decomposition (1) that, modulo the ideal (fi(z),..., fn(z)), we have

D D
Y cilfo)viow;, = O = fo(2)01 = folz) Y (1) v ©w;
i,j=1 i,5=1

INRIA



Some applications of Bezoutians in Effective Algebraic Geometry 7

D D D
= Z Cij(].) fg(Z) v, Qw; = Z < mkicij(1)> v Qwj o,
i,7=1 1

k=1 Vi=

which implies that Cy, = My, C.

Notice that the matrix C} is invertible, for it is the matrix of ©; in the bases (71, ...,7p)
of Ay and its dual basis inAfAto. Indeed, as fi,..., f, is a complete intersection, this map is
an isomorphism between Ag and Ay (see [4], [27], [38], [16]). By a change of bases, we may
assume that C; = Ip, so that the matrix of [©f ]y w is of the form (1). a

Let d; = deg(f;) and d = max;—,... » d;. For a, 3 € N*, we denote by [, g the number of
tuples (mo, ..., m,) such that m; is a monomial of f; and z* ¢° appears in Oumy,...,m, - Let
[ = maxl, 3.

Lemma 2.7 Let fo,..., fn € Q2] and let b = maxo<i<n h(fi). Then, the size of By,,... s,
is bounded by (ed)™ (where log(e) = 1) and the height of the coefficients of the Bezoutian
matriz is bounded by (n + 1) (b + n log(d + 1) + §log(n +1)).

Proof. The size of By, ... ¢, is bounded by < (n tbl) d ) , that is by the number of monomials

n

in z1,...,%, of degree at most > ;d; —n < (n + 1)d. According to Stirling formula,
n! > /2mn (2)", we have

(") <ty < = (M) ear < —eay < ear

n n! 2mn n V21
for n > 2 and we check easily that the inequality holds with n» = 1.
As Oy, ..y, is an alternate multilinear function of fo, ..., f,, any coefficient of By, s, is

a sum of at most [ (where [ is defined above) (n+1) x (n+1) determinants of the coefficients of
the input polynomials fy, ..., f,. Notice that [ is roughly bounded by the number of tuples
of monomials (my, ..., my) of degree < d, that is by (d+1)(*»*1 "™, According to Hadamard
formula, the height of these coefficients is bounded by

(n+1)(h+ %log(n +1)) +1log(l) < (n+ 1)(h +n log(d + 1) + %log(n +1))

O
Remark 2.8 — According to [9], the rank of By y,.... y, is bounded by
Gua= Y,  min(ge, gn(a—1)-t)
0<k<n(d—1)
where d = max{deg(f;),i =1,...,n} and g; is the number of n-tuples ay,...,a, such that

ay <d-1,a1+as <2(d-1),...,a1+--+a, < n(d—1)and a1 +- - -+a, = k. Combinatorial

RR n° 3572



8 Mohamed Elkadi , Bernard Mourrain

arguments, related to enumeration of Dick Paths and due to L. Habsieger [24], show that

G 4 is bounded above by 7 (£)" d™ and below by n? () % ™. Tn other words, we may

2
replace e by § in the bound on the rank of the Bezoutian matrix.

3 Relations of algebraic dependency

Let fo,..., fn be n+1 elements of R such that the n polynomials f1, ..., f, are algebraically
independent over K. Then, for algebraic dimension reasons, there is a non-zero polynomial
P such that P(fo,...,fn) = 0. Our goal in this section is to show how to find such a
polynomial P, using elementary algebra, and the properties of the Bezoutians.

Theorem 3.1 — Letu = (uo,...,un) be new parameters and assume that A = R/(f1,..., fn)
is a vector space of finite dimension D. Then, every non-identically zero mazimal minor
P(ug, ..., u,) of the Bezoutian matriz of the polynomials fo—uo, ..., fo—tn in Klu][z1, ..., 25)
satisfies the identity P(fo, ..., fa) =0.

Proof. For each i € {1,...,n}, the functions z, fi,..., f, are algebraically dependent
over K. Thus, K(z) is a finite field extension of K(f) (where K(z) = K(z1,...,2,), and
K(f) = K(f1,-.-,fn)). Its degree will be denoted by d. By introducing the parameters
@ = (u1,...,un), we have dimg ) K(z) = dimgq) K(@)[2]/(f1 — u1,..., fo — un) = d. In-
deed, if (vy1,...,vq4) is a K(f)-basis of K(z), with v; € K[z],1 <i < d, then (71,...,74) is a
K()-basis of K(@)[z]/(f — @).

From now on, we work in the field K(@t) = K(ui,...,u,). We check that O} :=
O fi—ur,eo fro—un = O1,71,....7. = O1 and that the Bezoutian of fo —uo,..., fn — U, is

e _ a [
ef()*uoyflful,---,fn —Up T ef[]7f17u17~~~yf717u71 — Up 917f1*u1,---7fn —Up G)f() — Up 61 .

By lemma 2.6, there exists two bases v and w of K(#)[z] such that the Bezoutian matrices

of fo, fi —u1,..., fn — u, in these bases, is of the form
V1 ... U4 V441 ---
w1
. M, 0 ;
u _ g .
O = "
Wd+1
0 L,

for g = fo and g = 1. Let v/ = (2%)aenn, W = (£%)senm be the monomial bases of K[z]
and K[¢]. Then the matrices [Oﬁo]vng, [O?O]V:W and [01]v/ w', [01]v,w can be deduced from

INRIA



Some applications of Bezoutians in Effective Algebraic Geometry 9

each other (by change of bases) by left and right multiplication by invertible matrices R()
and Q(@) with coefficients in K(@). So

B(U) = [ ?0—71.0]"’7“” = [6?0]"’7“7’ — Uo [@’f’]vr’w/
= R(@)N(u)Q(a)
where
(Mfo - UO]Id) 0
N(u) =
0 Lfo —ugly
and I;is the identity matrix of size d. Consequently, a non-zero maximal minor P(ug,. .., u,)

of B(u) is a linear combination, with coefficients in K(@ ), of the non-zero maximal minors of
the matrix N(u). These minors are all multiples of det(My, —uolp). Therefore P(uo, ..., un)
is a multiple of the characteristic polynomial of the multiplication by f, in the quotient
K(a)[z]/(f1 — w1, ..., fn —un). Using Cayley-Hamilton’s theorem and substituting f; for u;,
1 <i < n, we deduce that P(fo,..., fn) =0. a

In practice, we use Gaussian elimination (Bareiss Method) in order to find a non-zero
maximal minor of the Bezoutian matrix.

Example 3.2 We illustrate the above method by this example in maple.

> £f0:= x; f1 := x"2+y~2+z"2; £2 := x"3+y~3+z73; £3 := x"4+y~4+z"4;
> mbezout ([£0-u[0],f1-ul[1],f2-u[2],£3-ul[3]], [x,y,2]):
> last(ffgausselim("));

— (].2 ’lL012 —24 ’lL()lO’lLl — 16 UO9U2 + (24“12 —12 U3) U08 + 48 ’lL07U2’lL1
+ (—8 ’lL22 — 24”13) UOG + (—24 ’lL12’lL2 + 24“3’&2) U05
+ (—24 wslug + 6usui? + 3us? + 15 u14) wot + (8 w1dus — 24 ugusus + 16 uQ3) ug®
+ (—6 u1® — 12 usus? + 6 uguq + 12 u12uQ2) uo?
+U16 — 3U12U32 +12 U1U3UQ2 -2 ,U33 — 4U24 — 4U13U22)2

The Bezoutian matrix is of size 50 x 50 and of rank 24 and its non-zero maximal minor is
of degree 24 in (ug, uy, us, u3).

Proposition 3.3 — Under the notations of lemma 2.7, the polynomials P given by theorem
3.1 are at most of degree (ed)™ and its height is bounded by

(n+1)(ed)™ (h+ (n+1)log(d+1)+log(n+1)+2).

RR n® 3572



10 Mohamed Elkadi , Bernard Mourrain

Proof. Let N be the size of the Bezoutian matrix By_, := B _u,, .. fo—u,- According to
lemma 2.7, N < (ed)”. The matrix By_,, is linear in the variables wg,u1,...,u, and can
be decomposed as By_,, = By + u9Bo + -+ + u,B,, where By, and the B; are Bezoutian
matrices. Let T = (n+1)(h+n log(d+1) + 5 log(n+1)) be the bound on the heights of the
coefficients of these matrices, given in lemma 2.7. Let A(u) be a maximal minor of By ,,
which is at most of degree N in u.

The coefficient of ug® - - - u%" in A(u) is the sum of the determinants obtained by choosing
ap columns of By, a; columuns of By, ..., a, columns of B,, and at most N — (ag + -+ + a,)
columns of By. The number of possible choices is bounded by the number of applications
from the N columns to the set {1,...,n+ 2}, that is by (n +2)". By Hadamard inequality,
the height of each of these determinants is bounded by N (T + % log(N)). Thus, the height

ap

of the coefficient of the monomial ug® - - - u%" in A(u) is bounded by

N (T + % log(N)) + log((n + 2)V)

IA

(ed)" ((n +1) <h +nlog(d+ 1) + %log(n + 1)) +n (log(d) + 1) + log(n + 2))
( ) (

N

n+1)(ed)” (h+ (n+1)log(d+1)+log(n+1)+2).

a

The following proposition describes the uniqueness of the irreducible polynomial P such that
P(fo,---,fn) =0. It will be used in section 5.

Proposition 3.4 — Let fy,..., fn be n + 1 polynomials of R such that fi,..., fn are K-
algebraically independent. Then there is a unique irreducible P € Klug, ..., uy,] (up to con-
stant) satisfying P(fo, ..., fn) = 0. If K is infinite and deg fo < mini<;<, deg fi, the degree

of P is at most
_ deg f1 - - deg fan
K(z) : K(fo,..., fa)]
Moreover, if f1,..., fn have no zero at infinity, then the degree of P is exactly 6.

The proof of the proposition 3.4 uses the following lemma, which is easy to set up (see [28]).

