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CHAPTER 10
GROEBNER BASES FOR

POLYNOMIAL IDEALS

10.1. INTRODUCTION

We have already scen that, among the various algebraic objects we have
encountered, polynomials play a central role in symbolic computation. Indeed,
many of the {(higher-level) algorithms discussed in Chapter 9 (and later in
Chapter 11) depend heavily on computation with multivariate polynomials.
Hence, considerable effort has been devoted to improving the cfficiency of algo-
rithms for arithmetic, GCID’s and factorization of polynomials. It also happens,
though, that a fairly wide varicly of problems involving polynomials (among
them, simplification and the solution of cquations) may be formulated in terms
of polynomial ideals. This should come as no surprize, since we have alrcady
used particular types of idcal bases (i.c. thosc derived as kernels of homomor-
phisms) fo obtain algorithms based on interpolation and Hensel's Lemma, Still,
satisfactory algorithmic solutions for many such problems did not exist until the
Jairly recent development of a special type of ideal basis, namely the Grocbner
basis.

We recall that, given a commutative ring with identity R, a non-emply sub-
sel I € R is an ideal when

(1) P,(]C—:i = P““f!e]:
(inpe LLre R = rpcl
Every (finite) set of polynomials P = {py, ..., ppt C Flxg, ..., x,] generates an

ideal
k .
CP o Zpy, > o= A ape Lap €F[xg, L x,) )
Pl

The st 2 s then said to Torm a basis for this ideal. Unfortunately, while P gen-
crates the {infinite) set </ 2>, the polynomials p; in 7 may not yicld much insight
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into the nature of this ideal. For example, a set of simple polynomials over Q

such as

P o= x3yz — xz%, Py = xyzz —Xyz, p= xzy?' e

generates a polynomial ideal in Q[x,y,z]; namely,

<pis Pz 13> = {aypy + agpa 4 azpy | @y, g, 03 €QLx,y 2]}
It is not difficult to show that ¢ = x%yz — z° is a member of this ideal since one
can find polynomials a, b, ¢ such that

q = apy + bpy + s -

In this case, one could eventually determine these a, b, ¢ by trial-and-error.
However, it is generatly a difficult problem to decide whether a given ¢ is in the
ideal <py, ..., p> for arbitrary polynomials p;. Woc mention that the "ideal

membership” problem (which was considered, but not fully solved by Hermann
[22} in 1926) may be viewed as an instance of the "zero-equivalence” problem
studied in Chapter 3. For example, deciding if ¢ € <py, py, 3> in the previous
problem is the same as deciding if ¢ simplifics to 0 with respect to the side rela-
tions
,1'3yz ozt e a, xy?'z —xyz = 0, xy*—z° = (.
It is casy to show that for a [ixed set of polynomials P, the relation ~ defined by
G1~q2 = e <F>
is an equivalence relation. Hence, both of these problems will be solved if we
can find a normal function (i.c. a zero-equivalence simplificr) for Fley, -.., x,]
with respect (o ~.
Consider also the problem of solving a system of nonlincar cquations
po= 0, pp =0, ..., pp =0,

where cach p; € Flxq, ..., x,] and F is a ficld. In the previous chapter we used
resultants to transform a set of polynomials P = {p;, ..., p} into an cquivalent

set (i.e. one with all of the original common zeros) from which the roots could be
more casily obtained. For example, the nonlincar system of cquations

(B =P Sy —2y +1 = 0, ' ~2xp +x —4y° =7 = 0}
may be "reduced” into the system

{..\'2)-‘ X e Sxy -2y o= 0

% e Ty A x =4y =T = O

16y 4+ v0 —a2yd 1 85yt — 37 3607 4 T8y — 48 = 0}
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which is then solved. However, we noted in Chapter 10 that such a reduced 5yS- .
tem will not always exist; moreover one cannot always tell from a reduced system
whether a given system of equations is solvable or not. In hindsight, it should be
clear that a reduced system for P is simply an alternate (but more useful) basis
for the ideal <P>. What we would like, however, is an alternate ideal basis
which always exists and from which the existence and uniquencss of solutions (as
well as the solutions themselves) may easily be determined.

[t is reasonable to wonder if the above problems might be solvable, if only
an arbitrary ideal basis could be transformed into a sufficiently potent form. In
fact, Hironaka [23] established the existence of such a basis (which he called a
"standard basis"} for ideals of formal power serics in 1964. IHowever it was
Buchberger [5] who, in his Ph.D. thesis, first preseated an algoritiun to perform
the required transformation in the context of polynomial ideals. He soon named
these special bases Groebner bases (after his supervisor, W. Groebner), and
refined both the concept and algorithm further. Hence, most of the concepts
(and, in fact, many of the proofs) we present arve due to Buchberger. Today, .
most modern computer algebra  systems include an implementation of
Buchberger’s algorithm.

In this chapter, we wiil first present the concepts of reduction and Groebner
bases, in terms of the ideal membership problem. We develop Buchberger’s
algorithm for computing Groebner bases, and consider its practical improvement.
Various extensions of the algorithm, and its connection with other symbolic algo-
rithms are (briefly) discussed. Finally, we examine some of the applications of
Grocebner bases, including solving systems of algebraic equations.

10.2. TERMS ORDERINGS AND REDUCTION

For univariate polynomials, the zero-equivalence problem is casily solved
since Fix] is a Euclidean domain. Hence, we can ssimplify with respect to
univariate polynomials using ordinary polynomial division {i.e. the rem func-
tion). For multivariate domains, however, the situation is much less ciear, as our
previous example shows. Still, it was pointed out in Chapter 5 that a multivariate
polynomial domain over a [icld (while not a Euclidean domain, or even a princi-
pal ideal domain} is a Noetherian ideal domain; that is, every ideal in such a
domain has a finite basis. Fortunately, this is almost enough to allow us to solve
the above problems (and more). The missing (but easily supplied) clement is a
small amount of additional structure on the polynomial ring, which will permit a
more algorithmic treatment of multivariate polynomials. As in carlier chapters,
we will denote the polynomial ring by F[x] when the (ordered) sct of variables
X = (X7, &g, ..., 1,) is understood.
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Orderings of Multivariate Terms
We begin by defining the set of rerms in x by
Ty = {x{‘ cexM gy, iy €N Y,
where N is the set of non-negative integers. Note that this constitutes a (vector

space) basis for F[x] over the field (coefficient domain) F. We will require that
these terms be ordered as follows.

Definition 10.1. An admissible total ordering < for the set Ty is one which satis-

{ies:

(i) 1 <rt,
(1) s <t = su <gpiu
forail s, 7, u €T, where 1 = x10 xS,

A wide variety of admissible orderings are possible. (See, for example, Exercise
10.17.) However, we will discuss the two which are most common ia the litera-
ture {(and which scem to be the most useful in practice).

Definition 10.2. The (pure) lexicographic term ordering is defined by
s=ap o xy < X x =1 e

A0 such that §; < j; and i = j,, 1 <k <1,

|
Note that by specifying the polynomial ring as Flxy, ..., x,], the precedence
S W JR s A S
is implied.
Exampte 10.1. The trivariate terms in x, y, z are lexicographically orderced
1< 2 <0< - <y <y <y yz? <,
Gyt G <
"

Definition 10.3. The (rotal) degree (or graduated) term ordering is defined by

! i ' o
s=x o x <p oAt X = <=

deg(s) < deg(r) . or
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{deg(s) = deg(s} and
3! such thati; >, and iy = j,, | <k <n}.

We note that terms of equal total degree are ordered using an inverse lexico-
graphic ordering, which is admissible within these graduations. Obviously, a dif-
ferent term ordering results from using the regular lexicographic ordering for this
purpose. Both types are referred to as “total degree” orderings in the literature;
however, we will use Definition 10.3 exclusively.

Example 10.2. The trivariate terms in x, y, z are degrec-ordered
1 <p =z <D y <px <p
<, < . 2 . 2
p 2" <pyr <pxz<py <paxry <p=x
<p 2 <p y.z2 <p Xzt <p )-‘22 <p xyz <p
[

Clearly, any polynomial in F[x] contains a monomial whose term is maximal with
respect to a given term ordering <. We will adopt the following notation.

Definition 10.4. The leading monomial of p € F[x] with respect to <z is the

monomial appeating in p whose term is maximal among those in p. We denote
this by M¢(7), or simply by M(p) if the term ordering < is understood. Also

define hterm(p) to be the maximal ("head") term, and heoeff(p) to be the
corresponding cocfficient, so that

M{p) = heoelf(p) hterm{p} .

We adopt the convention that heoef((0) = 0 and hterm(9) = 1.

Example 10.3. Suppose we consider
p o= —2,1'2};2 + '1,2):2 + % 4 ;czy + 2xp%2? — 3,\')-':3 —xy A+ yz 4 2245

as an clement of Qly,y,z]. We may write p so that its terms are in descending
order with respect to <5, as

po=2xpte? e Bayn? b A = 2t By oy by 4SS
Clearly, then, we have
M(p) = 2077 . hterm(p) = _1:)-‘2:_-*2 . heoclf(p) = 2.

i pis considered as an clement of Q(z)[v.y], then we write
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p o= a2y e (22 - Dxly 4 D0yt + (@ Bx? - (B2 Dy + @y + (4 5)
hence
M(p) = 22y% | hterm(p) = 5% heoeff(p) = 1 .
We note finally that under the lexicographic ordering for Ty, ) we would write
the terms in descending order as
p =Bt = (2= D%y 4 PR+ @20 = B2+ Dy o+ )y + (P49
|

Reduction in Multivariate Domains

The above structure on F[x] now permits a certain type of simplification.

