Instructor: Shuhong Gao

CSC478S/2412S: Computer Algebra Characterizations of Gröbner bases: a simple proof

Let $\mathbb{F}[X]$ denote $\mathbb{F}[x_1, x_2, \dots, x_n]$ and T_x the set of terms: $x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ for all $i_1, i_2, \dots, i_n \geq 0$. Terms are ordered by some fixed admissible total ordering <. As in the text book, let hterm(p), M(p), hcoeff(p) denote the head term, head monomial, head coefficient of $p \in \mathbb{F}[X]$, respectively, so that $M(p) = \text{hcoeff}(p) \cdot \text{hterm}(p)$. Let $G \subset \mathbb{F}[X]$ be a set of polynomials. For $p, q \in \mathbb{F}[X] \setminus \{0\}$, a reduction

 $p \longmapsto_G q$ means that $q = p - ((\alpha t)/M(g))g$ where $p = \alpha t + r$ with $\alpha \in \mathbb{F} \setminus \{0\}, t \in T_x, g \in G$, $r \in \mathbb{F}[X]$ such that $\operatorname{hterm}(g)|t$ and t does not appear in r.

Write $p \stackrel{+}{\longmapsto}_G q$ if $p = p_0 \longmapsto_G p_1 \longmapsto_G \cdots \longmapsto_G p_k = q$ for some polynomials $p_i \in \mathbb{F}[X]$, i.e. there exist a sequence of reductions that reduces p to q modulo G. Write $p \stackrel{*}{\longmapsto}_G q$ if $p \stackrel{+}{\longmapsto}_G q$ and qis irreducible (no term in q is divisible by the head term of any polynomial in G); we say that q is an irreducible successor of p modulo G.

Observe that for any monomial u, if $p \stackrel{+}{\longmapsto}_G q$ then $up \stackrel{+}{\longmapsto}_G uq$.

Lemma 1 Let $f, g, h, h_1 \in \mathbb{F}[X]$ and $G \subset \mathbb{F}[X]$. If f - g = h and $h \stackrel{+}{\longmapsto}_G h_1$ then there exist $f_1,g_1\in\mathbb{F}[X]$ such that

$$h_1 = f_1 - g_1, \quad f \stackrel{+}{\longmapsto}_G f_1, \quad g \stackrel{+}{\longmapsto}_G g_1.$$

Proof. Induction on the number k of steps in $h \stackrel{+}{\longmapsto}_G h_1$. Base case k = 0, trivial. Assume the lemma holds for k-1. Suppose that $h \xrightarrow{+}_G h_2 \xrightarrow{-}_p h_1$ where $p \in G$ and the first part takes k-1 steps. By induction hypothesis, there exist $f_2, g_2 \in \mathbb{F}[X]$ such that

$$h_2 = f_2 - g_2, \quad f \stackrel{+}{\longmapsto}_G f_2, \quad g \stackrel{+}{\longmapsto}_G g_2.$$

As $h_2 \longmapsto_p h_1$, we have $h_1 = h_2 - (c/b)u \cdot p$ where b = hcoeff(p), $u \in T_x$, and $u \cdot \text{hterm}(p)$ is a term in h_2 with coefficient $c \neq 0$. Let c_1 and c_2 be the coefficients of the term $u \cdot \text{hterm}(p)$ in f_2 and g_2 , respectively. Set

$$f_1 = f_2 - \frac{c_1}{b}u \cdot p, \ g_1 = g_2 - \frac{c_2}{b}u \cdot p.$$

Then $f_2 \longmapsto_p f_1$ if $c_1 \neq 0$, and $g_2 \longmapsto_p g_1$ if $c_2 \neq 0$. So $f \stackrel{+}{\longmapsto_G} f_1$ and $g \stackrel{+}{\longmapsto_G} g_1$. Note that $c_1 - c_2 = c_1$ and $f_1 - g_1 = h_1$. The proof is complete.

Note that when both f and g reduce to 0 modulo G, their sum f + g may not reduce to 0 at all. For example, $G = \{x, x+1\}$, f = -x and g = x+1. The question is when this does not happen. The following lemma answers this question partially.

Lemma 2 Let $G \subset \mathbb{F}[X]$. If $f, g \in \mathbb{F}[X]$ always reduce to 0 in any full reductions modulo G,

then so does f + g.