Lemma 3.5 Let K be a finite field extension of K, 8 € K, Cy and Py are respectively the
characteristic and minimal polynomial of the multiplication by 6 in K. Then Cy = PB[R:K(G)].
Proof. The existence of P comes from the fact that the algebraic dimension of the field
extension K—K(f) (K(f) = K(f1,..., fa)) is equal to n and the factoriality of Klug, ..., u,].

For the unicity of P, suppose that there exists two irreducible polynomials P;, P> such
that P;(fo,..., fn) =0,i=1,2. The resultant R € Kluq, ..., u,] of Pi, P, as polynomials in
Kluy, ..., u,][ug] satisfies R(f1,...,fn) = 0. As fi,..., f, are K-algebraically independent
R = 0. Thus P, P, have a non-constant common divisor in K(ui,...,u,)[up], and in
Klug, ..., u,] too. Therefore, P, = cP, with c € K

INRIA



Some applications of Bezoutians in Effective Algebraic Geometry 11

Consider the finite extension K(z) of K(f). Let C and P be respectively the characteristic
and minimal polynomial of the multiplication by fy in the K(f)-vector space K(z). Let
C, P € Klug, ..., u,| be the polynomials obtained respectively from C, P by substituting u;
for f; (i =1,...,n) and by taking the numerator. The polynomial P is the unique irreducible
element of Klug, . .., u,] satisfying P(fo,..., fn) = 0. By lemma 3.5, C' = PIK(=)K(fo,.fn)]
and C = PK=)K(fo,.f+)] Changing the variables u; t0 u; — siug, 1 < i < m,s; € K; then

deg P = deg,,, P. Since deg(C) = deg, (C) = deg,, (C) < deg(fi +s1fo) - - deg(fn+ snfo)-
Moreover, the equality holds if fi + s1 fo, ..., fn + Snfo have no zero at infinity. We deduce

that deg(fy + 51 fo) - deg(fu + 5nfo)
€g 1+ S81fo0) g n + Snfo
deg P <
5= K(z) : K(for. s Fo)l
The equality holds if fi,..., f, have no zero at infinity. a

Another proof of this proposition is given in [34].

4 Residue calculus

The residue is a special linear form on A, associated to the map f = (f1,..., fn) defining the
quotient A. In some way, the structure of this quotient is condensed in this linear form. We
can, for instance, recover directly from it, the dimension of A or the multiplication table.
Its construction is direct in some case like the so-called Pham maps (see [1], [11]) where
the polynomials f; are of the form z% + R;(z) with deg(R;) < d;. Residues for equations
defining zero-dimensional projective varieties are also direct to handle (see eg. [16]) and
recently generalization of this situation to projective toric varieties has also been studied
(see [10]).

The goal of this section is to show how to compute effectively the residue 7y associated
to a general polynomial map f, using the algebraic relations of dependency and a result
from [7], and to give some direct applications of this residue computation.

Let

K - K°
2 = fR)=(hH2), - fal(2)

be a polynomial map, such that the set of zeroes Z is finite over the algebraic closure K of
K. Let I =(f1,...,fn) be the ideal generated by the components of f.

Definition 4.1 (see [38], [27], [16], [{]) The residue 7y is the unique linear form on R such
that

1. Tf(I)ZO,

2 Ol fipa (1) —1EL

RR n® 3572



12 Mohamed Elkadi , Bernard Mourrain

We recall also the analytic definition over C (see [22]):

1 h(z)
For he R, 7¢(h)= - / ——dz,
f( ) O; (27/7r)n {z€Va:|fi(2)]|=€;,1<i<n} fl(z)fn(z)

where V, is a small neighborhood of a, ¢4, ..., ¢, are positive and € = (e1,...,&,) is outside
a negligible set defined by Sard’s theorem.

For each i € {1,...,n}, let hi(f; 2:) == aio(f)z]" + -+ aim, (f) =0 (i=1,...,n), be
algebraic relations between the functions z;, f1, ..., f, given by the Bezoutian (see section
3).

Proposition 4.2 — Let u = (uy,...,u,) € K*. If for each i € {1,...,n}, there is j;, €
{0,...,m; — 1}, with a; ;,(u) # 0, then for any h € R, the computation of the multivariate
residue T¢_(h) reduces to univariate residue computation.

Proof. According to the hypotheses, we have
gi(zi) = @i g (W) T 4 i (1) = Y Ag(fi— ), 1<i<n,
Jj=1
where A; ; € K[z]. We put g(z) = (¢1(21),...,9n(2n)). Using the transformation law (see

[27], [38], [16] and [4]), we have
Tr—u(h) = 74 (hdet(4;;))

n

= 2 cllmE), ek,

a=(ag,...,an)EN" =1

n
Ci,a;
= Z Ca H( ) (u)max(o, a,-—m,'+j,'+1)> » Cia; € K.

a

If we apply this proposition with the fraction field K(u) (where uy,...,u, are formal
parameters) instead of K, we obtain the residue 7;_, over K(u)[z]. For any h € K[z],
Tr_u(h) is a rational fraction in u, whose denominator is the product of powers of the
@i j; (u).

This proposition yields (in the case where (a;;(0))1<i<n,0<j<m;—1 are not all zero) a
direct algorithm for computing the residue by means of the n algebraic relations between
Zis f1y- oy fn, 1 <4 < n, given by the Bezoutian, and by reduction to univariate residues.

In the general case, the computation of the residue, can be done using a result from [7],
as follows.

For (a1, ...,ay) € K*, we define s;, R; and S; as follows:
hi(a1t7 N ,Oént; Zl) = Z A@j(fj — ajt) = ts'j (Rl(zl) — tSi(Zi, t)) (2)
7j=1

INRIA
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Proposition 4.3 —/[7] If R;(z;) # 0, then for any g € R,

Tf(g) = Tt“H'l,Rl—tSl,...,Rn—tST,, (g A)

— E k1 kn,
- T(tl-e\+1—|k\,R’1~'1+1,,,,,Rg;'n+1)(951 S A)
k=(k1,...;kn) EN"™, |k[<|s]|

and A = det (Ai7j) .

The proof of this result is based on a generalization of the transformation law.

Notice that this sum can be computed as follows. For any polynomial a € K[z], let us
define p;(a) = ¢;tS; +r; for t = 1,...,n where ¢; and r; are respectively the quotient and
remainder in the Euclidean division of a by R; and pg(a) = 1o where 7 is the remainder in
the Euclidean division of a by t!*/*1. By construction, we have p;(a) = a modulo (¢/*I+1, R, —
tS1,...,Ry —tSyh).

Applying iteratively po, p1, .- ., pn to the polynomial A g will eventually end with a poly-
nomial ¢g* of degree < |s| in ¢t and < deg(R;) in z;. Then the residue 7/(g) is the coefficient
of tlsl =1 =1 in g* for Ag—g* € (tSH Ry —t8y,..., R, —tS,).

By combination of proposition 4.3 and of the computations of the algebraic relations
from section 3, we obtain an algorithm for the computation of the multivariate residue for
any complete intersection.

Algorithm 4.4 — THE RESIDUE OF fi,..., fs.
Let fi,..., fn be a complete intersection in R and let g € R.
1. Foreveryi € {1,...,n}, compute the algebraic relations h;(u; z;) between z; and fi, ..., fn

(using the Bezoutian computation of the previous section).

2. Choose a generic vector (ay,...,a,) € K* and compute the exponents s; and the poly-
nomials R;(z;), Si(z:,t) and the coefficients (A; ;)i j=1,.. . defined in (2). Let d; be the
degree of R; in z;.

3. Compute A = det (A4; ;) and apply po,. .., pn (defined above) to A g until a fixed point

g* is reached. Take the coefficient ¢ of ¢!*! zldl_l coezdn=lin g%

The coefficient ¢ is the residue 7¢(g).

Remark 4.5 — The number of Euclidean divisions in this process is bounded by n.x (|s|+1).

If d is a bound on the degrees of the input polynomials f1,..., f,, then according to
lemma 3.3, R;, Sj and A; ; are of degree < (ed)" and the degree of A is bounded by (ed)*".

Let h be a bound on the height of f1,..., f, and o and let g = 2%, 3 € N*. Then accord-
ing to lemma 3.3 (substituting u; by ;¢ in the maximal minor), the heights of R;, S;, A; ;
is bounded by H = O (n (n + h + log(d))(e d)™). The height of A (obtained by substituting
z by ¢ in ©1 ) is bounded by T = O (n(h + nlog(d))). The Euclidean division of gA by
R; increases its height by deg(¢gA) H. The number of Euclidean divisions is bounded by
n x (|s| + 1) < n(ed)™. Therefore, the heights of 7¢(2”) is bounded by

O (n*(n + h + log(d))(|B] + (ed)*™)(ed)™) .
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14 Mohamed Elkadi , Bernard Mourrain

Applications
Let us give some direct applications of this residue computation. See also [16], [4], for other

applications.

The dimension of A. If the characteristic of K is zero, it is possible to compute the
dimension of the vector space A. According to the following formula (see [27], [38], [9], [16]):

dimg(A) = 77(Jy),
where J; is the Jacobian determinant of (fi,..., fn).

Matrices of multiplication. Let (b;);=1,...p be a basis of A and let a € A. The transpose
of the matrix of multiplication by a in the dual basis of (b;);=1,....,p can be computed using

following idea. As 7y is a basis of the A-module A, the set of linear forms (b; - 7) is a basis
of A. Thus for i = 1,..., D, there exist m, ; € K such that

D
a'(bi'T):Z mi7j(bj-7').

The matrix M = (m;, ;); j=1,...,p is the matrix of multiplication by a in the basis (b; - 7) of A.
This coefficients m; ; can be computed by solving the linear systems

[T(abibj)]ij=1,..,0 =M [1(; bj)]i,j=1,...D-

According to [32], such a matrix can then be used to deduce the roots of the system f; =
--- = fp, = 0, by eigenvector computations.

Solving polynomial systems. Let fi,..., f, be n equations of K[zy,...,z,] defining a
zero-dimensional variety V(f1 = --- = f, =0) = {(1,...,Ca}, where §; = (Cia,---,Gn) €
K".