Definition 10.5. For p, ¢ € Fix] we say that p reduces with respect 1o g (and with
respect to a fixed term ordering) if there exists a monomial in p which is divisible
by hterm(g). If p = ot +r where « €F, r €T, r €F[x] and
! -
—— =y T
hterm(g) &L

then we write
o = P . i
My T T 7T heoett(q) 1

Pty op— = p'

to signify that p reduces to p' (with respect to q). If p veduces to p’ with respect
to some polynomial in Q = {g1, ¢2,--.> ¢}, W say that p reduces modulo () and
write p g p'; otherwise, we say that p s irreducible {or reduced) with respect 1o

Q. We adopt the convention that 0 is always irreducible.
=

It is apparent that the process of reduction involves subtracting an appropri-
aic multiple of onc polynomial {rom another, to obtain a result which is (in a
sense) smaller. As such, it may be viewed as onc step in a genceralized division.

Example 10.4. For the polynomials
o= Gxt 13 — G+ 1, g = 3x% 4 5x ~ 1
we have

P P 2..\:2'(/ e 37 -} 2x% — 6x + 1

if we reduce the leading term. We might also compute

13 5 2
poTry -;—)-x'q = 6.\'4 - ~C:-~.r”
A D

5.,

if we instead reduce the teom of degree 3. We note that in cither casc, we could
continue reducing to cventually obtain 4, since in fact ¢ tp. (Note that in this
case, reduction and polynomial division are cquivalent.)
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Example 10.5. Consider the polynomials

po= Zyzz — xz? . q = 7yz+yz -4,
and impose the ordering <p on.T{I,},’z}. Note that we have written the terms of
these polynomials in descending order with respect to <p5.) Then we have

Pty poe %Z'q = —xz? - ~g-yzz + %z s
which is then irreducible modulo ¢.

A fundamental property of reduction is the following.

Theorem 10.1. For a fixed set ¢ and ordering <, there is no infinite sequence

of reductions

Po HQ I s I ) F‘*Q . (101)

Proof: We proceed by induction on 7, the number of variables in pg. It is

clear that there is no infinite sequence for i =0, since either  contains elements
of headterm 1 (pg =, 0), or pg is irreducible modulo Q. (We may now ignore

the possibility that <Q@> = <ix>.)

Now consider i ==1: assume therc is no infinite sequence of reductions of a
polynomial in Flxj] of degree k—1, and suppose that pg € F[x;] is of degree k.
(The previous point treats the case &4 =0.) By assumption, there is no infinite
scquence of reductions on the lower order terms of pg. However, if reduction of

the term of degree k is possible, we obtain a polynomial of Jower degrec.
Similarly, suppose that there is no infinite sequence of reductions of a poly-
nomial in Flxq,x;] of degree I—1 in xy, and let pg € Flxy, x9] have degy(pg) = L
As before, consider the terms in py of degree [ in x,; together, these constitute a
polynomial of fixed degree (say, m) in x; which (by a previous argument) must
cventually be reduced as part of pg. By another induction, we sce that the maxi-
mal term x{'v) must eventually be reduced; i.c., the process must terminate. The

argument may be extended to an arbitrary i = » variables.
]

Let = denote the associative closure of . That is, p M+Q g il and only
if there is a sequence
PPy g o pp bt gy =g
Ir p ~—rQ ¢ and ¢ s ureducible, we will write p M‘Q g. By Theorem 10.1, we

may construct an algorithm which, given a polynomial p, (inds ¢ such that
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i i——JQ g. For the sake of efficency, it makes the most sense to organize this
algorithm so that the largest monomials are reduced first, since these reductions
affect the lower order monomials anyway. (Compare, for example, this and the
opposite strategy on Example 10.4.) Therefore, we formulate our scheme o first
reduce the leading monomial M(p) (as part of p), and then p —M(p) (as a dis-
tinct polynomial). Since we will only need to find reducers for leading monomi-
als, it is convenient to define Ry g = @, and {for non-zero )

R,o = {q €Q such that hterm(g) [hterm(p)} .

P

We note that if several reducers exist for M{p}, any one may be chosen. How-
ever, this choice will affect the efficiency of the algorithm. In practice, the
optimal selection depends on the term ordering used. (See Exercise 10.3, for
example.} We will therefore write selectpoly(Rp,Q) to denote that some reducer
(c.g. the first one) is chosen. A possible reduction algorithm is presented below
as Algorithm 16.1.

Algorithm 10.1 Full Reduction of p Modulo ¢
procedure Reduce(p, @)

# Given a polynomial p and a set of polynomials Q
# from the ring F[x], find a ¢ such that p + g.

# Start with the whole polynomial.

re—p; g4

# 1f no reducers exist, strip off the leading monomial;
# otherwise, continue to reduce.

while r % 0 do {

while R, 5 # @ do {

/ +—selectpoly(R, o}

M/

M(f)

g —q -+ M{ry; roe-r—-MO) )
return(q )

end

e
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There are several ways in which the efficiency of this procedure may be
further improved. For example, it should actually terminate when all terms in
“r* as large as the smallest headterm in @ have been reduced. This is a small
point, however, since no significant amount of arithmetic is performed in this
phase. It is far more important to economize, where possible, on the amount of
(coefficient) arithmetic performed in the innermost loop. One approach is to
first divide each of the polynomials in @ by its leading coecfficient. Another
approach is possible when the cocfficient ficld is the fraction field of some
integral domain D. Namely, as in the previous chapter it is possible to (tem-
porarily) perform most of the computations in the domain D (essentially, in the
manner of the primitive PRS). (See Czapor [17] for the details.)

Example 10.6. Consider the set P = {py, pat C Q[x,y], where
pr=x’y +57 3%, py =Tyt 2% 4+ 15

impose the lexicographic term ordering (where x >; ¥}, Then for the polynomial
G = 3,\'3}) + 2);2)'2 — 3xy + 5x

we have '

q by 4= 3174

= 1527 + 2):2)?2 - 3xy7’ w 3xy + 5x

=, —15x% — 10x%y — 3xy% — 3y + 55 — 2y°

—s

p, —15x% 4 5067 — 3xy? — 3uy + 5x — 297 + 10y”

e,

s 15x3 -+ 50x°% — 3xy o Sx - ‘277(‘)‘}’3 + 1(}),2 + % )

The final result is the [ully reduced form of ¢ modulo P. Note that we have writ-

ten the terms of cach polynomial in descending order with respect to < .
=

Example 10.7. Suppose we adopt the degree ordering for Qfv,y,z]. and consider
again the set of polynomials P = {p;, ps, p3} where

D= .\‘3)-'-: ~— .x‘zz, Py = .xyzz - XYI, Py = .xzy?‘ — 2.
Also, let

G o= X"V -7, r o= —.xzyzz -+ .xzys .
Then

G e ¥TE ezt - .:(.xzyz —22} a3
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and similarly » =, 0. Note, however, that g+r = x%yz — 2% is irreducible

modulo P.
»

The fact that, in the above example, g-+r is irreducible when ¢, r cach
reduce to O suggests that uscful theorems on reduction may be difficult to prove.
The following theorems (which we will use in the next section) illustrate that in
general only modest results exist.

Theorem 10.2. Consider p, ¢, r € F[x] and § C F{x]. If p —g g r, then there

cxist 2, ¢ such that

POk B, b G, r=po—g .

Proof: Lets €S, a€F, v €Ty be such that
$
ro= (p —q)— a'v'g&“(';")" .
(Then v is the term climinated in the reduction.) Suppose that v has coefficient
in p, and coefficient B in ¢. Assume that f; # B, since the resuit is only
interesting if v actually appears in p Qq (with coeflicient o = §, — ;) and either
porg. Nowlet = v/hterm(s), and choose

I _ B

wHes g o= g o

po=re heoelf(s)

heoefl(s)

Theorem 10.3. Suppose p, ¢ € F[x] are such that p —g 5 0 for § C F[x]. Then
there cxists » € F[x] such that p +g r and ¢ —'5 r, i.c. p, ¢ have a "common

successor” when reduced with respect to 5.

Proof: As with many ol the results of this chapter, we proceed by induction
(on the number of steps nceessary 0 reduce p —¢g to 0). Clearly, il p = ¢ the
result is truc. Now assume that the result holds for n—1 reduction steps, and
supposc Lhat

P b ."11 ¢ J‘l:)_ | S /I” = {).

By Theorem 10.2, 3 5, ¢ such that p =g p, ¢ 5 ¢, and —§ = hy. But then,

by hypothesis, 5 and ¢ (and hence p, ¢} have a common SUCCessor.
|

Theorem 10.4. il py, p5 ave polvnomials such that py = 3. then for any polyno-

mial », there exists ¢ such that
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PL+71 g 5, potr g os

Proof: Let o €F, u €Ty, ¢ €0 be such that p, = py — ouq /heoeff{q), and
let £ = u-hterm(g) be the term cancelled in the reduction. For arbitrary r, sup-
pose that ¢ has coefficient 8 in » (or in pz+r); then ¢ has cocfficient a+ 4 in

p1+r. Now, for § = g /heoeff(g) we have
prrr b=y sp={pp 4 r) = (ekBu-g
Pt 1 by sy = (py +r) — furg

and
sp=s5p = [a—{atf) + Blug = 0.

Therefore, s = s; = s, is the required polynomial.

10.3. GROEBNER BASES AND BUCHBERGER'S ALGORITHM

While it is certainly true that p €<Q> if p g 0, Bxample 10.7 shows that
the converse is not true. Hence, the process of reduction will not solve the zero-
equivalence problem as it stands. It turns out that this is not, strictly speaking,
due to a deficiency of Algorithm 10.1, but rather the structure of the tdeal basis
¢. We therefore propose the following:

Definition 10.6. An idcal basis G C F[x] is called a Groebner basis (with respect
to a fixed term ordering < and the implied permutation of variables) if

peE<G> = Reduce(p, G)=10.
|

Since Reduce(p, G)—p € <G>, this states that G is a Groebner basis preciscly
when its reduction algorithm is a normal simplifier for Flx)i<G>.