Proof. Suppose that $f+g \xrightarrow{*}_G h$ and $h \neq 0$ is irreducible. By Lemma 1, there exist $f_1, g_1 \in \mathbb{F}[X]$ such that (note that f+g=f-(-g))

$$h = f_1 + g_1, \quad f \xrightarrow{+}_G f_1, \quad g \xrightarrow{+}_G g_1. \tag{1}$$

Let v = hterm(h). Write

$$f_1 = h_1 + f_2$$
, $g_1 = -h_1 + g_2$, $h = f_2 + g_2$,

where all the terms in h_1 are bigger than v and those in f_2 and g_2 are at most v.

By assumption, f and g always reduce to 0 in any full reductions modulo G. Now we reduce them in the following steps:

- (1) $f \xrightarrow{+}_G f_1, g \xrightarrow{+}_G g_1$ as in (1).
- (2) Reduce all the terms of $f_1 = h_1 + f_2$ and

 $g_1 = -h_1 + g_2$ that are bigger than v, until the head terms become $\leq v$. In this step, no terms $\leq v$ were reduced. In particular, no terms in f_2 and g_2 were reduced. The reductions for f_1 and g_1 are the same as applied directly to h_1 (except for the minus sign for g_1). Let $h_1 \stackrel{+}{\longmapsto}_G h_2$, where it is the first time that hterm $(h_2) \leq v$. Then

$$f_1 = h_1 + f_2 \xrightarrow{+}_G h_2 + f_2, \quad g_1 = h_1 + g_2 \xrightarrow{+}_G -h_2 + g_2.$$

(3) Reduce $h_2 + f_2$ and $-h_2 + g_2$ to 0.

Since $h = (h_2 + f_2) + (-h_2 + g_2)$ and $v = \operatorname{hterm}(h)$, at least one of $h_2 + f_2$ and $-h_2 + g_2$ has v as its head term. But $v = \operatorname{hterm}(h)$ is irreducible modulo G by assumption, so one of them can not be reduced to 0 in step (3) (head term never cancel when reducing lower order terms). This is a contradiction. Thus h must be 0, and every full reduction of f + g reduces to 0.

Theorem 3 If f and g have only one irreducible successor modulo G, say f_1 and g_1 , respectively, then $f_1 + g_1$ is the only irreducible successor of f + g modulo G.

Proof. Since f_1 and g_1 are irreducible modulo G,

the assumption of the theorem implies that $f - f_1$ and $g - g_1$ always reduce to 0 modulo G. By Lemma 2,

$$(f+g)-(f_1+g_1)=(f-f_1)+(g-g_1) \xrightarrow{*}_G 0.$$

But $f_1 + g_1$ is irreducible, the result follows.

Remark. A straight induction shows that Lemma 2 and Theorem 3 hold for any finite sum of polynomials.

Definition. The S-polynomial of $p, q \in \mathbb{F}[X]$ is defined as:

$$Spoly(p,q) = lcm(M(p), M(q)) \left[\frac{p}{M(p)} - \frac{q}{M(q)} \right].$$

Note that hterm(Spoly(p, q)) < lcm(M(p), M(q)).

Theorem 4 The following are equivalent:

- (i) G is a Gröbner basis, i.e., $p \stackrel{*}{\longmapsto}_G 0$ for every $p \in G > G$ (the ideal generated by polynomials in G).
- (ii) $Spoly(p,q) \xrightarrow{*}_{G} 0$ for all $p,q \in G$.
- (iii) For any $p \in \mathbb{F}[X]$, if $p \stackrel{*}{\longmapsto}_G q$ and $p \stackrel{*}{\longmapsto}_G r$ then q = r.

Proof. (i) \Longrightarrow (ii) Since Spoly $(p,q) \in G >$, it follows from the definition of Gröbner bases.

- (iii) \Longrightarrow (i) For $p \in G$, there exist $h_i \in \mathbb{F}[X]$, $g_i \in G$, $1 \le i \le k$, such that $p = \sum_{i=1}^k h_i g_i$. Since $h_i g_i$ reduces to 0 modulo g_i for $1 \le i \le k$, condition (iii) and Therefore 3 imply that $p \overset{*}{\longmapsto}_G 0$.
- (ii) \Longrightarrow (iii) Prove by induction on the head term of p. Base case: hterm(p) = 1. p is either irreducible if G contains no nonzero constant or reduce to 0 otherwise. Assume that (iii) holds for all p with hterm(p) < t for a fixed term $t \in T_x$. We want to prove that (iii) holds for all p with hterm(p) = t.

If t is irreducible modulo G, then all reductions are in the lower order terms of p, i.e., p - M(p) which always reduces to the same irreducible polynomial by induction hypothesis.