We can compute the coefficients of the univariate polynomial
Pi(T)=(T =) (T=Cay) =T =n T 4+ (=1) "0y

which determines the j*" coordinates of the roots, in terms of the residues. Indeed the
coefficients o; are related to the Newton sums S;; := Z;l:l C]ll by the classical relations
between the symmetric functions of roots of a polynomial. These Newton sums are given
by the formula

Siy =152t T) = Tr(al)

where J is the Jacobian of the fi,...,f,. Thus, by computing these values, thanks to
algorithm 4.4, we can deduce the polynomial P;(T) and compute the j'" coordinates of the
roots. It can also be used to express all the coordinates of the roots as rational fractions of
the the root of a univariate polynomial (see [1], [21], [37]).

INRIA



Some applications of Bezoutians in Effective Algebraic Geometry 15

The membership problem. It is also possible to test if an element fy belongs to the ideal
(f1,--., fn), by linear algebra on polynomials of “small degree”. In general, the complexity
of this problem is doubly exponential (see [30]). For complete intersection, the bounds on
the degree are simply exponential ([5], [14], [15], [26]). Using the residue, it is possible to
transform such a problem into a linear one of even smaller size.

Proposition 4.6 — There ezists a polynomial g of degree at most Y., deg f; —n which

is a non-zero divisor in A such that, fy is in the ideal generated by fi,..., fn, if and only
if,

gf0291f1+"'+gnfn ) giEK[Z] ) (3)
with

deg(g; f;) <Y degfi—mn, 1<j<n.
1=0

Proof. From the definition 2.1 and the remark 2.3,
O5, = fo(2)01(2,€) + f1(2)A1(z,8) + -+ + ful2)An(2,€)

with A;, A; € K[z,£],1 <i < n.
If fo € (f17~~~7fn); then

G)fol> (Tf) = fo(2) (elef)) —g1fi— - —gnfa=0.

We put g = ©,°(7¢). Asg—1€ (fi1,..., fn) (definition 4.1), ¢ is a non-zero divisor in A. O

The identity (3) can viewed as a linear system, where the unknowns are the coefficients
of g1,...,9n- Thus, if we want to test whether a polynomial fy is in the ideal (f1,..., fu);
first we compute g = ©;"7¢ (section 4), and test whether g fy is in the vector space generated
by the multiples of the initial polynomials of degree < -7 deg(f;) — n.

5 Properness and Lojasiewicz exponent

Our goal in this section is to give an effective method to test whether a polynomial map
f : C* — C" is proper or not. The interest of the properness comes from the Jacobian
conjecture and the study of the automorphisms of C* [3]. It also plays a crucial role in the
effective Hilbert’s Nullstellensatz (see [5], [15]).

Definition 5.1 A polynomial map f : K* — K" is dominating if K(z) is a finite field
extension of K(f). The geometric degree of f is the degree of this extension.
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16 Mohamed Elkadi , Bernard Mourrain

Proposition 5.2 — [23] For a polynomial map f = (f1,..., fn) : K* — K", these condi-
tions are equivalent

1. f is a dominant map.

2. The functions f1,..., fn are algebraically independent over K.

3. The Jacobian Jy = det(gff_ )”. of f is not identically zero.

In this case, the geometric degree of f is also equal to dimg,) K(u)[z]/(f —u). Thus gener-
ically the cardinality of the fibers of f is exactly the geometric degree.

Definition 5.3 A polynomial map f : C* — C" is proper if the inverse image of a compact

subset of C* is compact (i.e. lim|.||_ || f(2)|| = 00).
Proposition 5.4 — For a dominating map f : C* — C™, the following conditions are
equivalent

1. f is proper.

2. For every h € C[z], the characteristic polynomial of the C(u)-endomorphism

h:C)l)/(f —u) — Cu)=l/(f —u)

a +— ha

has coefficients in Clu].

o

The ring Clz] is an integral extension of C[f] (i.e. Vi€ {1,...,n},Im,; € N* :
b a ()2 T o aim, (f) =0, with a;; € C[2]).

. There are R,C,d > 0 such that, Yz € C*, ||z|]| > R = ||f(2)|| > C||z||*.
5. Vh € Clz], 75—u(h) € Clu].

B

6. Vie{l,...,n},¥j € {1,...,d} (d is the geometric degree of f),Tr_u(z] Js) € Clu].

Proof. We denote by Z(f —u) = {a1(u),...,aq(u)} the set of zeroes over the algebraic
closure of C(u).
1 = 2. Following [33], let

d
Pl X) = X+ (@)X 4 e afu) = [[ (X = blastu) ) € C)fx]

=1
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Some applications of Bezoutians in Effective Algebraic Geometry 17

be the characteristic polynomial of the endomorphism h. The coefficients a;(u),1 < i < d,
of P satisfy

lai(w)] = > Mag).. hlay,)

1<51<...<ji<d

Yo Call llag ()" (L g, ()]s

1<51 <. <ji<d

IN

with C; € C. The assumption that f is proper implies that
VA>0 , 3B>0 : VzeC"|z|| > B=||f(2)]| > A.

Let u € C* be generic such that ||u|| < A. We have |a;(u)] < C, C > 0, so a; € Clu],1 <
i <d.

2 = 3. The relations of integral dependency are given by the characteristic polynomials
of the multiplications by Z;,1 < i < n, in C(u)[z]/(f — u).

8 = 4. It is easy to see that if x is a root of a polynomial X™ + a X™ '+ 4a, of
one variable, then |z| < mma;Xje{ly.“’m}(|aj|1/]). From this observation and the algebraic

relations 2™ + a; 1 (f)27 ' 4 4 @im; (f) = 0,1 <4 < n, we deduce that
|zil < C; max ai; ()7, C;>o0.
J=1,...,m;

Then there is C' > 0 such that for sufficiently large z € C*,

o1l < € Jlf) et mesets o (2522)

4 = 1. It is evident.
3= 5. Let g=(g1,...,9n), with

n
gi(u;zi) = 2" +ain (W) " b agm (w) =Y Ais(us2)(f; —uy) , Aij € Clu, 2.
j=1
By the transformation law of residues

n

Ty—u(h) = 7 (hdet(4s)) = Y calw) [[ roune,, (57) o € Clu].

i=1

As g, is a monic polynomial, 77—, (h) € Clu].

5 = 6. It is evident.

6 = 3. For a polynomial g, we consider the endomorphism of multiplication by g in the
C(u)-vector space C(u)[z]/(f —u). The characteristic polynomial of this endomorphism

P(u; X) = X — o1 (u) X'+ 4 (=1)%0q(u) ,
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18 Mohamed Elkadi , Bernard Mourrain

where ¢;,1 < i < d, are the elementary symmetric functions of g(ay(u)), ..., g(aq(u)). We
know that ¢; is a function of the Newton’s sums S;(u) = 77_.(¢7 J5). We fix i € {1,...,n}
and g¢(z) = z. By hypothesis S;(u) = 75_.(2] J5) € Clu], so P(u; X) € Clu][X], and

2o (f)2 4 (=) %ou(f) = 0.

Remark 5.5 — If for every ¢ € {1,...,n}, we have a relation of algebraic dependency

a’iyo(flv-”vfn)zzni +"'+ai,m,:(f17~-~,fn) =0,

given by means of the Bezoutian (section 3), which is a relation of integral dependency

(i.e. a; is a non-zero constant), then the map f = (f1,..., fn) is proper (proposition 5.4).
If there exists ¢ € {1,...,n} such that a;o is a non-constant polynomial, we decompose
@io(Ui, ..., un)ug™ + -+ + @im, (U1, ..., u,) into irreducible polynomials and look at the

unique irreducible polynomial
Qi(uo, . ,un) = qi70(u17 - ,un)ug” + -4 qi,ni(ul, . ,un) € (C[Uo7 - ,un]

which satisfies Q;(z;, f1,..., fn) = 0 (see proposition 3.4). Thus f is proper, if and only if,
the polynomials ¢; o are non-zero constants. This requires to factorise polynomials.

We may also test properness, with no factorization, as follows:
Algorithm 5.6 — TESTING THE PROPERNESS OF f.

1. Compute the geometric degree of f: d = dimg(y) C(u)[2]/(f — u) = 77—wu(Jf), using
proposition 4.2,

2. Compute the rational functions Tf,u(ngf),l <i<m,1<j<d, using proposition 4.2,
The map f is proper, if and only if, these fractions are polynomials.

Remark 5.7 — As the polynomials a; in the decomposition of

O1 frf(2:6) = Y ai(2)bi(€)
=1

in C[z, £] generate the vector space A (see [38], [27], [4], [16]), it is enough to show in the
proposition 5.4.5, that for all i € {1,...,s},7r_.(a;) € Clu] as above.

If K is any field of characteristic 0, and the polynomial map f : K» — K" is a dominating
map, the algorithm 5.6 tells us whether the ring extension K[z] of K[f] is an integral extension
or not.
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A polynomial map f : C* — C™ which defines a discrete variety, satisfies the following
relation:
IRC>0,dER : V2€C", ||z|| >R = ||If(»)|| > C||z||“

Definition 5.1 The Lojasiewicz exponent of f is
L(fy=sup{d € R:3I R,C >0, V2 C",||z|| > R = ||f(2)|| > C||z||*}.

This number characterizes properness: f is proper, if and only if, £(f) > 0. We have the
following bounds for a proper polynomial map f:

min; <;<, deg f; .
M1 <isn Q8 Ji o pry < deg f.
T, deg /i, ~ (f) < min deg f

See [33], where a more precise lower bound was given. The properness and the Lojasiewicz
exponent were studied extensively by Chadzynski-Krasinski (for n = 2) and by Ploski (see
[12], [33]).
When we have n relations of integral dependency
Z;ni +ai,1(f)zz-""_1 + -+ ai,mi(f) =0, meN | Q5 € (C[Z] ,
we deduce from the proof of 8 = 4 of the proposition 5.4, that
1

L(f) =2

degai,j
maXie{1,...,n} MAX;je{1,...,m;} J

Ploski has shown, that equality holds if we take the relations of integral dependency given
by the characteristic polynomials of the n endomorphisms of multiplication by Z;,1 <1 < n,
in the C(u)-vector space C(u)[z]/(f — u).

Using the methods developed above and Ploski’s formula, we can compute £(f) as fol-
lows:

Algorithm 5.8 — THE LOJASIEWICZ EXPONENT L(f).