Exarmiple 10.8. For the polynomials P = {P1s P2, p3b and ¢, r of the previous

example,

G = {p1, p2, p3, x5z — 2, 5% — 22,

yro e g xyzz e xzz, ot~ 24, 2 — 34}

is a Grocbner basis (with respeet to the degree ordering for Tix,y,z)) such that
<P > = <G> Note that g = O, r —5 0, and g+ »r ke O, irrespective of

the sequence of reductions that is followed.
=



12 Algorithms for Computer Algebra

Unfortunately, we do not yet have a means to actuaily prove that the above
set is a Groebner basis. Thus we require an algorithm for their construction.

Alternate Characterizations of Groebner Bases

We have already seen that an arbitrary ideal basis P does not, in general,
constitute a Groebner basis for <P>. The idea behind Buchberger's method is
to "complete” the basis P by adding (a finite number of) new polynomials to it.
Buchberger’s primary contribution was to show that this completion only requires
consideration of the following quantity, for finitely many pairs of polynomials
from P.

Definition 10.7. The S-polynomial of p, q €¥[x] is

Spoly(p, ¢) = LCM(M(»), M(¢)) | M@,) ~ e ) (10.2)

Example 10.9. For the polynomials py, pp € Q[x,y] defined by
P = 3ty ey el py = x99,
using the degree ordering on T( ,j, We have
Spoly(pr, pp) = y2 (3% —y* = 4) = 3x (y” + x> = 9)
= wys — 30 — 43-‘2 4+ 27x .
u
It is useful to view the S-polynomial (which generalizes the operation of
reduction) as the difference between reducing LCM{(M(p), M(q)) module p and
reducing it modulo ¢. This plays 2 crucial role in the following (fundamental)

theorem of Buchberger [8] , which leads almost dircctly to an algorithm for com-
puting Groebner bases.

Theorem 10.5. {Alternate Characterizations of Grobner Bascs) The following arc
cquivalent:

(i) G is a Grocbner basis,

(it)  Reduce(Spoly(p, ¢), G ) = Oforallp, g €G;

(iii) If Reduce(p, G) = ¢ and Reduce(p, G) = r, then g = r.

Proof: Although the proof is rather involved, we present the details in order
to further acquaint the reader with the subticties of reduction. We procecd in
three stages.
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(i) == (i1): This is clear, since Spoly(p, ¢) € <G> implies that
Spoly(p, ¢} +g 0 = Reduce(0, G) .

(il) == (iil): We proceed by induction on the headterm of p. First, consider the
case hterm{p) = 1. Clearly the assertion is true, since either p is irreducibie {i.e.
it is already reduced) or reduces in one step to 0. Suppose, then, that (iii) holds
for all p such that hterm(p} < 1 for some fixed ¢ € T, {(the "main" induction

hypothesis); consider p such that hterm(p) = 7. If ¢ is irreducible (modulo G}, p
¢ g and p g r, the result is fairly clear. This is because the reductions may

involve only the lower order terms; i.e., if
po= M) +p —Mp) =g Mp)+p = ¢
and hence
p g M) +py =7,
the induction hypothesis {applicd to p—M{p)) implics p; = p, and hence g = r.
We therefore assume that ¢ is reducibie, and write
Ry = {86 s &m ) >

where the order is fixed but arbitrary. Take pq, pq, ¢ such that

M(p) b= P, P =M@) =g pas pr+p G 9, (10.3a)

and hence also
PG a (10.3b)

(This is always possible by reducing the lower order terms {irst, since hterm{p;)
<r t.) Now supposc that there is also an » such that p ¢ r. We consider two

CaSsCs.

(a) For the time being, assume that the latter reduction is of the form

M) P 1 P —M{p) = p3, pytp3 g v (10.4)

We claim that, under the present conditions, py +pp and pp4py have a common

successor.  This is cstablished by induction on &, the number of steps in the
reduction p3 g pp (which is always possible in view of the induction

hypothesis). If & = 0, this is trivial. Let us assume that, say, p;+/ and py+pma
have a common successor if py b=+'g fin {steps. Now let f be such that py !

in [ steps, and f =5 P2 By Theovem 10.4, 9 ¢ such that
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pi+f = g, pitp Vs og
Since, by hypethesis, 3 4 such that

pr+ps G h, pi+f Se
it follows that for some g, &,

pr+f W &, pitp G £

P+ p3 g hﬂ, pl—i—j: I»—«:fg i

Since the headterms of all these polyomials are smaller than 7, the main induction
hypothesis implies ¢ = h&; i.¢., py+py and py<-p3 have a common successor.

Together with (10.3a), (10.4) and the main induction hypothesis, this implies that
Po=g.
(b) Assume that we have jy, pa such that

Mp) =y Br. p —Mp) e Py, PLtpa b T (10.5a)

where 2 <au <m, and

Pk v (10.5b)
Consider also the reductions

M(p) r p1s p=ME@) =g p3, ptps g T (10.6a)
i.c.

p ke Fo= g (10.6b)

{noting the result of case (a)). Now, we {ind that
By +pr3) — 1+ p3) = p1—
&1 8n
M(gl) }\"I(gn)

Sinee g1, g, € R, g, the above quantity is the product of Spoty(gy, g,) times a

= M{p) ] ] (10.7)

monomial. Applying (ii} and Theorem 10.3, 3 f such that
Bytps S faopites Hre S

Therefore, by {10.50), {10.6b}, and the main hypothesis, r = ¢.

(Gii) = (i) 1f p € <G>, then 3 by € F[x] such that

/
) == 2/7{-3-;.‘ (}08)

i== 1
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We proceed by induction on the maximal term ¢ among the headterms of hygy,
hoga, ooy Mgy First, if ¢ =1 the result is trivial. (Either p =0, or p € F and
» g 0.) Now assume that for some ¢, we have p ¢ ¢ whenever (10.8) holds
with hterm{h;g;) < ¢ for 1 < i < I; then consider a polynomial p with
hterm(k;g;) <p ¢ for some I <7 < !. We suppose (without loss of generality)
that {f181, ..., hpmgm} are the (nonzero) polynomials in (10.8) which have head-
term 7. We will show that p =5 0 by induction on m. If m = 1, then

] 1
po=higr + Shg g, 7 o= {hy~M{))g + 3 g s
1'22 1=2

and by the main hypothesis 5+ 0. Now assume that p g 0 when m < k

and consider m = k+1. (That is, the representation (10.8) of p has k41 com-
ponents with headterm 1.) Now, for a ¢ F write

!
po=higy+ gy + Ylug = p+pl,
i=3
where
p o= M(hy)g; + [M(hy) + erhiterm(iy) gy
!
p’o= (hy—=M())gy + [ g —M(hy) — arhterm(fy) gy + St hyg, (10.9)

i=3
and choose o such that
o= Fu-Spoly(gy, g2)
for some § €F, u €T, (Excrcise 10.4). On onc hand, the representation (10.9)

has at most k components of headterm ¢; hence by hypothesis p' ¢ ¢. On the

other hand, we can show that § =" 0, as follows. We note that
LCM(M(g1), M(g2))
M(g1)
for some g. But also
LCM(M(g1), M{ga))
M{gp)

81, Spoly(gy, 82) ¢ «

81 }_ﬁgl 0:

which in view of (iii) implics ¢ = 0. It follows that § = p —p' g 0 as well.
Therefore, by Theorem 10.3 and (ifi), 3 r such that p +g rand p* ¢ r. But

since p' 1= 0 = Reduce((), G), we conclude that r = (.
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Corollary 10.6. G is a Groebner basis if and only if V f, g €G either

(1) Spoly(f, g) H'g 0, or

(2) 3R EG, f+#h+# g,such that
M(k) | LOM(M(), M(g)) , (10.10)
Spoly(f, h) ¢ 0, Spoly(h, g) g 0. (10.11)

Proof: If we replace (i) in Theorem 10.5 with the above condition, we neecd
only extend part (b) of the proof that (ii) => (iii) when (2) holds; we therefore
resumc the proof up to (10.6). We first note that by (10.10), & ER, 6. As

before, we let py, s be such that
M(p) > pi, p —Mp) 6 p3, pi +p3 =G 5, (10.12a)
p g M)+ p3 g pl s v S {10.12b)

Also (as beforel),

h "

(p{ +p3) — oy +p3) = M) | M{f} ~ MO ] =g 0,

Gr+p9) = 01 + ) = MO) {5567 ~ 7y ) e O

using (10.11). Thus, by Theorem 10.3 and the induction hypothesis, we con-

ciude that r = 5 = ¢.
|

Corollary 10.7. IT G is a Groebner basis, then

Reduce(p, ) = Reduce{g, G) = p—qg € <G>.

Proof:
=>: Supposc r = Reduce(p,G) = Reduce(q,G). Then p—r € <G> and
G —r € <G> Therefore,

(pp—r) —{g—1r) = p—q € <G>

<= Apply Theorem 10.3 {noting p —¢ € <G>), and then part (iii) of

Theorem 180.5.
=

The need for Corollary 10.6 will become apparent in the next section. Coroliary
10.7 shows that if G is a Grocbner basis, then its reduction algorithm is not only
a normal simplificr, but also a canonical simplificr (cf. Chapter 3). Decision pro-
cedures Toliow for a host of related problems in polynomial ideal theory, includ-
ing ideal inclusion (Excrcise 10.5) and computing in the quatient ring Flx[/<&G>.
We postpone discussion ol these, and other applications, untl Jater scctions.
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Instead, we will now fulfill our promise to present an algorithm for the computa-
tion of Groebner bases.