So assume that t is reducible modulo G. Let

$$p \xrightarrow{*}_G q, \quad p \xrightarrow{*}_G r.$$

Consider the first time t is reduced. Suppose that

$$p = M(p) + (p - M(p)) \xrightarrow{+}_{G} M(p) + q_{1} \xrightarrow{}_{g_{1}} p_{1} + q_{1} \xrightarrow{*}_{G} q,$$

and

$$p = M(p) + (p - M(p)) \xrightarrow{+}_{G} M(p) + r_{1} \xrightarrow{\longmapsto}_{g_{2}} p_{2} + r_{1} \xrightarrow{*}_{G} r,$$

where $g_1, g_2 \in G$ whose head terms divide t = hterm(p) and

$$p_1 = M(p) - \frac{M(p)}{M(g_1)}g_1, \quad p_2 = M(p) - \frac{M(p)}{M(g_2)}g_2.$$

Since the head terms of p - M(p), $q_1, r_1, p_1, p_2, p_1 + q_1, p_2 + r_1$ are all < t, each of them has only one irreducible successor by induction hypothesis. Note that q_1 and r_1 have the same irreducible successor as p - M(p), say p_0 .

It follows from Theorem 3 that $q = \tilde{p}_1 + p_0$ and $r = \tilde{p}_2 + p_0$ where $p_1 \stackrel{*}{\longmapsto}_G \tilde{p}_1$ and $p_2 \stackrel{*}{\longmapsto}_G \tilde{p}_2$.

Now we just need to prove that $\tilde{p}_1 = \tilde{p}_2$. Note that

$$p_{1} = (p_{1} - p_{2}) + p_{2}$$

$$= M(p) \left(\frac{g_{2}}{M(g_{2})} - \frac{g_{1}}{M(g_{1})} \right) + p_{2}$$

$$= \alpha u \cdot \text{Spoly}(g_{2}, g_{1}) + p_{2},$$

where $\alpha \in \mathbb{F} \setminus \{0\}$,

 $u = M(p)/\text{lcm}(M(g_1), M(g_2)) \in T_x$. As $\text{Spoly}(g_2, g_1) \xrightarrow{*}_G 0$, we have $\alpha u \cdot \text{Spoly}(g_2, g_1) \xrightarrow{*}_G 0$. Since the head term of $\text{Spoly}(g_2, g_1)$ is less than

 $lcm(M(g_1), M(g_2))$, the head term of $\alpha u \cdot Spoly(g_2, g_1)$ is less than t. By induction hypothesis, $\alpha u \cdot Spoly(g_2, g_1)$ has only one irreducible successor, i.e. 0. Therefore, by Theorem 3 again, p_1 and p_2 have the same irreducible successor, i.e., $\tilde{p}_1 = \tilde{p}_2$. This completes the induction, and thus the proof. \square

Corollary 5 G is a Gröbner basis if and only if for all $p, q \in G$ either $Spoly(p, q) \xrightarrow{*}_{G} 0$ or there exists $h \in G$ such that

$$hterm(h)|lcm(M(p), M(q)), Spoly(p, h) \xrightarrow{*}_{G} 0, Spoly(h, q) \xrightarrow{*}_{G} 0.$$

Proof. If we replace (ii) in Theorem 4 with the above condition, we need only to ajust the proof that (ii) \implies (iii). Note that everything holds except for the proof $\tilde{p}_1 = \tilde{p}_2$ in the last paragraph.

This is easy to do under the new condition. Since hterm(h)|lcm(M(p), M(q)), hterm(h)|t. Let

$$h_1 = M(p) - \frac{M(p)}{M(h)}h.$$

Write

$$p_1 = p_2 + (-p_2 + h_1) + (-h_1 + p_1)$$

= $p_2 + \alpha_2 u_2 \cdot \text{Spoly}(g_2, h) + \alpha_1 u_1 \cdot \text{Spoly}(h, g_1),$

where $\alpha_1, \alpha_2 \in \mathbb{F} \setminus \{0\}$, and $u_1, u_2 \in T_x$. All the polynomials have head terms < t. The remaining arguments apply.

The next corollary is proved similarly.

Corollary 6 G is a Gröbner basis if and only if for all $p, q \in G$ there exist $h_0, h_1, \dots, h_k \in G$, where $h_0 = p$ and $h_k = q$, such that

$$hterm(h_i)|lcm(M(p), M(q)), Spoly(h_i, h_{i+1}) \xrightarrow{*}_G 0, 0 \le i \le k-1.$$