1. Foreveryi € {1,...,n}, compute the unique irreducible polynomial h; such that h;(z;, f1,
.., fn) =0, from the algebraic relations given in 3.1.

2. From lemma 3.5, we know that the characteristic polynomial P; of the multiplication by

deg(h;)
i .

z; is a power of h; and that its degree is equal to D = 77_,(Jf). Compute P; = h

3. Deduce from the degrees of the coefficients a; ; of the characteristic polynomials P;, the
Lojasiewicz exponent

—1 ma, ma; < deg a“)
= X X — .
L(f) ie{l,..n}jie{l,...,m:} j
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Notice that this algorithm requires to factorise the algebraic relations, that we deduce from
the Bezoutian (section 2). However, we can deduce directly from the residue 7;_,, the
characteristic polynomial P; of the multiplication by z;, modulo f — u, by computing an
linear recurrence relation of degree D between the coefficients 7;_,(2¥), k =0,...,2D.

Example 5.9 We compute here the Lojasiewicz exponent for a proper polynomial map
having zeroes at infinity.

> £1:=x"2+y"2+z72-x ; £2:=x"2+y"2+z"2-y ; £3:=x"2+y~2+z"2-z;
> mbezout ([x-u[0],f1-ul1],f2-u[2],£3-ul3]], [x,y,2]):
> last(ffgausselim("));

3u? + (4dug — 2uz — 2uz — )ug + ul — 2usug + 2u? + ud — 2uzu; — uy

> mbezout ([y-ul[0],f1-ul1],f2-u[2],£3-ul3]], [x,y,2]):
> last(ffgausselim("));

—3u? + (2u; — dus + 2uz + )ug — u? + 2uzuz — uf — 2u3 + 2ugu; + us

> mbezout ([z-u[0] ,f1-ul1],f2-u[2],£3-ul3]], [x,y,2]):
> last(ffgausselim("));

3u? + (4duz — 2us — 2uy — )ug — 2uzu; — 2ugus + 2ul +uf +u3 —us .

According to Ploski’s formula £(f) = 1.

6 Invertible polynomial maps

A special case of interest of proper maps, concerns bijective polynomial maps. In this
section, we focus on this subclass, showing how the Bezoutian can be used advantageously
to compute the inverse of such a map.

Proposition 6.1 — Let f : C* — C" be a bijective polynomial map. Then, its inverse

1 =(g1,...,9n) is also polynomial. More precisely,

Vie{l,...,n}, YweC", gi(w) = Jrrj—w(zi) = Jy Z Tratr(zi)w™.
l|<1/L(S)
Proof. For h € R,
1 h(z)
7r(h) = —/ _—
! 2T Jzeen | fiz) =iy J1(2) - fn(2)

By the local inverse theorem, the Jacobian Jy of f does not vanish. So J; is a non-zero
scalar and f is a global biholomorphism. Therefore

dz .

1 Bagi
a! dw~

Ywe C* , gi(w)= Z a;qw® , with a;q =
aeN?

0) .
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Using Cauchy’s formula and the change of variables £ = f(z)

1 / gi(§)
Qa0 = 7 = d£ = Jfouz+1 (ZZ)
(2im) {€=(€1,.-,6n)EC :|€i| =2} gott
Ifw=(wy,...,w,) € C", |w;| <e;,1<i<m,

1 Z;

(2im)™ /{ZEC” Afi(z)=eiy (F1(2) —wi) .o (fal2) — wa)
Z Tfn+1(2i)wa.

DLEN"

dz

Tr-w(zi) =

As the map f is a biholomorphism, it is proper. Then 7;_,,(z;) is polynomial in w (propo-
sition 5.4), so for sufficiently large «
(L7
Tra+1 (z:) = — =0,
J5

and g; is polynomial.
Since there exists ¢ > 0 such that for large z € C",
— _ _ e -1
I I <e IFFH eI =cllzll  and [zl < [IFHFEI < el f ()1,
we deduce that deg f~ = #7. O

()
The above result is known (see [33]). The interesting fact here is that f~! is given explicitly

in terms of residue, and can be computed using the methods developed above. This yields an
algorithm based, on Bezoutians and residue computations, for deciding whether a polynomial
map f: C* — C" is an automorphism and for computing its inverse:

Algorithm 6.2 — INVERTIBLE POLYNOMIAL MAPS.
Let f: C* — C* be a polynomial map and Jy its Jacobian.

1. If J; ¢ C\{0}, then f is not invertible.
2. Test whether f is a proper map (using algorithm 5.6):

e If fis not proper, then f is not invertible.

o If J; € C\{0} and f is a proper map, then it is invertible. Compute its inverse
=t =(g1,...,gn) where g;(u) = 77—, (z;) (proposition 4.2).

If we allow factorization of the algebraic relation given in 3.1, then the inverse of f can be
computed directly by the following proposition:

Proposition 6.3 — Let v, ...,v, be new parameters and fo = vg+vi2z1+ -+ vpz, be a
generic linear form. If f : C* — C" is invertible, then any mazimal minor of the Bezoutian
Matric Byy ri—uy,.. fo—u, 15 divisible by an element of the form

vo +vi1g1(u) + -+ vngnl(u) , gi € Clur, ..., un],
and g = (g1,-.-,9n) i the inverse of f.
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Proof. As f is invertible, for any v € C™, the variety Z(f — u) is reduced to the unique
(simple) point ¢* = f~!(u) and the quotient A = C[z1,...,2,]/(f — u) is of dimension
1. This implies that the matrix of multiplication M., by z; in A is the 1 x 1 matrix
[¥],1 < i < n, where (¥ is the i** coordinate of (*. By the proposition 5.4, (* is also
equal to g;(u), with g; € Cluy,...,u,]. In other words (g1 (), ..., gn(u)) is the inverse of f.
According to proposition 3.1, any maximal minor of By, ¢, —u,,..., fn—u, is divisible by

det(voly +vi M, + -+ v, M.,) = vo +v1 g1(u) + - + Vpgn(u),

which proves the proposition. O

Example 6.4 — We consider a “generic” map f = (fi, f2) over C? of degree < 3:

fi=xz+ ajx? + asxy + a3y2 + agx® + a5x2y + agny + a7y3
fo =y + bia? + baxy + b3y? + bax® + bsa®y + bexy® + bry®

The Jacobian variety

ofr  9f1

oz 15} _
of, of | =1
oz Yy

is defined by the 14 equations:

-3 a6b5 + 9@4b7 + 3a5b6 — 9@7()4,6@4()6 — 6a6b4, -3 a7b6 + 3a6b7, 3a4b5 — 3@5()4,
2(15 — 4a3b1 + 2b6 + 4(11()3, —azb5 + a5b2 — 4aﬁb1 + 6a4b3 + 4a1b6 — 6a3b4,
azbg — aghs + 6 a1by — 6 ayby + 4 asbs — 4 azbs, —6 a7bs + 6 asbr, 2 b3 + as,

2@1 + b2,3a2b7 + 2a6b3 — 3(1/7[72 — 2a3bg,2a1b2 — 2a2b1 + 3a4 + b5,
—2agby + 2asbz + 3b7 + ag, 3 asbs — 2as5b; + 2a1b5 — 3azby.

The Bezoutian matrix is a 10 x 10 matrix of rank 9 (after simplification by the above
equations for a4 # 0,a5 # 0). A maximal minor of this matrix is:

72%;%@2 (3vaas — v1as5)® (v,

3
3agaz 2 2 3 2 2
Fur — 5222w ® — asurus — F2 ur® —aswr® — as urtuz — 3a = wyus? — 27a Fre—y U2 )111

+(us + 9;;(2“ 2+3 A2 wyug + UQ +3 M

3)1}2) .

So that the inverse of f is

_ 3asaz , 2 2 3 2 2 53 3
g1 (u) = Uy — QQ% U1~ —az U1uU2 — 60.4 U2” — A4 U™ — A5 UL U2 — 3a U1U2 — 27(14» UQ
9
go(u) = uz + P52 wy? + 3“2 uguy + B up? +3—u1 o us®.

This enables us to check the Jacobian conjecture for polynomials in two variables, of degree
< 3. It is already known in this case that it is true (see [3]), but without computing explicitly
the inverse.
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7 Bezoutians and resultants

In this section, we relate Bezoutians and Resultants. We recall the definition of Resultants
over an irreducible projective variety X and show that in the case (of practical importance)
where an open subset of X is parameterized by a polynomial map, this resultant is a factor
of any maximal minor of the Bezoutian matrix. We illustrate this approach, by constructing
the resultant of 3 equations on a quadric surface.

Elimination theory deals with the problem of finding conditions on parameters of a
polynomial system, so that these equations have a common solution in a fixed algebraic set
X. A typical situation is the case of n + 1 “polynomials”

folz) = 50 coio;(2)

fn(2)

where ¢ = (¢; ;) are parameters, z is a point of the variety X of dimension n, and the vector
functions £;(x) = (¥i,;(2))j=0,....k; are regular functions on X (see [25]) independent of the
parameters c. Let us denote by fo(x) = -+ = fn.(x) = 0 the global system of equations on
X. In the language of modern algebraic geometry, the £; would correspond to line bundles
and the f;(z) to sections (see [18]).

The elimination problem consists, in this case, in finding necessary (and sufficient) con-
ditions on the parameters ¢ = (¢; ;);,; such that the equations fo = 0,..., f, = 0 have a
common root in X.

In the classical case, £;(z) is the vector of all monomials of degree d; and X is the
projective space P of dimension n. The functions f; are generic homogeneous polynomials of
degree d;. The necessary and sufficient condition on the parameters ¢ = (¢; ;);,; such that the
homogeneous polynomials f, ..., f, have a common root in X = P" is Resp«(fo,..., fn) =0
where Resp- is the classical projective resultant.