Buchberger’s Algorithm

Characterization (i1) of Theorem 10.5 suggests how we may transform an
arbitrary ideal basis into a Groebner basis. Given a finite set P C Fix], we may
immediately test P by checking whether

Spoly(p,g) —=p 0 ¥ p,q €P, pstg .
If we find a pair (p, ¢) such that
Spoly(p, ¢} +p r % 0,
then <P> = <P, r> and Spoly(p, ¢) #py(y 0. That is, we may add the

nonzero result to the basis, and begin testing of the augmented set. To sce that
such a process will terminate, let 7; be the set of headterms of the basis after the

i-th new polynomial is added. Since new hcadterms are not multiples of old
cones, the inclusions

<Hp> C <Hy> C

arc proper. Given that F[x} is a Noctherian integral domain, the chain must ter-
minate by Hilbert's "divisor chain condition” (see van der Waerden {33] for
example.) The resulting algorithm appears below as Algorithm 10.2. As in Algo-
rithm 10.1, we have used a procedure selectpair to denote that some selection is
made from the nonempty sct "B". Since the particular selection is of no rheoreri-
cal importance, the reader may assume for now that the [(irst pair js chosen.
(The reason "G" appears as an argument to selectpoly will be explained later.)

Example 10.10, Consider the st P C Q[x,y,z} delined by
P = {_rz—}-yz — 2, y% b xz -3, xy +.32——5},
using the degree ordering <;. (As usual, the terms in each polynomial arc writ-

ten in descending order.) We [first set G = P, k =3, and B = {[1,2], [1,3],
[2,3]}. Then

Spoly(Gy, Gy) = 35 (x® + yz —2) = x5 (% 4 xz — 3)
= -7z )*3: 4+ 3x% e 2)’2

G, ):3; + .1')::2 + 3x% — 2y2 — 2xz

gy 362 = 257 = 2z + Bz
2 - -

iw«r(;} ——2}'2 — 2y £ 0
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Algorithm 10.2 Buchberger’s Algorithm for Groebner Bases
procedure Gbasis(P)

# Given a set of polynomials P, compute G such
# that <G> = <P> and G is a Groebner basis.

G P ; k «—length(G)

# We denote the i-th element of the ordered set
# G by G;.

B —{{jl1<i<j<k}
while B # @ do {
[i, j] « selectpair(B, G) ; B «—B ~ {[i, j]}
h «— Reduce(Spoly(G;, G}, G)
if 1 £ 0 then {
G G Uih}; k k1
BB U{[i k1 <i<k} })
retura( G )
end

?-—PGZO R

whereupon B = {{1, 3], {2, 3]}. Then

Spoly(Gy, G3) = vz — xz2 4 Sx — 2y

=g, —2xz® 4 Sx — 2y 4+ 3z,

which is irreducible. We therefore set Gy = 22?4 5y — 2y - 3z, (k

= {2, 3], [1, 4], (2, 4], {3, 4]}. Continuing in this manner:

Spoly(Gy, Ga) g, Gs = —2yz% = 3x + 5y + 2z

B o= {[1,4],(2,4], (3, 4], [1, 5, 2, 5), [3, 5], [4, 3]}
Spoly(Gy, Gg) +g 0,

B o= {[2,4], 3,4}, [, 3], 2, 51, {3, 5], [4. 5]}
S]')O}},'(Gz, G,;) }-—'*"LG a

4.3 and
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Spoly(Gs, Gg) ' Gg = —2z% — 20 — 3yz 4 1522 = 19
B = {{1,5)], [2,5], 13, 5], [4, 5}, [1, 6], [2, 6], {3, 6], [4, 6], [5, 6]},

after which all further S-polynomial reductions lead to 0.
[

When applied to linear polynomials, Algorithm 10.2 specializes to a Gaus-
sian climination algorithm. When applicd to univariate polynomials, it special-
izes to Buclid’s algorithm for several polynomials. The relationship with polyno-
mial division processes is, in the bivariate case, fully specified by Lazard {29]. It
has also been shown that Algorithm 10.2 and the Knuth-Bendix [26] algorithm
for rewrite rules are both instances of a more general "critical pair/completion”
algorithm. (See Buchberger {12] or LeChenadec [15], for example.} This connec-
tion has been exploited by Bachmair and Buchberger {2] to shorten the proof of
Theorem 10.5, and by Winkler [34] to carry over improvements to Algorithm
10.2 to the Knuth-Bendix procedure. We mention also that the algorithm has
been generalized to various Euclidean domains {e.g. Z); see Buchberger [13] or
Kandri-Redy and Kapur {24} , for example.

10.4. IMPROVING BUCHBERGER’S ALGORITHM

It must be noted that if, in Example 10.10, we had used a different permu-
tation of variables, or another term ordering, we would have obtained a com-
pietely different basis. It should also be pointed out that, these issues aside,
Grocebner bases are by no means unique.

Example 10.11. Consider the set P and corresponding Grocbner basis G of
Example 10.8. It may be shown (Exercise 10.7) that G — {p;} is also a Groebner

basis for <P>.
n

Reduced Groehner Bases

Fortunately, the problem of non-uniquencss is very casily remedicd, as we
now show.

Definition 1.8, A sct G C Fx]} is reduced il ¥ g €G, g = Reduce(g, G—{g}); it

1$ monic i Y g €G, heoefl(g) = 1.
| |

Theorem 10,8, (Buchberger [7}) If G, # arc reduced, monic Groebner bases such
that <G> = <H>, then ¢ = /.

[}
We sce that il the polynomials arce scaled in any consistent manner, a Grochner
basis may be made unique by ensuring that cach clement is reduced modulo the
others. A possible algorithm to perform such a transformation appears as
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Algorithm 10.3.

Algorithm 10.3 Construction of a Reduced Ideal Basis
procedure ReduceSct(E)

# Given a set E (not necessarily a Groebner basis),
# compute £ such that <E> = <[E> and E is reduced.

# First, remove any redundant elemements.

R+—L; P+~
while R # @ do {
h «sclecipoly(R) ; R «—R — {h}
h «— Reduce(h, P)
if 2 = 0 then {
0 « { g €P such that hterm(k} | hterm(g} }
R—RUQ;: PP QUi }}

# Ensure cach clement is reduced modulo the others.

E — @ S =P
foreach h € P do {
h « Reduce(h, S—{i})
E«—FE U {h} }
return{ £)
end

A proof that Algorithm 10.3 terminates (simifar to, but more involved than that
of Theorem 10.1) is given by Buchberger [5]. When applied at the end of Algo-
rithm 10.2, it is casy to sce that only a subsct of G must be reduced. Namely,
for any Gy, G; in Algorithm 10.2 such that hterm(G;)[hterm(G,}, Spoly(G;, G;) is
cqual {up to a rescaling) to the reduced form of G; modulo G;; hence, G; may be
discarded at the cad of the algorithm. And, although the result will not be
unique if the input set “E” is not a Groebuer basis, Algorithm 10.3 may also be
applied before Algorithm 10.2. In fact, a reformulation of Algorithm 10.2 is
possible in which the partial basis G is reduced after cach new polynomial IS
added. Stll, it is not clear how much pre- or inter-reduction is best in practice.
(Sce Czapor [17] . Tor example.)
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The Probiem of Unnecessary Reduclions

It should be apparent from Example 10.10 that Algorithm 10.2 is capable of
producing extremely complex calculations from (apparently) modest input poly-
nomials. Note, for example, that as "t (the number of polynomials) grows, the
number of S-polynomials in "B " grows rapidly. It turns out that when applied to
polynemials of the form s -7, where s, 1 € Ty, Algorithm 10.2 specializes to one

for the "uniform word problem” for commutative semigroups (sce Ballantyne and
Lankford [3]). This relationship is used by Mayr and Meyer [30] to demonstrate
that the congruence problem for polynomial ideals is exponentially space com-
plete. Hence, the problem of constructing Groebner bases is intrinsically hard.
This does not mean that Algorithm 10.2 is of no practical use; however, it 1s well
worth considering some refinements which will improve its performance.

It is also clear that most of the computational cost of the algorithm is in the
polynomial arithmetic of the reduction step. Now, it is casy to sce that full
reduction of cach S-polynomial is not actually necessary; a partially reduced form

% 0 will suffice as long as M(A) is irreducible (i.e. it is not possible that
I = 0). However, it may happen that the {ully reduced form lcads to simpler

polvnomials later in the algorithm; so, the actual benefits of this approach are
difficult to assess. Quite typically, though, only a relatively small proportion of
the S-polynomials which are reduced will yield new (nonzero) results. Therefore,
a great deal of computation is wasted. Fortunately, Buchberger has shown that
many of these O-reductions may bLe detected a priori, without a significant
amount of computation. This is accomplished, in part, using the following result:

Theovem 10.9. If LCM{hterm{p), hterm{g)) = hterm(p)-hterm{g), then
Spoiv(p, ¢) }—Q'{p,q} 0.

Prool: W obtain

a(M(q)p —M(p)q)

= alM(g)(p =M(p)) — M(p) (g ~M(g))] .
where o = GCD{heoelf(p), heoelf(g))"!. No terms cancel in the subtraction
above, since the terms of the two polynomials p —M(p) and g —M{p} are dis-

tinct. (This is an casy conscquence of the fact that M(p), M{g) must contain dis-
tinct scts of varables.) Then note that

M(p) s p = Mp), Mg) —, ¢ —M(g) .

Spoly(, q)

u

The above resuit provides a condition wnder which certain S-polynomials

(i.c. paivs [, /1) mav be skipped. Namcly, |4, j] may be salcly ignored 53t doces
not satisfy the function
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criterionl([7, j], G) <=
LCM(hterm(G;), hterm(G;)) # hterm(G;) hterm(G ) -

In addition, Corollary 10.6 implies that we may skip Spoly(i, j) if [i, j] does not
satisfy

criterion2([d, jl, B, G) ==
- 3k, 1 <k <length(G), such that
{i #k #J,
hterm{(Gy) | LCM(hterm(G;), hterm(G;)),
i, k] ¢ B, [kJ] €B}.

The reader is referred to Buchberger {9] and Buchberger and Winkler {10, which
together supply greater insight into the derivation of criterion2. In practical
terms, the effect of using these criteria is dramatic. According to Buchberger,
for example, criterion? results (roughly speaking) in a reduction of the number of
S-polynomial reductions from O (K% to 0(K), where K is the final length of the
basis. The improved form of Buchberger’s algorithm appears below as Algo-
rithm 10.4.

Buchberger and Winkler [10] also present an important argument regarding
the procedure sclectpair. It can be shown that if we always sclect [i, j] such that

LCM{hterm(G;), hterm(G;)) = (10.13)
min,__ {LCM(hterm(G,), hterm{G,)) | [, v} €8 }

(the "normal” selection strategy), then criterionl, criterion? arc "aood" in the
sense that all possible reductions {i.c. not just one particular reduction) of
Spoly(G;, Gj-) will yicld 0. Morcover, the likelikood that criterion? can even be
applied is increased. Finally, if the degree ordering is uscd, this strategy would
seem to Jead to simpler polynomials than other choices. (Although, it has
recently become apparent that the same cannot be said when the lexicographic
ordering is uscd; see Czapor [17].)

Computational Complexity

We conclude this scetion with some brief remarks on the complexity of
Buchberger’s algorithm. It is useful to determinc bounds on the maximum
degree of any polynomial produced by the algorithm; this, in turn, may bound
the number of polvnomials and the {maximum) number of reduction steps
required for cach. Althought this is difficult in general, Buchberger [9] has
shown the following: in the bivariate case, when a criterion similar to criterion? is
used (in comjunction with the norwmai sclection strategy) the polynomials pro-
duced by the ajgorithm with the degree ordering are bounded by 400177, where
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Algorithm 10.4 {Improved] Construction of Reduced Grocbner Basis

procedure Gbasis(P)

# Given polynomials P, find the corresponding reduced
# Groebner basis G.

# First, pre-reduce the raw input set;
# opticnally, just set G «—P.

G +«— ReduceSet(P}) ; k «—length{G)
B—{[Ljl1<i<j<k)
while B = 5 do {
Ui, j] < selectpair(B, G) ; B «B —{[i, j]}
if criterioni([f, /], G) and criterion2([{, j], B, G) then {
i« Reduce(Spoly(G;, G)), G)
if b % O then { |
G +—G Uiht; k—k+1
B—BU{LK[1<i<k} }1)
R «—{g €C such that 3 h €G with 1 + g, hterm{h) thterm({g)}
return( ReduceSet{G —R ) )
end

D(P) = max {deg(P;) | 1 <1 <length(P)};
the number of computational steps is then bounded by
2 (length(P) + 16D(P)%)* .

OfF course, the actual computational cost depends on the coefficent ficld as well,
Recent results (sec Winkler [35], for example) show progross with regard to
development of a version of Algorithm 10.2 which uses a homomorphism/lifting
approach similar to the EZ-GCD scheme (c¢f. Chapter 7). Since algorithms
mvolving polynomial division (e.g. PRS algorithms) are plagued by the problem
of cocfficient growth, this is an imprtant area of study. The role of the term ord-
cring used is iilustrated by the following result of Buchberger {11} : for every
natural number n, I P C Flx,y] with n = D(P) such that

(a) for all Grocbner bases for P with respeet to <p, DG)Z2 20 — 1

(b) for all Groebner bases for P with respect to <, D(G) > a2 —n + 1.

Apparently, the complexity of the algorithm is lower when using <, than when

using <. (See also Exercise 10.14.) Lazard [28] shows that for <, (or similar
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orderings), the maximum degree is usually below Zdeg{P;}—n+1, where n is the

number of variables. Other important results are obtained by Moeller and Mora
[31] and Giusti [20].

10.5. APPLICATIONS OF GROEBNER BASES

We have seen that Buchberger’s algorithm completely solves the simplifica-
tion problem for polynomials modulo side relations. That is, when G CF[x] is a
Groebner basis the corresponding reduction algorithm Reduce( -, G) is a canoni-
cal function for [F[x]; ~], where ~ is the "equivalence modulo G" relation used
in Section 1. In view of the central role of polynomial domains in symbolic com-
putation, this alone establishes the importance of Groebner bases. However, a
survey of some of the applications of this powerful technique suggests that it is
indeed one of the fundamental algorithms of symbolic computation. We will not
attempt to list all such applications here; this is an active area of research, and
any such list would soon be incomplete. Moreover, a discussion of.the recent use
of Groebner bases in such fields as bifurcation theory (Armbruster [1]) and
spline theory (Billera and Rose [4]) is beyond the scope of this book. Wc instead
restrict our attention to a few simple, but important, examples.

Computing in Quotient Rings
The close connection between the simplification problem and arithmetic in
the quotient ring F[x])/<<G> is illustrated by the following:

Theorem 10.10. Suppose G is a Groebner basis, and define

U = {[u], where « €Ty is such that =3 g € G with hterm(g){x b, (10.14)

where [«] is the congruence class of ¥ modulo G. Then U is a lincarly indepen-
dent [vector space] basis for F[x}[/<G>.

Proof: Supposec we have a dependence

¢ [“]] + o oy [”m] =,
where ¢; €F, w; €U for 1 <i <m. Since we now know that for p € Fx],

P]=0 = pe<C>,
and that reduction modulo G is a canonical simplifier, there must be a polyno-
mial g = cuyt o Feuu, € <G>, But it is only possibic that
Reduce{g,G)=0 il w¢ have ¢; =0, 1 <i <wm .

"

The reader should compare the above result to the well known fact that an exten-
sion ficld of IF of the form
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Flx]/<p> = {po+px + -+ +ppix" | p; €F}
where p € F[x] is an irreducible polynomial of degree n, is a vector space of
dimension n with basis [1], [x], .--, [+" 1]

Theorem 10.10 allows us to casily decide if the quotient ring is finite dimen-
sional (when considered as a vector space), since this is so if and only if the set U
has finitely many elements. This observation will prove useful later on in this
section. However, its immediate importance is that it guarantees we can perform
arithmetic in the quotient ring.

Example 10.12. We recall that the set

G = {x?‘ <oy — 2, yz +xz — 3, xy -+ L 5, w2xz% 4 5x — 2y + 3z,

—2yz? - 3x 4 Sy 4+ 2z, —22% — 2xz — 3yz 4 1522 — 19}

computed in Example 10.10 is a Groebner basis in Q[x,y,z] with respect 10 <[p.
In fact, it is also a reduced Grocbner basis. Then

U= {(1), <L ] [2), 2], D2)s (27, 127))
is a basis for Q[x,»,z)/<G>. To compute [xz]-[yz], for example, we merely find

3 2 19

RS > = i i! - —
Reducelvz-yz, G) = xz + X + 5

then
() + (1] .

M|u;

el oe] = 1] + 2] -
|

In addition to the basic arithmetic operations, Theorem 10.10 allows us to com-
putc inverses, when they exist, in F{x}/<G>.

Example 10.13. Consider again the sets G, U of Example 10.12. Since U has
finitely many entrics, it may be possible to compute ring inverses for some of
those entrics.  For example, if [x] has an inverse, it must be of the form

(<] (aol1) + asfx] + azly] + asl=]
+ aglxz] + aslyz] + aglz’] -+ ar[z7]) = 1.
Then Theorem 10.10 implics that the reduced form of the polynomial
p o= x{ag + ax + apy + azz + agxz + agyz k- “632 - a723) -1

vanishes. Since we {ind that

Reduce(p, G) = (=1 -+ 2ay + 3ay) + {4y + ;(:4 + %czﬁ}.\'
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+ (“%“4 — ag)y + (aq + Sas + ‘%%)Z + (—ay — agyz
+ (a3 + %a7)~tz 4 (—ag + %‘av)zz —as2®

we obtain the system of linear equations

2ay + Say =1, ag+%a4+%a6m0,
5 3
—§a4—a6=0,a4+5a5+-§a630,
maz—a—,m(], a3+-§—a7z(},
3
—ay - —i—a»,:(), gty =

If we solve this system (e.g., by the one of the methods of Chapter 9), we [ind
the solution

S SN ,
(50_34_615_'(16“ ? (11*"“_1_], (12"'”}_1"’ a?)w--—llia'? o 1} ?

hence

()7 = ) = )+ ) - 5l

This type of construction turns oul (o be very uscful in the next subscction.

Solution of Systems of Polynomial Equations

We now turn our attention to the more common problem of solving systems
of polynomial equations. To this end, we will take a somewhat more modern
approach than that of Section 9.5. Namely, we will view a set of equations over
aficld IF

pifxy, Xz, k) = 0, 1T<i <k,

in terms of the ideal <py, pg, ..., pp>. It s casily cstablished that if <P> =
<G>, then the scts of common zcros of the scts P, G C Flx] arc identical.
(Exercise 10.10.) I[ G is a Grocbner basis for <P, then one expects (by now!)
to be able to obtain more information about these zeros from G than from F.
This is indecd the case, as the foliowing results of Buchberger [6] show.

Theorem 10.11. Let G be a monic Grocbner basis for <P> = <pj, ..., x> C

F{x]. Then P, viewed as a system of algcbraic cquations, is solvable if and only
i¢gaG.

Proof: It is well known Trom (modern) algebra (see for example Ehlbert’s
“Nulistellensatz™. in van der Wacerden [33]) that 2 s unsobeable il and only if
there exists a combination of the p; (over Fx]) which cquals a nonzero constant,
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say 1. Since <P> = <G>, this is equivalent to 1 € <G>. Since G is a
Grocbner basis, this implies that Reduce(l, G) = 0; this, in turn, means that 1 €
G.