Considering a geometric point of view, we are looking for the set of parameters ¢ = (c; ;)
such that there exists x € X with Z;zo ¢i Vi j(x) =0for ¢ =0,...,n. In other words, the
parameter vector ¢ is the projection of the point (c,x) of the incidence variety

kn
Zj:o Cn,j ¥n,j(@)

ki
Wx ={(c,z) € P* x - x P* x X; Y i jahij(x) =0; i =0,...,n}.
7=0

We denote by

T Wx — ]P”“0><-~-><]P’k"7
m:Wx — X,

the two natural projections. The image of Wx by m; is precisely the set of parameters ¢ for
which the system has a root. The image by ms of a point of W is a solution in X of the
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associated system. Any polynomial in ¢ = (¢; ;); ; which vanishes on the projection 7 (Wx)
is called an inertia form (see [40]). The inertia forms are homogeneous polynomials in each
subset (¢; ;) =0,... k, Oof parameters.

Definition 7.1 — If m(Wx) is an hypersurface, then its equation (unique up to a scalar)
will be called the resultant of fo, ..., fn. It will be denoted by Resx (fo,- .-, fn)-

In order to be in this case, we impose the following conditions:
Conditions 7.2
1. X is a projective irreducible variety.
2. The regular functions L; do not vanish identically on X (fori=20,...,n).

3. For generic values of c, the system fo,-.., fn has no solution in X, and n of these
equations (say fi,. .., fn) have a finite number of common solutions.

The point 1 is required, because affine algebraic varieties do not behave correctly by
projection, but projective algebraic sets do.

Consider a point # € X and its fiber 75 ' () which is a linear space of P¥0 x - - - x PF» x {z}.
As Li(z) #0 ,for i =0,...,n (condition 6.2.2), this space is of dimension Y . k; —n — 1.
By the fiber theorem (see [39][p. 60, 61], [25][p. 139]), we deduce that Wx is irreducible
and of dimension ) k; — 1.

Thus, its projection by m is an irreducible variety of dimension < " jk; — 1 or of
codimension > 1. Let us call Z this projection.

Let U be the dense subset of P* x --. x P*» such that the system f; = --- = f, =0
has a finite number of solutions (in X). Then Wx N (U x X) is a dense subset of Wx
and projects by m onto ZNU. As Z(fy = --- = f, = 0) is finite, for any ¢ € Z N U,
7 He) = {(c,¢) ;¢ € Z(fi = - = fn = 0)N Z(fo = 0)} is finite. Therefore, Wx and Z

are of the same dimension and Z is an hypersurface of P*0 x ... x P*»  defined by a unique
equation Resx (fo,..., fn) (up to a scalar), called the resultant of fo,..., fn over X.

Assume that ¢ : A" — X is a polynomial map such that ¢(A™) = Xy is dense in X. Then
fi = f; o ¢ is a polynomial in the variables z = (z1,..., z,) and the Bezoutian © o 18
well defined. The next theorem shows that the resultant Resx(fo, ..., f.) can be recovered
from the Bezoutian matrix Bf -

Theorem 7.3 — Assume that the conditions 7.2 are satisfied and that ¢ : A* — X s
a polynomial map such that its image is dense in X. Then any mazimal minor of the
Bezoutian matriz B, 7 is divisible by the resultant Resx (fo, ..., fn).

Proof. According to the conditions 7.2, the set of coefficients (c; ;) of fi,..., fn such that

Z(fi =+ = f, = 0) is finite is a dense subset of P** x ... x P*» As X = ¢(A") is a dense
subset of X, the set of coefficients ¢; ; such that Z(f; =--- = f, = 0) is finite and in X is
also a dense subset. Let us choose “generic” coefficients in this dense subset, for fi,..., f,.
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Then, the K-vector space K[z1,...,2.]/(fi,..., fn) is of finite dimension. Let us denote
by D, the generic dimension of this quotient. For any fo € R, we denote by r4(fo) the generic
rank of the Bezoutian matrix By 7 . The minors of size ry(fo) of B, are polynomials in
¢, which are not all identically zero and any minor of size r4(fo) + 1 is identically zero.

According to lemma 2.6, for generic values of ¢, the matrix B 7, can be decomposed as

in (1), so that the rank of this matrix is
rank(Mg, ) + rank(Ly, ).

As for generic values of ¢, the variety Z(fy = --- = f, = 0) is empty, the multiplication
matrix M is generically invertible (the eigenvalues of M 7, are the values of fo at the roots

of fl,...,fn), that is of rank D, = dimg (R/(fl,,fn))

Let us choose now fi,..., f, such that their roots are in X, and fy has a common root
with f1,..., fn. In this case, Resx(fo, .- ., fn) = 0. Moreover, we have rank(MfO) < D, (for
fo vanishes at one of the roots of fi,..., fn), and by specialization the rank of Ly, cannot

exceed the generic rank. Thus, the matrix B is of rank < r,4(fo) and all the r4(fo) X 74(fo)
minors vanish.

As the set of systems (fy, ..., fn) such that Z(f; =---= f, =0) C X, and fp vanishes
at one of these points, is a dense subset of the resultant variety Z(Resx(fo,- .-, fn) =0), it
implies that any maximal minor of the Bezoutian matrix vanishes on this resultant variety.
Consequently, any maximal minor (of size r4(fo)) is divisible by the resultant, which proves
the theorem. O

Example 7.4 — We want to compute the “resultant” (in some sense) of

fo=co,0+co1x+ copy
fi=co+ciar+cpy+ (@ +y%) + cra(2? + y?)?
fo =co0 + 212 + Copy + o 3(2? + y?) + coa(@® + y?)2.

Computing the Bezoutian matrix of these polynomials in (z,y), which is a 12 x 12 matrix
of rank 10, and factoring a maximum non-zero minor of this matrix yields

3 9 212
co,1 (—c1,4c2,3 + c13¢2.4)" (€o,1€1,4C22 — C0,1€C1,2C2,4 — €2,1C0,2C1,4 + €1,1C0,2C2.4) (60,2 + ¢co,1 )

4 4 4 2 2 4 4 4 4 4 3 3 4
€o,1 C1,0 C24 +260,1 €0,2°C1,0 C24” +Co2"C1 0 C24 —400,000,1 C1,0°C1,1C2,4" + -+ ).

In order to describe one of these factors as a resultant over a variety X, we consider first
the following map

v AT — A3
(r,y) — (z,9,2° + ).

The closure of its image in P? is a quadric of equation zpzz — (22 + 22) = 0. Let us
consider now the toric variety 7 associated to the polytopes Ay, A1, Ay where Ay = (1,11, t2),
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Ay = (1,t1,t2,t3,t2), and the associated map p from (C*)® to 7 (see [18][chap. 8]). By
construction, the image of p is dense in 7. Let U = y~1((C*)?) be the open subset of A2,
so that p oy defines a map from U to 7. Let Q denotes the closure of its image in 7. In
this case, the vectors L; are just “coordinate” vectors on the toric variety 7. We check that
the conditions 7.2 are satisfied. Thus, by theorem 7.3, Resg(fo, f1, f2) divides a maximal
minor of the Bezoutian matrix.

As for generic equations fi, f2, f3, the number of points in Z(fo = f1 =0), Z(fo = fo =
0), Z(f1 = f2 = 0) is 4 (see for instance [31]), Resg(fo, f1, f2) is homogeneous of degree
4 in the coefficients of each of the equations f;. Thus, it corresponds to the last factor,
containing 1011 monomials.

The factor (00,22 + 00,12) corresponds to an extraneous factor of the resultant over the
closure of v(A?) in P3. If we work in P? instead of 7, the point 2 of the conditions 6.2 is
not satisfied and the projection of Wx is not irreducible but still of codimension 1.

8 Rational representation of the isolated points

The goal of this section is to show how to compute a rational representation of the isolated
roots of an affine variety defined by n equations, directly from Bezoutian matrices and to
deduce bounds on the size of the coefficients in this representation.

Let I =(f1,...,fn) and Vo(I) the set of isolated points of the variety defined by I.

Definition 8.1 — The Chow form of Vo(I) is

Chryennfu (W) = H (wp +ury + - + unGu)Hs,
CEVO(f1y-3fn)

where ¢ is the multiplicity of ( € Z. The reduced Chow form is square-free part of the
Chow form (with no ). It will be denoted by C7 (u).

As the commuting matrices M., of multiplication by the variables z; in A = R/(f1, ..., fn)
can be put in a triangular form in a same basis and their eigenvalues are the i*" coordinates
of the roots, counted with multiplicity, the Chow form Cy, . s, (u) is also the determinant
of wol + us M, + - -+ u,M,,.

The following result is a direct generalization of the methods of [35], [2], [36] to the case
where we have a multiple of the Chow form.

Theorem 8.2 — Let A(u) be a multiple of the reduce Chow form C}(u) of the isolated points
of Vo(I). Then for a generic vector (tg, ..., t,) € K'Y and for t+u = (tg+ug, ..., tn+u,),
we have A

ged(A, 32)

with R(u) € (u1, ..., un)?, ged(do(uo), dy(ug)) =1 and for all ¢ = ((1,-.-,¢n) € Z,
do(Co) G —di(Go) =0, i=1,...,n

(t+u) = do(ug) + urdy (uop) + - - - + wndn(uo) + R(u)
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for some root (o = —t(¢) of do(ug) = 0.

This proposition describes the coordinates of the isolated points ( € Vy(I) as the values
di(uo)
df (uo)
roots of dy(up) yield a point in V(I), so that this representation may be redundant. We will
show hereafter how to remove the extraneous factors. Before proving this result, we need

the following lemma:

of rational fractions at some of the roots of do(ug) = 0. It does not imply that all the

Lemma 8.3 — Let A(u) and B(u) be two polynomials inu = (ug,uy, ..., u,), which are rel-
atively prime. Then for a generic vector (tg, ..., t,) € K** L and for w = (to+uo,t1,...,tn),
A(w) € Kug] and B(w) € Klug] are relatively prime.