»
We note that a system P is unsolvable if and only if a Groebner basis for <pP>
contains an element of headterm 1. In such a case, the reduced monic Groebner
basis will simply be {1}.

Example 10.14. The reduced, monic Groebner basis (over Q[x,y]) for the ideal
<4, P, 2> where

pr=xy 44 =17, py =2y =3 48, py=uw?—5my + 1,

is {1}, irrespective of the term ordering used. Therefore, the corresponding sys-
tem of algebraic equations

pr=0, p,=0, p3=0

has no solutions.
n

Theorem 10.12. Let G be a Groebner basis for <2> C Flx], and let H be the sct
H = {hterm(g} | g €G }.

Then the system of equations corresponding to P has finitely many solutions il
and only if for all 1 </ < n, there is an m €N such that (x;)" € 4.

Proof: The headterms of G have the required “separation property” iff the
set U defined in Theorem 10.10 has finitely many entrics; i.e., F[x)/<G> is fin-
ite dimensional as a vector space.  This, however, is true if and only if the set G
(or P) has finitely many solutions. (This is plausible in view of our ecarlier
remark on algebraic extension ficlds of F. However, the reader is referred to
Grocboer {21], or van der Waerden {33] for more details.)

=
It must be noted that these powerful results do not depend on the term ordering
chosen to construct the Groebner basis. Neither do they require that the solu-
tions themselves be produced. The latter fact may be important in practice, since
the construction of solutions may (for some reason) be impractical when Algo-
rithm 10.4 is not.

Example 10.15. We reeall from Example 10.12 that the reduced Grocbner basis
for

P> = <l vz =2, Py =3, =5 C Qfrv.y.z]
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with respect to <{p has 6 pelynomials with headterms
H = {):2, yz, Xy, xzz, yz2, 24} .

Since 1 ¢ H, the system corresponding to P is solvable; also, by Theorem 10.12,

there are finitely many solutions.
n

Example 10.16. Consider the set of polynomials (and system of equations
corresponding to)

P> = lpx b yx X bz — 2, xy% 4 2zx —3x bz by —1,
2:2 4 zy% — 3z + 22y 30 — 3y >,
If we order Ty ;) with the lexicographic order <7, we may obtain a reduced
Grocbner basis for <P >,

{xzz—Zx —z4+422—~4,

y 428+ 223 =522 -3 4 5,

24220 =72 — 8% 157 4+ 8 — 10 ).

Again, we see that the system corresponding to P is solvable; however, in this

case there are infinitely many solutions.
»

The above examples illustrate an important distinction between “total
degree” and "lexicographic” Groebner bases. The degree basis shown in Example
10.12 offers no dircct insight into the solutions of the system; however, a quick
inspection of the lexicographic basis of Example 10.16 suggests a more poweriul
result.  Apparently, it will be more diflicult to obtain solutions from some types
of Groebner bascs than [rom others. Since the choice of term ordering affects
the complexity {and practical behaviour) of Algorithm 10.4, it is well worth
developing solution methods for both <y and < .

We consider first the use of the degrec ordering. In Example 10.13, we
exploited the fact that if a polynomial (with indeterminate cocflicients) p = Za;;

is in <G>, the requirement that Reduce(p, G) = 0 yields conditions on the
indeterminates @;. The difficuity lies in determining which f; €Ty to include in

the representation of p. But, if G has finitely many solutions, certain types of
polynomials are guaranteed to exist. Namcly, for cach x;, 1 < i <, there must

cxist a upivariate polynomial p; = Ea,-j(.r,-)f whose roots contain all possible
values of x; which may appear in solutions of G. For a set » C Fixj and X €x,

the polynomial of lcast degree in <P> (N F[x] may be constructed by Algorithm
HYLS below.
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Algorithm 10.5 Solution of System P in Variable X
procedure Solvel(P, x)

# Given a systern P with finitely many solutions, find
# the smallest polynomial containing the soiutions in X.

G +— Gbasis(P)

# Assume a polynomial of form Da e

# then require that
# Reduce(La i, G) = SaReduce(iF, G)=0.

k+—Q

# I G does not satisfy Theorem 10.12, the {foliowing loop
# may be infinite!

do {

pp — Reduce(#, G)
k

it 3 {ap, ..., ay) # (0,...,0) such that ‘EO(IJ-[JJ; = {} then
Je=

k ,
return{ a," 1 ¥ aj..fJ )
i=0

else k —k +1 }
end

The above algorithm is clearly valid for any admissible term ordering, although
we will soon see that [or < it is unnecessary.

Exaraple 10.17, Consider the sct P C Q[x,y,z] delined in Example 10.10, along
with the corresponding total degree basis G, In order to [ind the polynomial p €
<Pz ) Qlz] of lcast degree, we note that 1, z, % 3 are irreducible modulo G.
Therefore, we first let p = ag + agz + ap2% 4 aszz® + agz®, and set

Reduce{p, G) = (ag ~ %g—a,;) A4 ayz A+ (ay -k sz—a,;)zz
- %a,;yz — aqxz -t a3z3

= (}.

This implies that ag == - = a4 = 0. In likc manncr, the polynomials of
8

degrees 5, 6, and 7 all vanish identically, When we try p = £ apz*
fe=0)
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Reduce(p, G) = (ag — —3—22(14 — ;%22&8 28 (16) 4 (ay ~ 25 ag — ﬁa»;)z
-+ (*‘ Py~ “ﬂs))’ + ("—07 ”‘Gs)x
+ (ay +&a5 +% ag + —~a4}a +(~"—lﬁa8 — ldag — %a@yz
oL m%ag - %06 —agxz + (as + mfﬁ + 05)2’

The resulting system of (linear, homogeneous) equations has the nontrivial solu-
tion

ag = iglag, ay =0, ay = —95ag, a3 =10,
az = %C‘Ig, as =0, ag = —22—5&8, a3 =0.

Without loss of generality, we choose ag == 1 to obtain

S_2§_26+2}94 95,2 361_

p=aTn q g

A compicte set of » univariate polynomials obtained in the above manncr
constitutes a finite inclusion of the roots of the original system. As noted in Sec-
tion 9.5, though, not all a-tuples so defined are roots. One can do better il one
of the univariate polynomials splits into factors over F. For example, if py €
<P> () Fly] admits a factorization py = 'G5 * * ¢, then Gbasis(P) may be
refined to Ghasis(P U {g,}) with respect to cach irreducible, distinct factor g;.
Therealter, cach component basis will yield different (smaller) univariate polyno-
mials in xy, ..., x,. Carried cven further, this approach suggests a scheme {speci-
ficd by Algorithm 10.6) to explicitly determine the roots of P.

Of course, it will not always be possible to solve all univariate pelynomials
exactly. Morcover, the successive refinement of cach Grocbner basis may be
impractical if complicated extensions of F arc involved. (Note that FF may be a
rational function ficld!) Still, Algorithm 10.6 provides a complete solution in
thecory when P has finitely many solutions.

Lexicographic Bases and Elimination
We now recall from Example 10.16 that Grochner bases with respect to <

scem to provide more information, in a way, than total degree bases. So, in
spite of the increased difficulty of computing such bascs, their use may offer a
valuable alternative to Algorithm 10.6. The basis for such a method is the fol-

lowing:

Theorem 10,13, Let < be an admissible ordering on Ty which is such thats <l ¢

whevever s €Ty, ppand r €T Ly p et G bea (Jmcbncr basis over F with
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Algorithm 10.6 Complete Solution of System P
procedure GroebnerSolve(P)

# Given system P C F[x] with finitely many solutions,
# find these solutions over an “appropriate” extension of F.

# We store partially refined bases and partial roots in Q.

@ {2, 0]}
for £ from n by ~1 to 1 do {

S —

# Reline/extend each clement of O one more level.

for [G, (ak+l>"'?a!l)] &0 do {
G4—"{g(xi,---:xk:ak+i>~">afz} I gEG}
G «— Gbasis(G)
» = Solvel(G, x;) |

# The roots of pp in x; yield several new partial roots.

if p % 1 then
S —SUL[G, (& 0ss,r0)] [p(a) = 0} )

0 -5 )

rogls 4 3

. for [G7 (a'i:"':an)] cQ do {

roots <—vroots U { {a,...,c0)}  }

return( roers )

end

respect to <. Then
<G>NFly, .., x] = <G NFly, ..., x>,

where the ideal on the right hand side is formed in Flx,, ..., x,].

Proof: For convenience, we define G® = ¢ N Flvg, ..., x,]. First, supposc
that p € <G> N Fly, ..., x,]. Since G is a Grocbner basis, p =g 0. But since

pcontains only the variables xy, ..., x, this means that there cxist pi EF[x,, ..,
n

s lh g € G such that pos= X this implics that p € <G ®)>
i=1
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We remark that if G is a Groebner basis with respect to <, then G% must

also be a Groebner basis, since Theorem 10.5 (ii) requires that
Spoly(p, (j) P“;G(n 0

for all p, ¢ € G C G. It follows thatif p € <GU‘)>, we also have p €<G> N
Flag, ..., x,].
n
Now, consider specifically the ordering <G, which satisfies the requirements
of the above result. Then Theorem 10.13 says that the polynomials in G which
only depend on the last n—k-+1 variables are a Groebner basis for the "k-th elimi-
nation ideal” of G (i.c., the subsct of <G> which depends only on these varl-
ables). Suppose that G is the lexicographic Groebner basis of a set P C F[x]
which has finitely many solutions. Then by Theorem 10.12, G must contain a
single univariate polynomial in x,; namely, the polynomial in <P> (M IF[x,] of
least degree. In addition, G must contain at least one polynomial in each elimi-
nation ideal in which the "highest" variable is separated.