Proof. The roots of A(w) (resp. B(w)) correspond to the points of intersection of the line
L; parameterized by L.(ug) = (to + uo, t1,...,t,) with the hypersurface Z(A(u) = 0) (resp.
Z(B(u) = 0)) of K. The intersection of Z(A(u) = B(u) = 0) is of codimension 2,
because the two polynomials A(u) and B(u) are relatively prime. Thus, for generic val-
ues of (to,t1,...,t,), the line L; does not meet the variety Z(A(u) = B(u) = 0) and the
polynomials A(w), B(w) € Klug] have no common root (over K), which proves the lemma. O

Proof of the theorem 8.2. We denote by Zj the set of isolated points of Z(f1,..., fu)-
Let us decompose A(u) as

A(u) = H (UO + UlCl + -+ Ungn)nLH(u)v
CEZy
in such a way that the two polynomials H(ezo (wop + u1Cy + -+ + unln)™ and H(u) are
Au)

W. Itis a polynomlal of the form

relatively prime. We denote by d(u) =

d(u) = T (wo +wCy + -+ + unln) h(u)
Ce2p
where [[ ..z (o + w1 + -+ +un(y) and h(u) are relatively prime. Let t = (fo,...,t,) be
a vector of K**t1. Substituting u by t +u = (to + ug, t; +u1,...,t, +uy,) in d and h yields
the polynomials

dit+u) = do(uo)+urdi(ug) + -+ + undn(ug) + R(u)
= H (t(C) +uo +urCi + -+ unC)h(t +u),
CEZy

h(t+u) = ho(ug) +urhi(uo) + -+ + wnhn(uo) + S(u),
where t(¢) = to + t1(1 + - - + tnCn, and R(u), S(u) € (uq,...,u,)?. By identification of the
coefficients of the monomials in (w1, ..., u,), we obtain

do(uo) = [T (H(¢) + uo) ho(uo)
(EZo
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di(UO) = Z G H +UO h() Uo + H +U0 (Uo)

(€20 ('#C (EZo

Moreover, we also have

dy(ug) = Z H )+ uo) | holug) + H ¢) + uo) hy(uo).

(€20 ¢'#C CEZ

According to lemma 8.3, for generic values of t € K**!, the polynomials [] .z, (t(C) + uo)
and ho(uo) = h(to+uo,t1, ..., t,) are relatively prime, because [ [z, (uo+u1(i+- - +un(y)
and h(u) are relatively prime. Thus for any ¢ € 2, ho(—t(¢)) # 0 and

dy(—t(Q) = [T () = Q) ho(=t(0)
¢'#¢

di(—t(Q) = G [ () = t(Q) ho(—t(Q))-

¢'#C

As ged(do(ug), dy(uo)) = 1, dy(—t(¢)) # 0. Thus, the i*" coordinate of ¢ is given by

Gi= di(¢o)

dy(Co)’
where (o = —t({) is a root of dy(ug) = 0, which concludes the proof. a
In practice, instead of expanding completely the polynomial d(t + u), it would advan-
tageous to consider wq,...,u, as infinitesimal numbers (i.e. u? = w;u; = 0) in order to

get only the first terms dy(ug) + widy(ug) + -+ + undy,(up) of the expansion. The gener-
icity condition on ¢ is satisfied as soon as ged(do(uo),dy(up)) = 1. This can be checked
effectively when A(w) is known. In this case, ¢ is necessarily a separating form, h(ug) and
[1¢ez,(¢(C) + uo) have no common root. Other techniques, like in [36], can also be used to
construct a separating element and this rational representation, when the quotient is known,
for instance through a Groébner basis.

Remark 8.4 — In order to remove the extraneous factors of do(ug), notice that as the

polynomials do(ug) and dj(ug) are relatively prime, the rational functions &;(ug) = Z,EZE))
(1=0,...,n) are well defined at the roots of dy(uo) = 0. The good roots are those for which

gi(ug) = fl(gl(uo) ., &n(ug)) = 0, that is the roots of the irreducible factors of do(u)
which divide the numerator of gi(uo). Thus we can proceed as follows. First, we factorise

do(up) into irreducible factors pi,...,ps. Secondly, we substitute z; by &;(ug) = %
0

in fi,..., fn in order to get the reduced rational functions gi (ug), .- ., gn(uo). Finally, we
keep the irreducible factors p;(ug), which divide the numerators of the fractions g;(ug) (for
i=1,...,n).
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Just as in the previous section, we show now that a multiple A(u) of the Chow form
Cy, ... (w) can be obtained from a non-zero maximal minor of the Bezoutian matrix. This
approach has the advantage to yield an “explicit” formulation for this polynomial A(u), so
that its structure can be handled more carefully (for instance, by working directly on the
matrix form, instead of dealing with the expansion of the minor).

A similar formulation, derived for resultant matrices, can be found for instance in [13].
As explained at the beginning, our approach is not specific to Bezoutian matrices. It also
applies to other kind of resultant matrices (like toric resultant matrices, see [17]). In such

a case, the matrix is square, the determinant is exactly the Chow form of fi,..., f, (for
generic systems f; = --- = f,, = 0), and the roots are (generically) simple.
Proposition 8.5 — Any mazimal minor A(u) of the Bezoutian matriz Bugtuy zy+ +un 2,

of (wo +urzy + -+ -+ unzn, f1,..., fn) is divisible by Cy, .. 1. (w).

Proof. According to lemma 2.6, there exists a basis of R ® R, such that for all fy € R, the
matrix of the Bezoutian matrix By, in this basis is of the form

M 0
Bfo = < Ofo Lfo >

where My, is the matrix of multiplication by f;. Thus any maximal minor of the matrix
woB1 +u1 B, + -+ unB., = Bugtuyz+-tun 2, 1S divisible by

det(uol +ug Mz, + - +un M., ) = Cp, 7, (u).

This leads to the following algorithm:

Algorithm 8.6 — MINIMAL UNIVARIATE RATIONAL REPRESENTATION OF A COMPLETE
INTERSECTION fi,..., fn.

1. Compute a non-zero maximal minor A(u) of the Bezoutian matriX Byt u; 21+ 4w 20, f1,0ees for -

2. Choose a random vector t = (tg,...,t,) of K*™! compute the square-free part d(u)
of A(u), the first terms d(t + u) = do(uo) + widy(uwo) + - -+ + wpdn(ug) + - - - and set
&i(u) = % (fort=1,...,n).

3. Factorise dp(uo) and keep the irreducible factors p; (ug), ..., pr(wo) which divide the nu-
merators of the rational fractions g;(ug) = fi(&1(wo), ..., &n(uo)), fori=1,...,n.

4. Reduce the numerator and denominator of &;(ug) by p;(uo) and call it é:i’j(uo). Return
the representation

pi(ug) =0,z = fi,j(uo),i =1,...,n,
forj=1,...,k.
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As in section 3, we can deduce bounds on degree and the heights of A(u). We use the
notations of lemma 2.7.

Proposition 8.7 — The polynomial A(u) given by theorem 3.1 is at most of degree (e d)™
and the height of its coefficients is bounded by

(n+1)(ed)” (T+(n+1)log(d+1)+log(n+1)+2).

Proof. The proof proceeds exactly as in proposition 3.3, for the Bezoutian matrix is also
linear in w, of size bounded by (ed)™ and of the form By, = ug Mo + - - - + up M,. O

9 Geometric decomposition

In this section, we are interested in systems of equations f; = --- = f, = 0 such that the
variety Z(f1 = --- = f, = 0) is not necessarily of dimension 0. We assume here that this
variety has isolated components of dimension 0 but also components of higher dimension.
We show how to recover the zero dimensional part and the other components, from the
Bezoutian, extending the approach of [8] to the context of affine varieties.

The rational representation of the previous section allows us to recover the Chow form
of the isolated points of the variety, and by using the algorithm 8.6, to compute a rational
representation of these points. Once we have a description of these isolated points, we would
like to compute the isolated components of higher dimension. For this purpose, we describe
now a method which will proceed inductively from the lowest dimensional components to
the components of highest dimension.

We first reduce the description of isolated components of dimension 1, to a zero di-
mensional problem, by considering one variable (say z1) as a parameter. We assume that
the projection from the isolated curves onto the line zo = --- = z, = 0 is dominant, or
that these curves are in Noether position, with respect to the variable z; (see [19] for more
details on this problem). Let K = K(z;) be the fraction field in z;. Then, these curves
correspond to “isolated points” in Klza,...,2n]/(f1,-.., fn). In order to get a square sys-
tem, we will replace the input polynomial system fi, ..., f,, by generic combinations of them
= Zj Xijf;, for i =1,...,n — 1. To ensure that the “isolated points” of Zz(f = 0) are
still isolated in Z7(f] =---= f,_; =0), we need the following lemma:

Lemma 9.1 — Let A be a local ring and (f1,...,fm) C A an ideal of A such that the
quotient A/(f1,-.., fm) is of codimension c¢. Then for generic values of (A; ;) € K°™, the

sequence f! = Z;nzl Xiifi, =1,...,¢) is a reqular sequence of A.
(see [29][chap. 6]).

Thus if p is an isolated point of Z(f1 = -+ = f, = 0), and A = K[za,..., 2], I8
the localization of K{z,...,z,] at p, then the quotient A/(f1,..., fm) is of dimension 0
and for n — 1 generic combinations fi,..., f/,_; of the polynomials fi,..., fm, the quotient
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A/(fl, ..., fl_y) will still be of dimension 0. Consequently, p will be an isolated component
of Z(flv- o fiy).

Therefore, we can apply the perturbation techniques described in this section, in order
to compute the isolated components of this variety, which will give us the isolated curves
of the initial variety. Hiding a new variable and iterating this procedure will give us the
components of dimension 2, 3 and so on. This yields the following algorithm:

Algorithm 9.2 — GEOMETRIC DECOMPOSITION OF A VARIETY.

Let f1,..., fm be m equations, in n variables, with coefficients in a field K.
1. If m > n, choose random combinations fi,..., f! of the input polynomials. If n = 0,
then stop.
2. Compute the Bezoutian matrix of fo = wo + w121 + - +wnzn, f'1,..., f',,, @ maximal

non-zero minor A(u) of this matrix.

3. According to algorithm 8.6, compute a minimal rational representation of the roots of the
system from A(uw).

4. Choose one variable (say z1) as a parameter and proceed to step 1, with n replaced by
n — 1 and K replaced by K(z1).

This decomposition is not necessarily minimal for some of the output components may be
included into components of higher dimension.

The following examples have been computed by S. Tonelli, who implemented in MAPLE
the previous algorithm! during her DEA.

Example 9.3 Intersection of a circle with an hyperbola. We consider the following equa-
tions, where a, b, c are parameters:

lp:= [212 + 22 = 1,(z1 —a) (22 — b) — q.
The 4 (isolated) points are given by the formulas:

> decomp(1p, [z[1],2[2]]1,0);

10000 4 20000 20000 2000 3
[ ug” + ( — b— a) up
10201 10201 10201 10201
(—30000b— 4000 ot 4000 ab @bQ _ 3000 a+@a2+ 4900 )u02+(@b2
10201 10201 10201 101 10201 101 10201 101
5100 4000 4000 1480 200 20 20 o 100 »
- - c ab———a——a"b+ —bc——b'a+—a
10201 10201 10201 10201 101 101 101 101
+—5000 b+@ac)u + 7500 b— 240 a+ 1020 c+c? — 7—5b2—|—£a2—|—£bc
10201 101 °™ To201 10201 10201 101 101 101

lsee http://www.inria.fr/saga/logiciels/multires.html
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+a2b2+—1000 ab—@a2b+@ac——1800 —ﬂan—Qabc,
10201 101 101 10201 101
(—=1000 uo® a + (=100 4 2000 a b — 2000 ¢ 4+ 100 b + 100 a® — 1500 a) up> + (=720 a 4 200 a ¢
— 10305 a 4 100 b — 100 — 2000 ¢ + 2000 a b + 1030 b ¢ + 100 a® — 200 a” b)ug + 75
—110a +530c —404abe — 756> — T7a”> + 500 a b + 202> — 1000 b+ 100 a c

— 51567 a +202a” b% + 515 bc) / (—2000 uo® + (3000 b — 3000 + 300 a) up>

+ (=490 — 400 a b + 300 a + 400 ¢ — 1010 b> — 1010 a® + 3000 b) up — 250b + T4 a
+200¢+1010a*b —1010ac — 101 b+ 101 5% a — 200 a b — 505 a” + 255 — 505 b%),

(—=1000 uo® b + (=200 ¢ — 1000 4 200 a b + 1000 a* + 1000 b> — 1500 b) uo® + (—200 ¢
—2006% a + 1000 6% + 3010 @ c — 1000 + 200 bc 4+ 2250 b + 200 a b — 3010 a> b
+ 1000 a”)uo + 1375 b+ 251 ¢ — 4040 a b c — 240 + 50 a b — 100 b” a + 2020 ¢

— 17606 + 240 a” + 100 b ¢ 4 2020 a” b* — 1505a” b + 1505 a ¢) /(—2000 up®

+ (3000 b — 3000 + 300 @) uo®
+ (—490 — 400 a b + 300 a 4 400 ¢ — 1010 b> — 1010 a” 4 3000 b) ug — 250b + T4 a
+200c¢41010a”b — 1010 ac — 101 be + 101 6> a — 200 a b — 505 a® + 255 — 505 b%))

The first polynomial is the equation in wg defining the 4 points, the other terms are the
rational fractions in uy and in the parameter a, b, ¢ expressing the coordinates of the solution
with respect to ug.

Example 9.4 This is an example containing points, a curve and a surface, and defined by

lp .=

[(21 z3 — 222) (Zl Z9 23 — 1), (22 — 212) (Zl Z9 23 — 1), (23 — 213) (232 — 21 — 1) (Zl Z9 23 — 1)]

> decomp(lp, [z[1], =z[2], =z[311);

A :U07U16 U28 U313 (Ug — ’lL3) (Ug + U3) (’lL3 U2 Uy — ’lL22 U1 + us u12)

d = (Ug — ’lL3) (Ug + U3) (’lL3 U2 Uy — ’lL22 U1 + us U12)U0

113
2500( up +9) (5up + 1) (uo + 1)
42 = 5= (5uo +1) (10up +17) (50 +9) (up + 1)
1
d3 = 155 (2825 up” + 1345 ug — 1381+ 875uo”) (uo + 1)
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The factorization of dg is

14 9 1 221
— -, 1 -, 1 1, 1], , 1))

The minimal rational representation of points is given by

1
0, 0, 1]7 [UO + =

9
[U0+— 57

= 0, 0, —1], [up + 1, 0, 0, 0]

where the first term of each list is the univariate polynomial and the others are the simplified
rational fractions. In this case, we have 3 points (0,0,0), (0,0,1), (0,0, —1).
For the component(s) of dimension 1, taking z; as parameter we obtain

1
A Zﬁ?qm U1 u23 (uo =+ Z12 ur + 2’13 1@)(3042 uz2 U13 Z12 — 1183 uz2 U13 z1 + 720 uz4 Ul 21

— 1872 u02 uz2 up — 432 u03 u22 21 — 936 ug u23 w1 z14 — 1638 ug uz2 u12 21

— 936 ug u23 u1 z1 — 3042 uo uz u1 + 1872 uo U2 u12 212 — 792 u02 u22 U1 21

— 432 uo uz 21 + 432 ug z1 + 216 uz 21 + 936 us u12 z15 u02 + 432 u22 w1 z12 u02

+ 2808 uo u13 z1 uo + 432 uz w1 213 u02 + 864 uso u12 21 u02 + 936 u23 U1 212 ug

+ 1014 us ur”® 21% wo® + 2736 ua® w1® 21 wo + 216 uz® uo — 864 uz u1® z1* uo + 468 us® up>
+ 2028 us u13 z15 ug + 864 u22 u12 214 ug + 864uz2 u12 215 ug — 1152 us u14 z14

— 864 ug ur® 21% ug + 648 ux® 212 — 43212 217 up® — 432 ux” we® + 432 un* 21 ug

+ 216 up" 217 uo — 936 w1 > 21 up? — 216wy 217 up® — 468 u1® 217 + 216 Uz 21> ug?

— 2197 w2 ur® + 936 uz 21% w1 we® — 1014 ur® 20% + 216 w1 ° 21° + 3042 w1 2 212 ue®

+ 4178 ur* 217 uo — 252 u1® 21® — 216 ur® 21% wo + 2413wy ® 21t + 1404 uy wo® + 3042 w1 wo®
+ 2197 ur® uo? + 1092 ug ur* 212 — 468 up® — 432 us* w1 21° — 1014 uo® ur? 213

—936us up? 213 — 432 u,® z13 u02 + 468 u24 u1 + 432 us" 212 — 252 us® 21 — 216 ug urt 21°
+ 36 u24 w1 z1 — 216 us u1 21 + 936 uz u1 z1 + 1014 uz u1 21 + 1728 us uy z12 ug
+2028 us urt 21 4+ 216 up® — 216 ua® ur 21 + 2574 up ur® 212 + 936 w2 ur ? 21 °

— 1014 U14 214UO + 864U2 U12 212 UO2 — 78 ug U12 214)

The numerators are

g BTL 6 219 o 169 4o 2096 1043 5
= 722500 “°°" T 35000 ¢ T 12500 © 5625 °°1 T Gooo St 1P
493 o LB3 o ISTT o 3500, 22139 5 4T549 g
150000 * T 75000 ¢ T 112500 1 T 120000 ~' " 90000 ° 7' T 1800000 '
L2 5 +3926u LMLy 9 2399 9351,
25717 T 00t Y T 0 M Y T 30000 T 600000 ' 4500 0
880238, 433 5 56T o 39 o o B 5 13 5 4 049
1800000 "~ 120000 ' T 5000 °°' T 250 ° M T 207t T4 TR0 995000
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2669 5 24397 , 2047 P 2097 B3 5o 13,
30000 ' T 180000 °“' T 30000 °*' T Gooo ° T oo b Y0 T L He
2 a4, 0T oo 13 6 0 3 2 M3 5 s 9 4 s 143 4
571 U0 T URp00 M0 T g Ct M0 Tgg M0 T pp ct Mo T gyt Mo T gy o
_2093u3+1409u2+9u5
1800 ° T 60000 °' T
253 6 111 o 169 ., 3883 L1027 4
92 =gmeg o Y 5e5 Y 300 2 T 5000 Y07 Y+ 3mo00 2t W0
5087 4 4951 . 24619 . 6383 , 47369 . 118193 .
21 21 21 21 Up 21 prep——i |
150000 150000 675000 450000 135000 2700000
L2 55 T g5 19 5 05 296 23 LB, 1783
— Z U — Z U — —Z U — U z — Z U — zZ
75 71 70 Ty R0 Tt R0 T a5 0 T 120000 T T 1257 0 T 75000
45739 . 253 e 13, 4 1 s T s 4 s 5 . 353
v = - z Z ) kel
1350000 71 T g7s M0t T gp e Aty Attt g st Fant e+ gany
77 ), P33, 6311 109 o, 2T 5 g3
— ————Up % — Up % — U — Z U —_ — zZ =z
45000 °71 T E625 071 T 2000 T 900000 ' 750 Y Y T 125 0t !
637 67 3 224 27 6
_ - 4 2 2 _ 6 2 -~ 2 _ == 3 3 _ =" 4 3 _ - 4
521U T 1gp B M0 Tgpp fL MoT T gp BT T gpg AT MoT T o0 A1 T — i
L1, 1063
— Up 2
40 ° 60000 °°*
The factorization of dgy is
1 1 5 3 5 377 4 13 35
[1, [[uwo — 0 + 5 21+ 0 217, 1], [——45000 U 21 — 500 z1° uo
607 o, 169 . 15091 ., 199 s, B3 52
z z zZ U 2 zZ — Z U
225000 "+ " 75000 7" " 2700000 7t " 7500 °°' T 300000 7t T 25t O
1759 671 133 , , 9619 , 13 . 9 5,3
— U Z1 — zZ U — Z z — — 21U —Z
54000 ° 600000 " 1500 " 7 T 13500007t T 31257 50t T 0™t
L 19 . 22981 o 3409 o, 3539 13 o, 1o, o
— U % —— Up % — U — — Z U — =z U
15000 °°t T 270000 ° 7t T 54000 ° 675000 | 250 1 ° T 5t ®
9 , , 9 s, T 4 o4 4, 11 , 183 .
il = L ot — — 1
t37g A T+ g st + g st ue” + guo” — gopue” + qaaes e 21+ o 1]

After simplification, we obtain the following rational parameterization of the unique com-

ponent of dimension 1:
L 5 3 3 o 3
U ——+- 2z +-—=2",4,%
wo—qg s tgat ol
The first term is the equation in uy with parameter z, and the parameterization of the curve
is [21, 212, 213] (independent of ug, because of the choice of the parameter zy).