Example 10.18. The reduced, monic Grocbner basis with respect to <, for

P <at by —2, ¥ dxr =3, xy +22 =35> C Qlx,y, i)

is
. 88 7 §72 5 2690 3 125
S A T TSR TR
! 8 '-‘7 -5-2--'15 —_ _?_‘1(_)_73 » _’Z‘i_
¥+ ogerE oyt ot
':8 — _2_5_*:6 _.2_1_9_.-4 _ C "__.2 e 19.1._
- 2" + g REE 8

Hence, in order to solve the nonlinear system associated with 7 we may solve
mstead the reduced equations

. _ 87 85 2690 5 125
. %1E T T R o =0,
L8 7,52 5 740 3, 75 _
Yoo b g e o= 0
825 6, 219 4 e 2, 301
z 57 -+ G G5z% - g 0.

Note how closely this resembics a triangular lincar system.
]

A lexicographic basis may, ol course, contain other polynomials whose head-
terms arc not scparated.  But since each subset G 1y Fly, ... x,] is also a
Groebner basis. no simpler (i.c. "“more separated™) basis may exist for the given
permutation of variables. A (simpler) counterpart to Algorithm 1.6 appoars
below as Algorithim 10,7, We note that the basis refinements (i.e. the additonal
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Algorithm 10.7 Solution of P using Lexicographic Groebner Basis
procedure LexSolve(P)

# Assume that P C F[x] has finitely many solutions,
# and impose the term ordering < .

G «+— Gbasis(P) ; roots «— &
# First, solve the univariate polynomial in x,.

p «—selectpoly{ G N Fx,])
roots +—roots U { (@) | p(e) =0}

# Now, back-solve (cf. Section 9.5).

for k from n—1 by —1 to 1 do {
S 2,
for (ag,1,..., o) Eroots do {
Gk G N F['tka "'7"511] - F['xk-i-l: "‘>*Yrr]
G 4“—{5’(3&’/{, Qppgs-ees Q}r) I 8 EGk}
G Gbasis(G)
p < selectpoly(G N Elx))
if p =1 then
§ 8 U{(earg o) [pe) = 0) )
roots +—35 }
return( rools )
end

Groebner basis computations) in Algoerithm 10.7 arc univariate sub-problems,
and therefore amount to GCD computations. Thus, the above process is indced
simpler than Algorithm 10.6. Stili, it may not be possibie to carry out in prac-
tice. We mention that, as before, the Groebner basis may be decomposed into
irrcducible components if any of its clements [actor. (In {act, these components
can be computed much more efficiently by factoring during Algorithm 10.4; sce
Czapor [17].)

it should also be pointed out that even when a given system bas infiniiely
many solutions, the lexicographic Grochner basis will be as “triangular” as possi-
ble. Thercfore, it is often still possible to oblain the solutions diveetly [rom the
basis.

Example 10,19, In Example 1016, we computed the fexicographic basis
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G = {)\'z2 —2x —zY 4% 4
y 42t 422 3 w522 45
204225 — 7Y 88 1522 4 82 10 ),
over Q[x,y,z]. If we factor the final, univariate polynomial we obtain
(2% — DG+ 220 4+ 522 — 4z 1 5)
The roots of the larger factor,
pilz) = A2 4522 —dr +5 = 0

may be extended using Algorithm 10.7 to four complete roots for x,y.z; however,
the roots of po(z) = 2 — 2 = yield only the solutions {y = 1FVZ, 7 = £V}, in
which x may take any valuc. Alternatively, we may refine the basis with respect
to each of the univariate polynomials py, py to obtain

Gbasis(G U {m}) = {x — 2%+ 2,y + =z, 227 4 528 — 4z + 5},
Gbasis(G U {po)) = {y +z — 1,22 =2},

Note that, in the irreducible components of the lexicographic basis, it becomes
clear when specific variables must be viewed as parameters in the corresponding
solutions.

]
Obviously, there is a strong connecction between lexicographic Groebner bases
and the resultant techniques of he previous chapter. However, the Groebner
basis is clearly a more powerful and clegant result than a reduced system (el
Definition 9.1). For cxample, the final univariate polynomiat is of minimal
degree, and therelore contains no extrancous roots.  Also, the degree of the
polynomial which must be solved at cach phase of back-solving will be no larger
than the number of roots.

On the other hand, Tor some types of input polynomials the computation of
a reduced system via resultants may be much faster. HMence, Pohst and Yun {32]
proposed the combined use of resultants, pscudo-division and S-polynomial ‘
reduction.  Also, the speed of cither scheme (for a given problem) depends very
strongly on the permutation of variables xy, ..., x, usced for the climination. It is
much casier to choose a good permutation for the resultant method (one variable
at a time) than to choose a good permutation (a priori} for Algorithm 10.4, when
<, is used. (It is important lo note thal, when a degree ordering is used, the
algorithm is not ncarly as scasitive to this choice; sce Exercise 10.14.} Although
the problem of determining the eprimal permutation is difficult, Bocge ct al. [14]
have proposed @ simple heuristic for choosing a “reasonable” permutation.
Recently, it scems that an cven better solution has been proposed (in the casce
when the system has only linitely many solutions): namelv, it is possible to Tirst
compute the total degree basis and then obtain the lexicographic ona by o

FaN
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“change of basis” transformation. (See Gianni et al. [18].)

10.6. ADDITIONAL APPLICATIONS

Along with the applications discussed above, Buchberger’s Algorithm pro-
vides constructive solutions for a great many problems in polynomial ideal theory
such as computation of Hiibert functions for polynomial ideals, free resolution of
polynomial ideals and syzigies, and determination of algebra membership. How-
ever, most such topics require more algebraic background than we wish to discuss
here. We consider instead two very basic problems which, perhaps surp{;i'z_i/n"giy,
may be solved in terms of Groebner bases. bl

Geometry Theorem Proving

In the past few years, the automated proving of clementary gecometry
theorems has become a topic of great interest in symbolic computation. This is
primarily due (it scems) to the recent work of Wu [30]. We will not dwell here
on the foundations of the subject; rather, we will attempt to present some of the
basic ideas with emphasis on the possible role of Groebner bases: The main idea
is that often a theorem (i.e., a set of hypotheses implying a conclusion), for
which the geometric relationships may be expressed as polynomials, can be pro-
ven algebraically. In Wu’s method, one attempts to show that the set of common
zeros (in an algebraically closed field) of the hypothesis polynomials is contained
in the set of zeros of the conclusion polynomial. Unfortunately, in elementary
geometry one is concerned with real (rather than complex) zeros; so, the method
1s not complete in the sense that not all valid theorems may be proven. Still, Wu
and also Chou [16] have succceded in proving a large number of such theorems.

It is not surprizing that, in the above problem, Groebner basis techniques
have been successfully applied. We will sketch one such approach due to Kapur
Kapur Geometry Proving Nullstcilensatz (A different approach presented by
Kutzler and Stifter [27] appears to be {aster, but less powerful.) Details of the
cquivalence between Wa's formulation of the problem and Kapur’s {and a com-
parison of the various methods) are given by Kapur [25].

Let F be a fickd of characteristic zero, and let F be an algcbraically closed
ficld containing F. Supposc we can represent hypotheses as polynomials h; €

Fix], the conclusion as ¢ € F[x], and any subsidiary hypotheses (to be explained
later) as s; € F[x]. Then we will consider statements of the form
Vg €8, {hi=0,lp=0, ., hg=0, 5,50, ..., 5, £0)
= =), (10.15)
‘The above statement js a theorem if the zeros in F of ¢ include the admissible
common zeros of the . This form is actually quite gencral because any

{(quantificr-frce) formula involving boolean connectives may also be cxpressed as
a (finite) set of polvpomial cquations, Namely, Kapur shows in {25] thaw

N
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(a) pp=0u@nd py =0 <<= {p;=0,p; =0}
(B) pr=0o0rp,=0 = {ppy=0}
(¢) p1#0 <  {pz—1=0},

where z in the above is a new indeterminate. e then proposes the following,
which (as in Theorem 10.11) is based on Hilbert’s Nullstellensatz:

Theorem 10.14. ([25]) The validity of a (geometry) statement of the form (10.15)
is equivalent to the validity of

<hy, oo, fy, sz =1, L s =1, e =1 = >,

where z, {z;} are additional indeterminates.
|

That is, the problem reduces to that of showing that a related system (which
includes the contradiction of the conclusion) is not solvable over F.

Example 10.20. Consider the probiem of proving the following simple proposi-
tion: if the right biscctor of the hypotenuse of a right triangle intersects the right
vertex, then the triangle is isosceles.

Without loss of generality, we set up a plane coordinate system in which the
right vertex is at the origin, and the triangle sits in the first quadrant. Suppose
the other two vertices are at (y;, 0) and (0, y;), and the midpoint of the hypo-

tenuse is (y4, y4)- Thon yq = yo/2 and y3 = y;/2 (since we have a midpoint), and
yalys = w3, /¥)71 (since the biscctor is perpendicular to the hypotenuse).
Furthermore, the triangle will be isosceles if and only if |y} = [y]. Since the

reduced, monic Grocbner basis of
. o A AR .
<yy = 2y3, ¥o = e ¥z — yvas Of —yi)z — 1>

{over Qy1, y2, ¥3, ¥4y 2)) 18 {1}, the theorem is valid.
=

We must, finally, mention the role of the subsidiary hypotheses {s;} in the
above. It may happen that some theorems may only be cstablished in the above

manner when certain degenerate cases are ruled out. For example, in Example
10.20 it might have becn necessary to specify that y; 5 0 % y,; thus we would

have added the polynomiais

§yo= Yoy — L, §p = Ngig - 1

to the sct above. An cxample of a case in which such extra conditions arc neces-
sary is provided in Excrcise 10.20. (Mcthods for detecting such cases are dis-
cussced by Kapur [25] and Wu [36].)
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Polynomial GCD Computation

Recently, Gianni and Trager [19] outlined how Groebner basis calculations
may be used to compute multivariate GCD’s. While not especially practicat,
such methods do serve to illustrate the significance of Groebner bascs. They pro-
pose the following method:

Theorem 10.15. Let fy, ..., [, & € Fly,x] be primitive with respect to y and I be
a maximal ideal in F[x] (i.e., I is contained in no other ideal). Suppose that

<1 s S I = 4>,
<eoelf (f;-g), I>

I

<I> forsome !l <i<m,

and let Gy be a reduced Groebner basis for the ideal

qi'gs ceey fmga Ik>

with respect to <. Then for k > [deg(g)]?, the unique polynomial ¢ in Gy of

Jeast totat degree is an associate of g.
"

The idea in the above is to produce an ideal in which the GCD is the clement of
jcast degree. This depends, in part, on the observation that

</‘]? ""f)ﬂ) I>=<1> = <.f1.g7"')fﬁllg?Ik>w_»<gSIk>

for £ > 0. (The proof of this is left as an exercise for the reader.) In practice,
the ideal 1 is chosen to be of the form

I = <y — o, ¥y — 0, s Y T Q>

for ¢ € F. The reader should compare the above requirements lor the {f}}, g

and [ with those imposed on homomorphisms in Scction 7.4.

Example 10,21, Consider the problem of finding the GCD of

2y = 2y - 2)»’3 4 4y — 3+ 7,\’}-‘?‘ — 14x + xz% — 2)-‘2 + 2z,

Py = 3¢%: — 302 + 6r — ¥ + ot =2 —xz Ay -2,
We fust note that both of these pelynomials are primitive in v, If we choose I =
<y, z—1>, for example, then a basis for I° is

Q= {73 =100 = DR 12 5@ - DY @ - 1))

It 1s then easy to verify that the remaining conditions of Theorem 10,15 arc met.
By mecans of Algorithm 10.4, we may compute a rveduced basis (with respect to
<) for <py.opy. @ namely
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{3zt 4yz? 4 6y2? — dyz 4y, 27 — 52 + 102 — 1022 - 52 — 1,
xyz2 — 2)?23 — 2xyz +- 8yz2 + xy + 4y — 10vz,
2 = 12x2% 4 162% 4 6x2 + 245z + 962 — 722 - 32,
320 — 2% e 3x2® 4 1022 o 3xz ¥ 4 147 — 182° — 4,
X%y w dxyz + 4yz? 4 8xy + 16y — 16yz,
xf - dx? £ 42 -0 120 — 8x 32— 202° — 16,
vt — xz — 2}.
The polynomial of least degree in this basis 1s
g =y —xz—2.
Since we have
pre=(2y —Tx 4+ 2)az —y2 +2), pp= By —z - D)z — ¥ 4+ 2),

g is indced the reguired GCD.
|

We mention that, in addition, a method is given by Gianni and Trager {19]
for performing multivarate facterization.
/

ITxercises

(Those exercises marked with an ~ may require a significant amount of computer
time; time limits should be sct at "appropriate” values. )
1. Consider arbitrary p, ¢, r € F[x] and P C Flx] such that p +—p ¢. Is it truc

that p 4 r =y g -Fr? Is it truc that p 41 +p g 477

2. Show that if p, ¢, r € F[x] are such that p = g7, then p 7, 0 for any term

ordering <.

Formutate a stratcgy for the procedure sclectpoly, which seleets the "best” of
several reducers in Algorithm 10.1 when the degree ordering is used. (Hint:
show that the number of distinct n-variate terms of total degree k15

(k;’;—i?i ;

o

hence the number of distinct terms of degree less than or cqual to ¢ s

2{}3 k:};i?]) _ (c!;i—n) N
L=}



Grocbner Bases

4.

39

For arbitrary g1, g3, hy, iy €F[x], find o, § €F and u €T, such that
M(hy)gy + [ M(hy) + ochterm(hy) gy = Bru-Spoly(gy, ga) .

Devise an algorithm to decide, given Py, Py C F[x], if <P{> C <Py>.

Using your favorite computer algebra system, implement Algorithm 10.2
using both term orderings <, and < over Q[x]. (Hiat: you need only con-

struct different leading monomial functions My and M;.) You should use

the "first available” pair selection strategy, and make all polynomials monic
as they are added to the partial basis. Test your code for <p on Examples

10.8 and 10.10, and for <, on Examples 10.16 and 10.18.

Implement Algorithm 10.3, and hence modify the code from Exercise 6 to
yield a reduced, monic Groebner basis. Compare the results of the new
code to that of the old on Examples 10.16, 10.18 using < ; repeat this com-

parison for Exampie 10.8 using <j,. Assuming the implementation of Exer-
cise O Is correct, can you devise a procedure which verifics the correctness of
the new code?

Improve the implementation of Exercise 7 by adding criterion] and cri-
terion2 as in Algorithm 10.4. (Hint: the efficiency of criterion2 depends on
a fast means of testing if [u, v €5.} Compare this code, and that of Exercise
7, on:
(a) the polynomials of Example 10.10, for <, and < ;
()" the sct

{,1‘22 4+ x2? 4yt — -2, 23?4 2xz — 3z 4 x + y =1,

262 4 xy? — 3x 4 2xy + 37 - 3y J

using the same orderings on Tx,y,2)

Further (and finally!) improve the implementation of Excreise 8 by modify-
ing the procedure selectpair to use the “normal” sclection strategy (10.13).
(Fint: a carcful choice of data structure for the set B will help.} Carefully
compare this and the code of Excrcise 8 on the following:

(a) the polynomials of Exercise 8(b), using <y
(b) the same sct of polynomials, using < ;

{c) the poiynomials of Example 10,10 using < .



4{)

10.

13.

12.

13.

14.

16

Algorithms for Computer Algebra

Prove that if sets P, Q C ¥Ffx] are such that <P> = <>, then the roots of
P, () are identical.

Implement Algorithm 10.5 in your favorite computer algebra system, i.c.
whichever one was used in Exercises 6-9. (Note: in order to save some
trouble, you may usc whatever system routines are available for the solution
of systems of linear equations.) Test your impiementation by computing the
polynomial p(z) found in Example 10.17. Then, for the set P defined in
Example 10.10, use your implementation to compute the counterparts g{y),
r{x) to p.

Show that the set {», ¢, r} computed in Exercise 11 is a reduced, monic
Grocbner basis. (Note that this does not require computation of this set.)
Why docs this not contradict the uniqueness of the basis computed in Exam-
ple 10.107

Is it possible for a reduced ideal basis, not composed entirely of univariate
polynomials, to be a Groebner basis with respect to more than one teym ord-
ering? Give an example (if possible) of such a sct which is a Groebner basis
with respect to an arbitrary admissible ordering.

Compute monic, reduced Groebner bases with respect to < for the set
{yava + 199002 + 57 + 45, y4 = Tya + 9yp — ¥y + 44,
S3yays + Zyiya + Uyays + 454, yyyavg + 3yf — Gys -+ 30},
using the following permutations of variables:
(2) x={ya, ¥3, y2, 113
(b) x = {y2, ¥4, ¥1, ¥3b;

(©)" x = {yy, ¥9, ¥, yal-

Comparc the times required for the above computations with those required
using <. Suggest a procedure {or choosing a permutation for which the lex-

icographic computation is relatively simpie.

Compute the lexicographic basis of Exercise 14(c}, by [(irst computing the
degree basis for the same permutation of variables. (Flint: guess the likely
form for the iexicographic basis, and then use the fact that the reduced form
of cach polynomial must vanish.)

Solve the following systems of cquations (or the systems corresponding 1o
given sets of polynomials) as explicitly as possibie:
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17.

18.

19.

20).

(a) the set of Exercise 8(b) for x, y, z;

(b) the system of Exercise 9.X (noting that your implementation of
Buchberger’s algorithm may have to be modified for coefficients in

Q(c));
(e)" the sot
{x3x4 + 19xyx) + Sx{ + 45, 33xgxy + 20F -+ 1lpeg + 454,
xoxd — Uxaxy — 2xqxg — 14, x4 — 7x5 + 9y — x1 + 44, xpxaxy — Gx3 1 30},

for xq, xy, X3, Xx4.

Prove that an ordering <y on Ty, defined for 1 <m <n by

i i
s=ap o at <

--x,{”x! L=
{31,1 <t <msuchthat i; < j; and i, = j,, 1 <k <1}, or

. . . ’f,.,..‘ ,in ,jm--1 P J;"
{ip =J, 1<k <m, and x00)  x <p o) e

is admissible according to Definition 10.1. Suggest two possible uses for such
an ordering.

Implement (f.e. modify one of your previous implementations of)
Buchberger’s algorithm for Groebner bascs over Z,, where p is prime. Com-

pute Groebner bases over Zy4[x,y,z} with respect to <, for the following:

(a) {x4y -+ 2,{3)7 - 5);3, xzyz e 3XY, xy4 + xyz} ;

Oy {202 4+ 72 4+ 9x + 2, xy +4dx — Sy + 11},

Compare both resuits above to the corresponding bases over Qv,y,z). What
conclusions may be drawn?

Devise a modification of Buchberger’s algorithm which, given p € </fy, ...,
m

Fm> © Flx), finds a; € F{x] such that p = 'EIHJ"' Implement your scheme,
f=

and usc it to find ay, ay, ay such that

ay (s —x2%) 4 ay (xy’z —xyz) + ay (2Pt -9 = xzt — oyt

Use Grocbner bases to prove that a parallellogram is a square iff its diago-
nals are perpendicular and equal in length. (Hint: does the problem make
sense il your "arbitrary points” do not really define a parallcllogram?)
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