For the components of dimension 2, we have

4102
= — ﬁzf 223 (UO Z1 22 + U1)(185 UO3 + 185 213U1 UO2 — 59 Z1Uug U12 — 185 up U12

—185u1® 21t — 185 u1® 2% + 88 u1® 217 + 126 u1® 202 — 88 201y ?)
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22315635027 19886722371 6634377981 )
dl =———MMM— Z1 22 ——————— %1 22 — - ”1 %2

25000000000 25000000000 15625000000

_ 1604494809, 37996892073 5 6634377981 5 1062649287
15625000000 = %~ 62500000000 > “' T 15625000000 © “* 625000000 °*t*?
52069815063 4, 6634377981 , 37996892073 5

- ——— up 2122 — ——————up 22" 21
25000000000 6250000000 25000000000
15028897059 . 15028897059 35584390989 88659414837

4+ ———— up z1 22 + () Z1 22
10000000000 10000000000 125000000000 62500000000
15480215289 15480215280 5 43568620767 5 6634377981 5

2 1 1 Uug z1 22

15625000000 ‘ 15625000000 e 25000000000 T 6250000000
22315635027 5 1062649287 3 5 1062649287 3
+————————wpz1" o+ ————— 21" wo —————— 21w
10000000000 500000000 625000000

455421123 4 o 1694494809 2 1694494809

—————— 21 22U — ———— 21 ZoaUp — ————— 21" Z2 U
250000000 2500000000 3125000000
151807041 4 3 1062649287 19886722371 1062649287 Py

~ 700000000 -1 *2"° T 3125000000 ~ “2 T 25000000000 500000000 L <%0
455421123 5, 151807041 5 35584390989
— ug. — uo Uuo 21
250000000 100000000 50000000000
The factorization of dy is
[—451807041 Tuo? 6 5 T 5 > 2891 14 4
100000000 "1 5T T 10t Y T ags00 07t T 25 7t 0
1 343 , 231 5 3773 o 2891 21609 , 3773 33
——up+ ——21 + 21" — o 21 T = X1 — 22 29 — —, 1],
100 1000 1000 23125 46250 92500 23125 250

2 7
[3 z1z2 + uo 21 22 — 10 1]1]

which yields the following rational representation for the component of dimension 2:

[2 n 7 1
— 2122+ uUpz X2 — =, ——
5 A1%2 021 %2 10" 21 2

References

[1] L.A. Aizenberg and A. M. Kytmanov. Multdimensional analogues of newtons formulas
for systems of nonlinear algebraic equations and some of their applications. Trans. from
Sib. Mat. Zhurnal, 22(2):19-39, 1981.

[2] M.E. Alonso, E. Becker, M.F. Roy, and T. Wérmann. Zeros, multiplicities and idem-
potents for zero dimensional systems. In L. Gonzélez and T. Recio, editors, Algorithms
in Algebraic Geometry and Applications, volume 143 of Prog. in Math., pages 1-15.
Birkh&user, Basel, 1996.

[3] H. Bass, F.H. Conell, and D. Wright. The Jacobian Conjecture: reduction of degree
and formal expansion of the inverse. Bull. Amer. Math. Soc., 7:287-330, 1982.

RR n® 3572



36 Mohamed Elkadi , Bernard Mourrain

[4] E. Becker, J.P. Cardinal, M.F. Roy, and Z. Szafraniec. Multivariate Bezoutians, Kro-
necker symbol and Eisenbud-Levin formula. In L. Gonzalez and T. Recio, editors,
Algorithms in Algebraic Geometry and Applications, volume 143 of Prog. in Math.,
pages 79-104. Birkhiuser, Basel, 1996.

[5] C.A. Berenstein, R. Gay, A. Vidras, and A. Yger. Residue Currents and Bezout Iden-
tities, volume 114 of Prog. in Math. Birkhduser, 1993.

[6] E. Bézout. Théorie Générale des Equations Algébriques. Paris, 1779.

[7] Berenstein C.A. and A. Yger. Residue calculus and Effective Nullstellensatz. Technical
report, University of Maryland, 1996.

[8] J. Canny. Generalised characteristic polynomials. J. Symbolic Computation, 9:241-250,
1990.

[9] J.P. Cardinal and B. Mourrain. Algebraic approach of residues and applications. In
J. Renegar, M. Shub, and S. Smale, editors, Proc. AMS-SIAM Summer Seminar on
Math. of Numerical Analysis, (Park City, Utah, 1995), volume 32 of Lectures in Applied
Math., pages 189-210. Am. Math. Soc. Press, 1996.

[10] E. Cattani and A. Dickenstein. A global view of residues in the torus. J. of Pure and
Applied Algebra, 117 & 118:119-144, 1996.

[11] E. Cattani, A. Dickenstein, and B. Sturmfels. Computing multidimensional residues.
In L. Gonzalez-Vega and T. Recio, editors, Algorithms in Algebraic Geometry and Ap-
plications, volume 143 of Prog. in Math. Birkhduser, Basel, 1996.

[12] J. Chadzynski and T. Krasinski. On the Lojasiewicz exponent at infinity for polynomial
mappings of C? into C?> and components of polynomial automorphisms of C2. Ann.
Pol. Math., pages 291-302, 1992.

[13] M. Chardin. Multivariate subresultants. J. Pure and Appl. Alg., 101:129-138, 1995.

[14] A. Dickenstein and C. Sessa. An effective residual criterion for the membership problem
in Clz1,...,2,). J. Pure Appl. Algebra, 74:149-158, 1991.

[15] M. Elkadi. Bornes pour les Degrés et les Hauteurs dans le Probléme de Division.
Michigan Math. J., 40:609-618, 1993.

[16] M. Elkadi and B. Mourrain. Approche Effective des Résidus Algébriques. Rapport de
Recherche 2884, INRIA, 1996.

[17] I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse resultant
and the mixed volume. J. Symbolic Computation, 20(2):117-149, August 1995.

[18] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Resultants and
Multidimensional Determinants. Birkhduser, Boston-Basel-Berlin, 1994.

INRIA



Some applications of Bezoutians in Effective Algebraic Geometry 37

[19] M. Giusti and J. Heintz. La détermination des points isolés et de la dimension d’une
variété algebrique peut se faire en temps polynomial. In Proc Int. Meeting on Commu-
tative Algebra, volume XXXIV of Symp. Mathematica, pages 216-255, Cortona,1991.

[20] M. Giusti, J. Heintz, K. Hagele, J.E. Morais, L.M. Pardo, and S.L. Montafla. Lower
bounds for diophantine approaximations. J. of Pure and Applied Algebra, 117 &
118:119-144, 1996.

[21] L. Gonzalez-Vega and G. Trujillo. Using symmetric functions to describe the solution
of a zero dimensional ideal. In G. Cohen, M. Giusti, and T. Mora, editors, AAECC"95,
volume 948 of LNCS, pages 232—247. Springer-Verlag, 1995.

[22] Ph. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley Interscience, New
York, 1978.

[23] W. Grobner. Moderne algebraische Geometrie. Springer-Verlag, 1949.
[24] L. Habsieger. Sur un probléme combinatoire. Communication personnelle, 1998.

[25] J. Harris. Algebraic Geometry, a fisrt course, volume 133 of Graduate Texts in Math.
Springer, 1992.

[26] T. Krick and L.M. Pardo. A computational method for diophatine approximation. In
L. Gonzalez-Vega and T. Recio, editors, Algorithms in Algebraic Geometry and Appli-
cations, volume 143 of Prog. in Math., pages 193-254. Birkh&user, Basel, 1996.

[27] E. Kunz. Kdhler differentials. Advanced lectures in Mathematics. Friedr. Vieweg and
Sohn, 1986.

[28] S. Lang. Algebra. Addison-Wesley, 1980.

[29] H. Matsumura. Commutative Algebra. Mathematics Lecture Notes Series. The Ben-
jamin/Cummings Publishing Company, 1980.

[30] E. Mayr and A. Meyer. The complexity of the word problem for commutative semi-
groups and polynomial ideals. Adv. in Math., 127:305-329, 1998.

[31] B. Mourrain. Enumeration problems in Geometry, Robotics and Vision. In L. Gonzales
and T. Recio, editors, Algorithms in Algebraic Geometry and Applications, volume 143
of Prog. in Math., pages 285-306. Birkduser, Basel, 1996.

[32] B. Mourrain. Computing isolated polynomial roots by matrix methods. J. Symbolic
Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, Dec. 1998.

33| A. Ploski. On the growth of proper polynomial mappings. Ann. Pol. Math., 45291*309,
g

RR n® 3572



38 Mohamed Elkadi , Bernard Mourrain

[34] A. Ploski. Algebraic dependence and polynomial automorphisms. Bull. Pol. Acad. Sci.
Math., 34:653-659, 1986.

[35] J. Renegar. On the computational complexity and geometry of the first order theory
of reals (I, II, III). J. Symbolic Computation, 13(3):255-352, 1992.

[36] F. Rouillier. Algorithmes efficaces pour l’étude des zéros réels des systémes polynomiauz.
PhD thesis, Université de Rennes, 1996.

[37] F. Rouillier. Solving zero-dimensional polynomial systems throuhg Rational Univariate
Representation. Technical Report 3426, INRIA, Lorraine, France, May 1998.

[38] G. Scheja and U. Storch. Uber Spurfunktionen bei vollstindigen Durschnitten. Journal
Reine Angew Mathematik, 278:174-190, 1975.

[39] I.R. Shafarevitch. Basic Algebraic Geometry. Springer Verlag, 1974.
[40] B.L. Van der Waerden. Modern algebra, Vol. II. Frederick Ungar Publishing Co, 1948.

[41] W.V. Vasconcelos. Computational Methods in Commutative Algebra and Algebraic Ge-
ometry, volume 2 of Algorithms and Computation in Mathematics. Springer, 1998.

INRIA



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I'Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



